Skip to main content
Log in

Calcium handling proteins in the failing human heart

  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

There is accumulating evidence that disturbed calcium homeostasis may play a key role in the pathophysiology of human heart failure. Because disturbed calcium handling could result from altered protein expression, levels of calcium handling proteins were quantitated by Western Blot analysis in failing and nonfailing human myocardium from hearts with endstage failing dilated or ischemic cardiomyopathy. Protein levels of the sarcoplasmic reticulum calcium release channel (ryanodine receptor) and of calcium storage proteins (calsequestrin and calreticulin) were similar in failing and nonfailing human myocardium. However, proteins involved in calcium removal from the cytosol were significantly altered in the failing human heart: 1) SR-Ca2+-ATPase, relevant for removal of calcium from the cytosol into the lumen of the sarcoplasmic reticulum, was decreased; 2) phospholamban, which inhibits the SR-Ca2+-ATPase in the basal unphosphorylated state, was slightly decreased; 3) the ratio of SR-Ca2+-ATPase to phospholamban was decreased; 4) the sarcolemmal Na+−Ca2+-exchanger, relevant for transsarcolemmal calcium extrusion was increased in the failing hearts. In summary, altered levels of proteins involved in calcium removal from the cytosol suggest an increase in transsarcolemmal calcium elimination relative to sarcoplasmic reticulum calcium removal. These findings support the concept that reduced function of the sarcoplasmic reticulum to accumulate calcium may reflect a major defect in excitationcontraction coupling in human heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arai M, Alpert NR, Periasamy M (1991) Cloning and characterization of the gene encoding rabbit cardiac calsequestrin. Gene 109: 275–279

    Google Scholar 

  2. Arai M, Hirosuke M, Periasamy M (1994) Sarcoplasmic reticulum gene expression in cardiac hypertrophy and heart failure. Circ Res 74: 555–564

    Google Scholar 

  3. Arai M, Alpert NR, MacLennan DH, Barton P, Periasamy M (1993) Alterations in sarcoplasmic reticulum gene expression in human heart failure: a possible mechanism for alterations in systolic and diastolic properties of the failing myocardium. Circ Res 72: 463–469

    Google Scholar 

  4. Barry WH, Bridge JHB (1993) Intracellular calcium homeostasis in cardiac myocytes. Circulation 87: 1806–1815

    Google Scholar 

  5. Bers DM, Christensen DM, Nguyen TX (1988) Can Ca2+ entry via Na+−Ca2+-exchange directly activate cardiac muscle contraction? J Mol Cell Cardiol 20: 405–414

    Google Scholar 

  6. Bers DM (1993) Na+/Ca2+ exchange and the sarcolemmal calcium pump. In: Bers DM, ed. Excitation-Contraction Coupling and Cardiac Contractile Force. Dordrecht: Kluwer Academic Publishers: 71–92

    Google Scholar 

  7. Beuckelmann DJ, Näbauer M, Erdmann E (1992) Intracellular calcium handling in isolated ventricular myocytes from patients with terminal heart failure. Circulation 85: 1046–1055

    Google Scholar 

  8. Beuckelmann DH, Erdmann E (1992) Ca2+-currents and intracellular (Ca2+)i-transients in single ventricular myocytes isolated from terminally failing human myocardium. Bas Res Cardiol (Suppl) 87: 235–243

    Google Scholar 

  9. Brillantes AM, Allen P, Takahashi T, Izumo S, Marks AR (1992) Differences in cardiac calcium release channel (ryanodine receptor) expression in myocardium from patients with end-stage heart failure caused by ischemic versus dilated cardiomyopathy. Circ Res 71: 18–26

    Google Scholar 

  10. D'Agnolo A, Luciani GB, Mazzucco A, Gallucci V, Salviati G (1992) Contractile properties and Ca2+ release activity of the sarcoplasmic reticulum in dilated cardiomyopathy. Circulation 85: 518–525

    Google Scholar 

  11. Endo M (1977) Calcium release from the sarcoplasmic reticulum. Physiol Rev 57: 71–108

    Google Scholar 

  12. Fabiato A (1983) Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum. Am J Physiol 245: C1-C14

    Google Scholar 

  13. Feldman AM, Ray PE, Silan CM, Mercer JA, Minobe W, Bristow MR (1991) Selective gene expression in failing human heart. Circulation 83: 1866–1872

    Google Scholar 

  14. Flesch M, Schwinger RHG, Schiffer F, Frank K, Sü\kamp M, Kuhn-Regnier F, Arnold G, Böhm M (1996) Evidence for functional relevance of an enhanced expression of the Na+−Ca2+-exchanger in failing human myocardium. Circulation 94: 992–1002

    Google Scholar 

  15. Fliegel L, Ohnishi M, Carpenter MR, Khanna VK, Reithmeir RAF, MacLennan DH (1987) Amino acid sequence of fast-twitch skeletal muscle calsequestrin deduced from cDNA and peptide sequencing. Proc Natl Acad Sci USA 84: 1167–1171

    Google Scholar 

  16. Fujii J, Lytton J, Tada M, MacLennan DH (1987) Rabbit cardiac and slowtwitch muscle express the same phospholamban gene. FEBS Let: 227: 51–55

    Google Scholar 

  17. Go LO, Moschella MC, Watras J, Handa KK, Fyfe BS, Marks AR (1995) Differential regulation of two types of intracellular calcium release channels during end-stage heart failure. J Clin Invest 95: 888–894

    Google Scholar 

  18. Gwathmey JK, Copelas L, MacKinnon R, Schoen FJ, Feldman MD, Grossman W, Morgan JP (1987) Abnormal intracellular calcium handling in myocardium from patients with end-stage heart failure. Circ Res 61: 70–76

    Google Scholar 

  19. Hasenfuss G, Mulieri LA, Holubarsch C, Pieske B, Just H, Alpert NR (1992) Energetics of calcium cycling in nonfailing and failing human myocardium. In: Holtz J, Drexler H, Just H eds. Cardiac Adaption in Heart Failure. Darmstadt: Steinkopff Verlag: 81–92

    Google Scholar 

  20. Hasenfuss G, Mulieri LA, Leavitt JB, Allen PD, Haeberle JR, Alpert NR (1992) Alteration of contractile function and excitation-contraction coupling in dilated cardiomyopathy. Circ Res 70: 1225–1232

    Google Scholar 

  21. Hasenfuss G, Reinecke H, Studer R, Meyer M, Pieske B, Holtz J, Holubarsch C, Posival H, Just H, Drexler H (1994) Relation between myocardial function and expression of sarcoplasmic reticulum Ca2+-ATPase in failing and nonfailing human myocardium. Circ Res 75: 434–442

    Google Scholar 

  22. Hasenfuss G, Preuss M, Lehnart S, Prestle J, Meyer M, Just H (1996) Relationship between diastolic function and protein levels of sodium-calciumexchanger in end-stage failing human hearts. Circulation (Suppl 8) 94: I-433

    Google Scholar 

  23. Holmberg SRM, Williams AJ (1989) Single channel recordings from human cardiac sarcoplasmic reticulum. Circ Res 65: 1445–1449

    Google Scholar 

  24. Hullin R, Biel M, Flockerzi V, Hofmann F (1993) Tissue-specific expression of calcium channels. Trends Cardiovasc Med 3: 48–53

    Google Scholar 

  25. James P, Inui M, Tada M, Chiesi M, Carofoli E (1989) Nature and site of phospholamban regulation of the Ca2+ pump of sarcoplasmic reticulum. Nature 342: 90–92

    Google Scholar 

  26. Kranias EG, Garvey JL, Srivastava RD, Solaro RJ (1985) Phosphorylation and functional modifications of sarcoplasmic reticulum and myofibrils in isolated rabbit hearts stimulated with isoprenaline. Biochem J 226: 113–121

    Google Scholar 

  27. Kim HW, Steenaart NAE, Ferguson DG, Kranias EG (1990) Functional reconstitution of the cardiac sarcoplasmic reticulum Ca2+-ATPase with phospholamban in phospholipid vesicles. J Biol Chem 265: 1702–1709

    Google Scholar 

  28. Linck B, Bokník P, Eschenhagen T, Müller FU, Neumann J, Nose M, Jones LR, Schmitz W, Scholz H (1996) Messenger RNA expression and immunological quantification of phospholamban and SR-Ca2+-ATPase in failing and nonfailing human hearts. Cardiovasc Res 31: 625–632

    Google Scholar 

  29. Lytton J, MacLennan DH (1991) Sarcoplasmic reticulum. In: Fozzard HA, Hennings RB, Haber E, Katz AM (eds) The Heart and Cardiovascular System. New York, NY: Raven Press Inc; 1203–1222

    Google Scholar 

  30. MacLennan DH, Wong PTS (1971) Isolation of a calcium sequestering protein from sarcoplasmic reticulum. Proc Natl Acad Sci USA 68: 1231–1235

    Google Scholar 

  31. Marks AR, Tempst P, Hwang KS, Taubman MB, Inui M, Chadwick C, Fleischer S, Nadal-Ginard B (1989) Molecular cloning and characterization of the ryanodine receptor/junctional channel complex cDNA from skeletal muscle sarcoplasmic reticulum. Proc Natl Acad Sci USA 86: 8683–8687

    Google Scholar 

  32. Mercadier JJ, Lompre AM, Duc P, Boheler KR, Fraysse JB, Wisnewsky C, Allen PD, Komajda M, Schwartz K (1990) Altered sarcoplasmic reticulum Ca2+-ATPase gene expression in the human ventricle during end-stage heart failure. J Clin Invest 85: 305–309

    Google Scholar 

  33. Meyer M, Schillinger W, Pieske B, Holubarsch C, Heilmann C, Posival H, Kuwajima G, Mikoshiba K, Just H, Hasenfuss G (1995) Alterations of sarcoplasmic reticulum proteins in failing human dilated cardiomyopathy. Circulation 92: 778–784

    Google Scholar 

  34. Michalak M, Milner RE, Burns K, Opas M (1992) Calreticulin. Biochem J 285: 681–692

    Google Scholar 

  35. Movsesian MA, Karimi M, Green K, Jones LR (1994) Ca2+-transporting ATPase, phospholamban, and calsequestrin levels in nonfailing and failing human myocardium. Circulation 90: 653–657

    Google Scholar 

  36. Nagai R, Zarain-Herzberg A, Brandl CJ, Fujii J, Tada M, MacLennan DH, Alpert NR, Periasamy M (1989) Regulation of myocardial Ca2+-ATPase and phospholamban mRNA expression in response to pressure overload and thyroid hormone. Proc Natl Acad Sci USA 86: 2966–2970

    Google Scholar 

  37. Niggli E, Adunyha ES, Penniston JT, Carafoli E (1981) Purified (Ca2+−Mg2+)-ATPase of the erythrocyte membrane. J Biol Chem 256: 395–401

    Google Scholar 

  38. Nimer LR, Needleman DH, Hamilton SL, Krall J, Movsesian MA (1995) Effect of ryanodine on sarcoplasmic reticulum Ca2+ accumulation in nonfailing and failing human myocardium. Circulation 92: 2504–2510

    Google Scholar 

  39. Otsu K, Willard HF, Khanna VK, Zorzato F, Green NM, MacLennan DH (1990) Molecular cloning of cDNA encoding the Ca2+ release channel (ryanodine receptor) of rabbit cardiac muscle sarcoplasmic reticulum. J Biol Chem 265: 13472–13483

    Google Scholar 

  40. Philipson KD (1990) The cardiac Na+−Ca2+-exchanger. In: Langer GA (ed.) Calcium and the Heart. Raven Press, New York, pp 85–108

    Google Scholar 

  41. Pieske B, Kretschmann B, Meyer M, Holubarsch C, Weirich J, Posival H, Minami K, Just H, Hasenfuss G (1995) Alterations in intracellular calcium handling associated with the inverse force-frequency relation in human dilated cardiomyopathy. Circulation 92: 1169–1178

    Google Scholar 

  42. Pieske B, Sütterlin M, Schmidt-Schweda S, Minami K, Meyer M, Olschewski M, Holubarsch C, Just H, Hasenfuss G (1996) Diminished post-rest potentiation of contractile force in human dilated cardiomyopathy. J Clin Invest 98: 764–776

    Google Scholar 

  43. Piot C, Lemaire S, Albat B, Seguin J, Nargeot J, Richard S (1996) High frequency-induced upregulation of human cardiac calcium currents. Circulation 93: 102–128

    Google Scholar 

  44. Rasmussen RP, Minobe W, Bristow MR (1990) Calcium antagonist binding sites in failing and nonfailing human ventricular myocardium. Biochem Pharmacol 39: 691–696

    Google Scholar 

  45. Schillinger W, Meyer M, Kuwajima G, Mikoshiba K, Just H, Hasenfuss G (1996) Unaltered ryanodine receptor protein levels in ischemic cardiomyopathy. Mol Cell Biochem 160/162 297–302

    Google Scholar 

  46. Schwinger RH, Böhm M, Schmidt U, Karczewski P, Bavendiek U, Flesch M, Krause EG, Erdmann E (1995) Unchanged protein levels of SERCA II and phospholamban but reduced Ca2+ uptake and Ca2+-ATPase activity of cardiac sarcoplasmic reticulum from dilated cardiomyopathy patients compared with patients with nonfailing hearts. Circulation 92: 3220–3228

    Google Scholar 

  47. Studer R, Reinecke H, Bilger J Eschenhagen T, Böhm M, Hasenfuss G, Just H, Holtz J, Drexler H (1994) Gene expression of the cardiac Na+−Ca2+-exchanger in end-stage human heart failure. Circ Res 75: 443–453

    Google Scholar 

  48. Swynghedauw B (1986) Developmental and functional adaptation of contractile proteins in cardiac and skeletal museles Physiol Rev 66: 710–771

    Google Scholar 

  49. Takahashi T, Allen PD, Lacro RY, Marks AR, Dennis AR, Schoen FJ, Grossman W, Marsh JD, Izumo S (1992) Expression of dihydropyridine receptor (Ca2+ cannel) and calsequestrin genes in the myocardium of patients with endstage heart failure. J Clin Invest 90: 927–935

    Google Scholar 

  50. Wagenknecht T, Grassucci R, Frank J, Saito A, Inui M, Fleischer S (1989) Three dimensional architecture of the calcium channel/foot structure of sarcoplasmic reticulum. Nature 338: 167–170

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hasenfuss, G., Meyer, M., Schillinger, W. et al. Calcium handling proteins in the failing human heart. Basic Res Cardiol 92 (Suppl 1), 87–93 (1997). https://doi.org/10.1007/BF00794072

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00794072

Key words

Navigation