Skip to main content

Effects of MCC-135 on Ca2+ uptake by sarcoplasmic reticulum and myofilament sensitivity to Ca2+ in isolated ventricular muscles of rats with diabetic cardiomyopathy

  • Chapter
Biochemistry of Diabetes and Atherosclerosis

Part of the book series: Developments in Molecular and Cellular Biochemistry ((DMCB,volume 42))

  • 156 Accesses

Abstract

Diabetic cardiomyopathy is characterized by delayed cardiac relaxation. Delayed relaxation is suggested to be associated with sarcoplasmic reticulum (SR) dysfunction and/or increase in myofilament sensitivity to Ca2+. Although MCC-135, an intracellular Ca2+-handling modulator, accelerates the delayed relaxation without inotropic effect in the ventricular muscle isolated from rats with diabetic cardiomyopathy, the underlying mechanism has not been fully understood. We tested the hypotheses that MCC-135 modulates Ca2+ uptake by SR and myofilament sensitivity to Ca2+. Wistar rats were made diabetic by a single injection of streptozotocin (40 mg/kg i.v.). Seven months later, the left ventricular papillary muscle was isolated and skinned fibers with and without functional SR were prepared by treatment of the papillary muscle with saponin to study SR Ca2+ uptake and myofilament sensitivity to Ca2+, respectively. In diabetic rats, SR Ca2+ uptake was decreased, which was related to decrease in protein level of SR Ca2+-ATPase determined by western blot analysis. MCC-135 enhanced SR Ca2+ uptake in diabetic rats, but not in normal rats. In diabetic rats, maximum force was decreased but force at diastolic level of Ca2+ was increased, without significant change in myofilament sensitivity to Ca2+ compared with normal rats. MCC-135 decreased force at any pCa tested (pCa 7.0-4.4), but had no significant effect on myofilament sensitivity to Ca2+ in diabetic rats. These results suggest that MCC-135 enhances SR Ca2+ uptake and shifts force-pCa curve downward without modulating myofilament sensitivity to Ca2+. These effects may contribute to positive lusitropic effect without inotropic effect of MCC-135 observed in the ventricular muscle of diabetic cardiomyopathy. (Mol Cell Biochem 249: 45–51, 2003)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ishikawa T, Kajiwara H, Kurihara S: Alterations in contractile properties and Ca2+ handling in streptozotocin-induced diabetic rat myocardium. Am J Physiol 277: H2185–H2194, 1999

    PubMed  CAS  Google Scholar 

  2. Katz AM: In: Heart Failure. Lippincott Williams & Wilkins, Philadelphia, 2000, pp 47–51.

    Google Scholar 

  3. Rupp H, Elimban V, Dhalla NS: Modification of myosin isozymes and SR Ca2+-pump ATPase of the diabetic rat heart by lipid-lowering interventions. Mol Cell Biochem 132: 69–80, 1994

    Article  PubMed  CAS  Google Scholar 

  4. Hasenfuss G, Meyer M, Schillinger W, Preuss M, Pieske B, Just H: Calcium handling proteins in the failing human heart. Basic Res Cardiol 92(suppl 1): 87–93, 1997

    Article  PubMed  CAS  Google Scholar 

  5. Flesch M, Schwinger RH, Schnabel P, Schiffer F, van G, I, Bavendiek U, Sudkamp M, Kuhn-Regnier F, Böhm M: Sarcoplasmic reticulum Ca2+ATPase and phospholamban mRNA and protein levels in end-stage heart failure due to ischemic or dilated cardiomyopathy. J Mol Med 74: 321–332, 1996

    Article  PubMed  CAS  Google Scholar 

  6. Veksler VI, Murat I, Ventura-Clapier R: Creatine kinase and mechanical and mitochondrial functions in hereditary and diabetic cardiomyopathies. Can J Physiol Pharmacol 69: 852–858, 1991

    Article  PubMed  CAS  Google Scholar 

  7. Malhotra A, Reich D, Reich D, Nakouzi A, Sanghi V, Geenen DL, Buttrick PM: Experimental diabetes is associated with functional activation of protein kinase C epsilon and phosphorylation of troponin I in the heart, which are prevented by angiotensin II receptor. Circ Res 81: 1027–1033, 1997

    Article  PubMed  CAS  Google Scholar 

  8. Akella AB, Ding XL, Cheng R, Gulati J: Diminished Ca2+ sensitivity of skinned cardiac muscle contractility coincident with troponin T-band shifts in the diabetic rat. Circ Res 76: 600–606, 1995

    Article  PubMed  CAS  Google Scholar 

  9. Makino N, Dhalla KS, Elimban V, and Dhalla NS: Sarcolemmal Ca2+ transport in streptozotocin-induced diabetic cardiomyopathy in rats. Am J Physiol 253: E202–E207, 1987

    PubMed  CAS  Google Scholar 

  10. Wang DW, Kiyosue T, Shigematsu S, Arita M: Abnormalities of K+ and Ca2+ currents in ventricular myocytes from rats with chronic diabetes. Am J Physiol 269: H1288–H1296, 1995

    PubMed  CAS  Google Scholar 

  11. Bouchard RA, Bose D: Influence of experimental diabetes on sarcoplasmic reticulum function in rat ventricular muscle. Am J Physiol 260: H341–H354, 1991

    PubMed  CAS  Google Scholar 

  12. Dhalla NS, Liu X, Panagia V, Takeda N: Subcellular remodeling and heart dysfunction in chronic diabetes. Cardiovasc Res 40: 239–247, 1998

    Article  PubMed  CAS  Google Scholar 

  13. Ren J, Davidoff AJ: Diabetes rapidly induces contractile dysfunctions in isolated ventricular myocytes. Am J Physiol 272: H148–H158, 1997

    PubMed  CAS  Google Scholar 

  14. Lagadic-Gossmann D, Feuvray D: Decreased sensitivity of contraction to changes of intracellular pH in papillary muscle from diabetic rat hearts. J Physiol 422: 481–497, 1990

    PubMed  CAS  Google Scholar 

  15. Puley G, Dawood F, Wen W, Hou D, Backx P, Aitken K, Liu P: The effect of a novel cardioprotector AAA-135 on the morphology and function in a viral model of cardiomyopathy. Circulation 98: I–105, 1998

    Google Scholar 

  16. Satoh N, Kawasumi H, Kitada Y: Inhibition of myocardial Ca2+ overload by a new Ca2+-handling modulator MCC-135 improves left ventricular function and reduces mortality in cardiomyopathic hamsters. J Card Fail 5: 57, 1999

    Article  Google Scholar 

  17. Satoh N, Sato T, Shimada M, Yamada K, Kitada Y: Lusitropic effect of MCC-135 is associated with improvement of sarcoplasmic reticulum function in ventricular muscles of rats with diabetic cardiomyopathy. J Pharmacol Exp Ther 298: 1161–1166, 2001

    PubMed  CAS  Google Scholar 

  18. Hoit BD, Castro C, Bultron G, Knight S, Matlib MA: Non-invasive evaluation of cardiac dysfunction by echocardiography in streptozotocin-induced diabetic rats. J Card Fail 5: 324–333, 1999

    Article  PubMed  CAS  Google Scholar 

  19. Yamamoto J, Nakai M: Effects of moderate diabetes on cardiac performance in spontaneously hypertensive and Wistar-Kyoto rats. Hypertension 11: 344–351, 1988

    Article  PubMed  CAS  Google Scholar 

  20. Satoh N, Suter TM, Liao R, Colucci WS: Chronic alpha-adrenergic receptor stimulation modulates the contractile phenotype of cardiac myocytes in vitro. Circulation 102: 2249–2254, 2000

    Article  PubMed  CAS  Google Scholar 

  21. Kitada Y, Narimatsu A, Matsumura N, Endo M: Increase in Ca2+ sensitivity of the contractile system by MCI-154, a novel cardiotonic agent, in chemically skinned fibers from the guinea pig papillary muscles. J Pharmacol Exp Ther 243: 633–638, 1987

    PubMed  CAS  Google Scholar 

  22. Endo M, Iino M: Specific perforation of muscle cell membranes with preserved SR functions by saponin treatment. J Muscle Res Cell Motil 1: 89–100, 1980

    Article  PubMed  CAS  Google Scholar 

  23. Ganguly PK, Pierce GN, Dhalla KS, Dhalla NS: Defective sarcoplasmic reticular calcium transport in diabetic cardiomyopathy. Am J Physiol 244: E528–E535, 1983

    PubMed  CAS  Google Scholar 

  24. Zhong Y, Ahmed S, Grupp IL, Matlib MA: Altered SR protein expression associated with contractile dysfunction in diabetic rat hearts. Am J Physiol Heart Circ Physiol 281: H1137–H1147, 2001

    PubMed  CAS  Google Scholar 

  25. Zarain-Herzberg A, Yano K, Elimban V, Dhalla NS: Cardiac sarcoplasmic reticulum Ca(2+)-ATPase expression in streptozotocin-induced diabetic rat heart. Biochem Biophys Res Commun 203:113–120, 1994

    Article  PubMed  CAS  Google Scholar 

  26. Yao Q, Chen LT, Li J, Brungardt K, Squier TC, Bigelow DJ: Oligomeric interactions between phospholamban molecules regulate Ca-ATPase activity in functionally reconstituted membranes. Biochemistry 40: 6406–6413, 2001

    Article  PubMed  CAS  Google Scholar 

  27. Teshima Y, Takahashi N, Saikawa T, Hara M, Yasunaga S, Hidaka S, Sakata T: Diminished expression of sarcoplasmic reticulum Ca2+-ATPase and ryanodine sensitive Ca2+ Channel mRNA in streptozotocin-induced diabetic rat heart. J Mol Cell Cardiol 32: 655–664, 2000

    Article  PubMed  CAS  Google Scholar 

  28. Davia K, Hajjar RJ, Terracciano CM, Kent NS, Ranu HK, O’Gara P, Rosenzweig A, Harding SE: Functional alterations in adult rat myocytes after overexpression of phospholamban with use of adenovirus. Physiol Genomics 1:41–50, 1999

    PubMed  CAS  Google Scholar 

  29. Netticadan T, Temsah RM, Kent A, Elimban V, Dhalla NS: Depressed levels of Ca2+-cycling proteins may underlie sarcoplasmic reticulum dysfunction in the diabetic heart. Diabetes 50: 2133–2138, 2001

    Article  PubMed  CAS  Google Scholar 

  30. Schwinger RH, Munch G, Bolck B, Karczewski P, Krause EG, Erdmann E: Reduced Ca(2+)-sensitivity of SERCA 2a in failing human myocardium due to reduced serin-16 phospholamban phosphorylation. J Mol Cell Cardiol 31: 479–491, 1999

    Article  PubMed  Google Scholar 

  31. Kitada Y, Kawasumi H: Molecular mechanisms of action of positive inotropic agents that increase responsiveness of cardiac myofilaments to Ca2+. Curr Topics Pharmacol 5: 109–117, 2000

    CAS  Google Scholar 

  32. Hofmann PA, Menon V, Gannaway KF: Effects of diabetes on isometric tension as a function of [Ca2+] and pH in rat skinned cardiac myocytes. Am J Physiol 269: H1656–H1663, 1995

    PubMed  CAS  Google Scholar 

  33. Liu X, Takeda N, Dhalla NS: Troponin I phosphorylation in heart homogenate from diabetic rat. Biochim Biophys Acta 1316: 78–84, 1996

    Article  PubMed  Google Scholar 

  34. Luo W, Grupp IL, Harrer J, Ponniah S, Grupp G, Duffy JJ, Doetschman T, Kranias EG: Targeted ablation of the phospholamban gene is associated with markedly enhanced myocardial contractility and loss of beta-agonist stimulation. Circ Res 75: 401–409, 1994

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Satoh, N., Kitada, Y. (2003). Effects of MCC-135 on Ca2+ uptake by sarcoplasmic reticulum and myofilament sensitivity to Ca2+ in isolated ventricular muscles of rats with diabetic cardiomyopathy. In: Gilchrist, J.S.C., Tappia, P.S., Netticadan, T. (eds) Biochemistry of Diabetes and Atherosclerosis. Developments in Molecular and Cellular Biochemistry, vol 42. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9236-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9236-9_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4852-8

  • Online ISBN: 978-1-4419-9236-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics