Skip to main content

Proline and Lysine Metabolism

  • Chapter
Pseudomonas

Abstract

Besides their function as building blocks for proteins, certain amino acids have other important physiological roles. Such is the case of the non-polar imino acid proline and of lysine, a basic amino acid. Proline is accumulated by bacterial cells during osmotic stress as one of the prevalent compatible solutes that act as osmoprotectants21, 39. It is also a precursor in the biosynthesis of pyoluteorin, an antifimgal compound produced by several Pseudomonas fluorescens strains35, 47. Lysine is involved in pathogenicity mechanisms in Pseudomonas syringae, by conjugation of the amino acid with indole acetic acid (IAA). These IAA-lysine conjugates interfere with auxin metabolism in plants infected by P. syringae, leading to alterations in plant development10. Lysine also participates indirectly in survival of bacteria to low pH, a stress situation that triggers lysine decarboxylation to produce cadaverine, which reduces outer membrane permeability42, 43.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bouvier, J., Richaud, C., Higgins, W., Bogler, O., and Stragier, P., 1992, Cloning, characterization, and expression of the dapE gene of Escherichia coli J. Bacteriol., 174:5265–5271

    PubMed  CAS  Google Scholar 

  2. Cao, X., Kolonay J., Jr, Saxton, K.A., and Hartline, R.A., 1993, The OCT plasmid encodes D-lysine membrane transport and catabolic enzymes in Pseudomonasputida. Plasmid, 30:83–89

    Article  PubMed  CAS  Google Scholar 

  3. Chang, Y.F. and Adams, E., 1977, Factors influencing growth on L-lysine by Pseudomonas. Regulation of terminal enzymes in the delta-aminovalerate pathway and growth stimulation by alpha ketoglutarate. J. Biol. Chem., 252:7987–7991.

    PubMed  CAS  Google Scholar 

  4. Deutch, A.H., Rushlow, K.E., and Smith, C.J., 1984, Analysis of the Escherichia coliproBA locus by DNA and protein sequencing. Nucleic Acids Res., 12:6337–6355.

    Article  PubMed  CAS  Google Scholar 

  5. Ekena, K. and Maloy, S., 1990, Regulation of proline utilization in Salmonella typhimurium: How do cells avoid a futile cycle? Mol. Gen. Genet., 220:492–494.

    Article  PubMed  CAS  Google Scholar 

  6. Espinosa-Urgel, M. and Ramos, J.L., 2001, A Pseudomonas putida aminotransferase involved in lysine catabolism is induced in the rhizosphere. Appl. Environ. Microbiol., 67:5219–5224.

    Article  PubMed  CAS  Google Scholar 

  7. Fothergill, J.C. and Guest, J.R., 1977, Catabolism of L-lysine by Pseudomonas aeruginosa. J. Gen. Microbiol., 99:139–155.

    Article  PubMed  CAS  Google Scholar 

  8. Friede, J.D. and Henderson, L.M., 1976, Metabolism of 5-hydroxylysine in Pseudomonas fluorescens. J. Bacteriol., 127:1239–1247.

    PubMed  CAS  Google Scholar 

  9. Fuchs, T.M., Schneider, B., Krumbach, K., Eggeling, L., and Gross R., 2000, Characterization of a Bordetella pertussis diaminopimelate (DAP) biosynthesis locus identifies dapC, a novel gene coding for N-succinyl-L, L-DAP aminotransferase. J. Bacteriol., 182:3626–3631.

    Article  PubMed  CAS  Google Scholar 

  10. Glass, N.L. and Kosuge, T., 1988, Role of indoleacetic acid-lysine synthetase in regulation of indoleacetic acid pool size and virulence of Pseudomonas syringae subsp. savastanoi. J. Bacteriol., 170:2367–2373.

    PubMed  CAS  Google Scholar 

  11. Hayzer, D.J. and Leisinger, T., 1980, The gene-enzyme relationships of proline biosynthesis in Escherichia coli. J. Gen. Microbiol., 118:287–293.

    PubMed  CAS  Google Scholar 

  12. Hebert, M.D. and Houghton, J.E., 1997, Regulation of ornithine utilization in Pseudomonas aeruginosa (PAO1) is mediated by a transcriptional regulator, OruR. J. Bacteriol., 179:7834–7842.

    PubMed  CAS  Google Scholar 

  13. Hoang, T.T., Williams, S., Schweizer, H.P., and Lam, J.S., 1997, Molecular genetic analysis of the region containing the essential Pseudomonas aeruginosa asd gene encoding β-aspartate semialdehyde dehydrogenase. Microbiology, 143:899–907.

    Article  PubMed  CAS  Google Scholar 

  14. Ichihara, A., Ichihara, E.A., and Suda, M., 1960, Metabolism of L-lysine by bacterial enzymes IV δ-aminovaleric acid-glutamic acid transaminase. J. Biochem., 48:412–420.

    CAS  Google Scholar 

  15. Jovanovich, S.B., Martinell, M., Record M.T., Jr, and Burgess, R.R., 1988, Rapid response to osmotic upshift by osmoregulated genes in Escherichia coliand Salmonella typhimurium. J. Bacteriol., 170:534–539.

    PubMed  CAS  Google Scholar 

  16. Kenklies, J., Ziehn, R., Fritsche, K., Pich, A., and Andreesen, J.R., 1999, Proline biosynthesis from L-ornithine in Clostridium sticklandii: Purification of deltal-pyrroline-5-carboxylate reductase, and sequence and expression of the encoding gene, proC. Microbiology, 145:819–826.

    Article  CAS  Google Scholar 

  17. Kosuge, T. and Hoshino, T., 1998, Lysine is synthesized through the alpha-aminoadipate pathway in Thermus thermophilus. FEMS Microbiol. Lett., 169:361–367.

    PubMed  CAS  Google Scholar 

  18. Ledwidge, R. and Blanchard, J.S., 1999, The dual biosynthetic capability of N-acetylornithine aminotransferase in arginine and lysine biosynthesis. Biochemistry, 38:3019–3024.

    Article  PubMed  CAS  Google Scholar 

  19. Liao, M.K., Gort, S., and Maloy, S., 1997, A cryptic proline permease in Salmonella typhimurium. Microbiology, 143:2903–2911.

    Article  PubMed  CAS  Google Scholar 

  20. Liu, L., and Shaw, P.D., 1997, Characterization of dapB, a gene required by Pseudomonas syringae pv. tabaci BR2.024 for lysine and tabtoxinine-beta-lactam biosynthesis. J. Bacteriol., 179:507–513.

    PubMed  CAS  Google Scholar 

  21. Mahan, M.J. and Csonka, L.N., 1983, Genetic analysis of the proBA genes of Salmonella typhimurium: Physical and genetic analyses of the cloned proB + A + genes of Escherichia coli and of a mutant allele that confers proline overproduction and enhanced osmotolerance. J. Bacteriol., 156:1249–1262.

    PubMed  CAS  Google Scholar 

  22. Manna, D. and Gowrishankar, J., 1994, Evidence for involvement of proteins HU and RpoS in transcription of the osmoresponsive proU operon in Escherichia coli. J. Bacteriol., 176:5378–5384.

    PubMed  CAS  Google Scholar 

  23. Maringanti, S. and Imlay, J.A., 1999, An intracellular iron chelator pleiotropically suppresses enzymatic and growth defects of Superoxide dismutase-deficient Escherichia coli. J. Bacteriol., 181:3792–3802.

    PubMed  CAS  Google Scholar 

  24. Martin, C., Cami, B., Borne, F., Jeenes, D.J., Haas, D., and Patte, J.C., 1986, Heterologous expression and regulation of the lysA genes of Pseudomonas aeruginosa and Escherichia coli. Mol Gen. Genet., 203:430–434.

    Article  PubMed  CAS  Google Scholar 

  25. Martin, C., Cami, B., Yeh, P., Stragier, P., Parsot, C., and Patte, J.C., 1988, Pseudomonas aeruginosa diaminopimelate decarboxylase: Evolutionary relationship with other amino acid decarboxylases. Mol. Biol. Evol., 5:549–559.

    PubMed  CAS  Google Scholar 

  26. Meile, L. and Leisinger, T., 1982, Purification and properties of the bifunctional proline dehy-drogenase/l-pyrroline-5-carboxylate dehydrogenase from Pseudomonas aeruginosa. Eur. J. Biochem., 129:67–75.

    Article  PubMed  CAS  Google Scholar 

  27. Meile, L., Soldati, L., and Leisinger, T., 1982, Regulation of proline catabolism in Pseudomonas aeruginosa PAO. Arch. Microbiol, 132:189–193.

    Article  PubMed  CAS  Google Scholar 

  28. Mellies, J., Wise, A., and Villarejo, M., 1995, Two different Escherichia coli proP promoters respond to osmotic and growth phase signals. J. Bacteriol., 177:144–151.

    PubMed  CAS  Google Scholar 

  29. Miller, D.L. and Rodwell, VW., 1971, Metabolism of basic amino acids in Pseudomonas putida. Properties of the inducible lysine transport system. J. Biol. Chem., 246:1765–1771.

    PubMed  CAS  Google Scholar 

  30. Moore, R.A., Bocik, W.E., and Viola, R.E., 2002, Expression and purification of aspartate beta-semialdehyde dehydrogenase from infectious microorganisms. Protein Expr. Purif., 25:189–194.

    Article  PubMed  CAS  Google Scholar 

  31. Nakada, Y., Nishijyo, T., and Itoh, Y., 2002, Divergent structure and regulatory mechanism of proline catabolic systems: Characterization of the putAP proline catabolic operon of Pseudomonas aeruginosa PAO1 and its regulation by PruR, an AraC/XylS family protein. J. Bacteriol., 184:5633–5640.

    Article  PubMed  CAS  Google Scholar 

  32. Nishida, H., 2001, Distribution of genes for lysine biosynthesis through the aminoadipate pathway among prokaryotic genomes. Bioinformatics, 17:189–191.

    Article  PubMed  CAS  Google Scholar 

  33. Nishida, H., Nishiyama, M., Kobashi, N., Kosuge, T., Hoshino, T., and Yamane, H., 1999, A prokaryotic gene cluster involved in synthesis of lysine through the amino adipate pathway: A key to the evolution of amino acid biosynthesis. Genome Res., 9:1175–1183.

    Article  PubMed  CAS  Google Scholar 

  34. Nishijyo, T., Haas, D., and Itoh, Y., 2001, The CbrA-CbrB two-component regulatory system controls the utilization of multiple carbon and nitrogen sources in Pseudomonas aeruginosa. Mol Microbiol., 40:917–931.

    Article  PubMed  CAS  Google Scholar 

  35. Nowak-Thompson, B., Chaney, N., Wing, J.S., Gould, S.J., and Loper, J.E., 1999, Characterization of the pyoluteorin biosynthetic gene cluster of Pseudomonas fluorescens Pf-5.J. Bacteriol., 181:2166–2174.

    PubMed  CAS  Google Scholar 

  36. Omori, K., Suzuki, S., Imai, Y., and Komatsubara, S., 1991, Analysis of the Serratia marcescens proBA operon and feedback control of proline biosynthesis. J. Gen. Microbiol., 137:509–517.

    Article  PubMed  CAS  Google Scholar 

  37. Payton, C.W. and Chang, Y.-F., 1982, Δ1-piperideine-2-carboxylate reductase of Pseudomonas putida. J. Bacteriol., 149:864–871.

    PubMed  CAS  Google Scholar 

  38. Rahman, M. and Clarke, P.H., 1980, Genes and enzymes of lysine catabolism in Pseudomonas aeruginosa. J. Gen. Microbiol., 116:357–369.

    PubMed  CAS  Google Scholar 

  39. Ramos, J.L., Gallegos, M.T., Marqués, S., Ramos-González, M.I., Espinosa-Urgel, M., and Segura, A., 2001, Responses of gram-negative bacteria to certain environmental Stressors. Curr. Opin. Microbiol., 4:166–171.

    Article  PubMed  CAS  Google Scholar 

  40. Reitz, M.S. and Rodwell, V.W. 1970. δ-Aminovaleramidase of Pseudomonas putida. J. Biol Chem. 12:3091-3096.

    Google Scholar 

  41. Ronchel, M.C. and Ramos, J.L., 2001, Dual system to reinforce biological containment of recombinant bacteria designed for rhizoremediation. Appl. Environ. Microbiol., 67:2649–2656.

    Article  PubMed  CAS  Google Scholar 

  42. Samartzidou, H. and Delcour, A.H., 1999, Excretion of endogenous cadaverine leads to a decrease in porin-mediated outer membrane permeability. J. Bacteriol., 181:791–798.

    PubMed  CAS  Google Scholar 

  43. Samartzidou, H., Mehrazin, M., Xu, Z., Benedik, M.J., and Delcour, A.H., 2003, Cadaverine inhibition of porin plays a role in cell survival at acidic pH. J. Bacteriol., 185:13–19.

    Article  PubMed  CAS  Google Scholar 

  44. Savioz, A., Jeenes, DJ., Kocher, H.P., and Haas, D., 1990, Comparison of proC and other housekeeping genes of Pseudomonas aeruginosa with their counterparts in Escherichia coli. Gene, 86:107–111

    Article  PubMed  CAS  Google Scholar 

  45. Stalon, V., Vander Wauven, C., Momin, P., and Legrain, C., 1987, Catabolism of arginine, citrulline and ornithine by Pseudomonas and related bacteria. J. Gen. Microbiol., 133:2487–2495.

    PubMed  CAS  Google Scholar 

  46. Steffes, C., Ellis, J., Wu, J., and Rosen, B.P., 1992, The lysP gene encodes the lysine-specific permease. J. Bacteriol., 174:3242–3249.

    PubMed  CAS  Google Scholar 

  47. Thomas, M.G., Burkart, M.D., and Walsh, C.T., 2002, Conversion of L-proline to pyrrolyl-2-carboxyl-S-PCP during undecylprodigiosin and pyoluteorin biosynthesis. Chem. Biol., 9:171–184.

    Article  PubMed  CAS  Google Scholar 

  48. Townsend, D.E., Kaenjak, A., Jayaswal, R.K., and Wilkinson, B.J., 1996, Proline is biosyn-thesized from arginine in Staphylococcus aureus. Microbiology, 142:1491–1497.

    Article  PubMed  CAS  Google Scholar 

  49. Trias, J. and Nikaido, H., 1990, Protein D2 channel of the Pseudomonas aeruginosa outer membrane has a binding site for basic amino acids and peptides. J. Biol. Chem., 265:15680–15684.

    PubMed  CAS  Google Scholar 

  50. Tricot, C., Stalon, V., and Legrain, C., 1991, Isolation and characterization of Pseudomonas putida mutants affected in arginine, ornithine and citrulline catabolism: Function of the arginine oxidase and arginine succinyltransferase pathways. J. Gen. Microbiol., 137:2911–2918.

    Article  PubMed  CAS  Google Scholar 

  51. Velasco, A.M., Leguina, J.I., and Lazcano, A., 2002, Molecular evolution of the lysine biosynthetic pathways. J. Mol. Evol., 55:445–459.

    Article  PubMed  CAS  Google Scholar 

  52. Verhoogt, H.J., Smit, H., Abee, T., Gamper, M., Driessen, A.J., Haas, D., and Konings, W.N., 1992, arcD, the first gene of the arc operon for anaerobic arginine catabolism in Pseudomonas aeruginosa, encodes an arginine-ornithine exchanger. J. Bacteriol., 174:1568–1573.

    PubMed  CAS  Google Scholar 

  53. Vilchez, S., 2000. PhD. thesis. Universidad de Granada, Spain.

    Google Scholar 

  54. Vilchez, S., Manzanera, M., and Ramos, J.L., 2000, Control of expression of divergent Pseudomonas putida put promoters for proline catabolism. Appl. Environ. Microbiol., 66:5221–5225.

    Article  PubMed  CAS  Google Scholar 

  55. Vilchez, S., Molina, L., Ramos, C., and Ramos, J.L., 2000, Proline catabolism by Pseudomonas putida: Cloning, characterization, and expression of the put genes in the presence of root exudates. J. Bacteriol., 182:91–99.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Revelles, O., Espinosa-Urgel, M. (2004). Proline and Lysine Metabolism. In: Ramos, JL. (eds) Pseudomonas. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9088-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9088-4_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4789-7

  • Online ISBN: 978-1-4419-9088-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics