Skip to main content
Log in

Heterologous expression and regulation of the lysA genes of Pseudomonas aeruginosa and Escherichia coli

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

The Pseudomonas aeruginosa lysA gene encoding diaminopimelate decarboxylase (DAP-decarboxylase) was cloned into a broad host range vector. This gene complemented a lys mutation at the lys-12 locus of P. aeruginosa and a lysA defect in Escherichia coli. The P. aeruginosa DAP-decarboxylase was synthesized constitutively in P. aeruginosa as well as in E. coli, where the Pseudomonas lysA gene was poorly expressed. By contrast, the E. coli lysA gene was expressed well in P. aeruginosa and subject to lysine regulation when the E. coli LysR activator protein was provided. This indicates that the mechanism of transcriptional activation for the E. coli lysA gene is effective in the heterologous host.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bagdasarian MM, Amann E, Lurz R, Rueckert B, Bagdasarian M (1983) Activity of the hybrid yrp-lac (tac) promoter of Escherichia coli in Pseudomonas putida. Construction of a broad-host range, controlled expression vector. Gene 26:273–283

    Google Scholar 

  • Bennett PM, Grinsted J, Richmond M (1977) Transposition of TnA does not generate deletions. Mol Gen Genet 154:205–211

    Google Scholar 

  • Boy E, Reinisch F, Richaud C, Patte JC (1976) Role of lysyl-tRNA in the regulation of lysine biosynthesis in Escherichia coli K12. Biochimie 58:213–218

    Google Scholar 

  • Boyer HW, Roulland-Dussoix D (1969) A complementation analysis of the restriction and modification of DNA in Escherichia coli. J Mol Biol 41:459–472

    Google Scholar 

  • Cami B, Bregegère F, Abastado JP, Kourilsky P (1981) Multiple sequences related to classical histocompatibility antigens in the mouse genome. Nature 291:673–675

    Google Scholar 

  • Chenais J, Richaud C, Ronceray J, Cherest H, Surdin-Kerjan Y, Patte JC (1981) Construction of hybrid plasmids containing the lysA gene of E. coli. Studies of expression in E. coli and S. cerevisiae. Mol Gen Genet 182:456–461

    Google Scholar 

  • Clarke PH, Laverack PD (1983) Expression of the argF gene of Pseudomonas aeruginosa in Pseudomonas aeruginosa, Pseudomonas putida and Escherichia coli. J Bacteriol 154:508–512

    Google Scholar 

  • Covarrubias L, Bolivar F (1982) Construction and characterization of new cloning vehicles. VI Plasmid pBR329, a new derivative of pBR328 lacking the 482-base-pair inverted duplication. Gene 17:79–89

    Google Scholar 

  • Dagert M, Erlich SD (1979) Prolonged incubation in calcium improves the competence of Escherichia coli cells. Gene 6:23–28

    Google Scholar 

  • Gragerov AI, Chenchik AA, Aivasashvilli VA, Beabealashvilli RS, Nikiforov VG (1984) Escherichia coli and Pseudomonas putida RNA polymerases display identical contacts with promoters. Mol Gen Genet 195:511–515

    Google Scholar 

  • Haas D, Holloway BW, Schamböck A, Leisinger T (1977) The genetic organization of arginine biosynthesis in Pseudomonas aeruginosa. Mol Gen Genet 154:7–22

    Google Scholar 

  • Haas D, Cryz SJ, Hoh Y, Leisinger T, Lüthi E, Mercenier A, Reimann C, Rele M, Soldati L, Watson JM, Wretlind B (1984) Some applications of transposon insertion mutagenesis in Pseudomonas. In: Heslot H (ed) Génétique des microorganismes industriels. Société française de Microbiologie, Paris, pp 91–111

    Google Scholar 

  • Holloway BW (1955) Genetic recombination in Pseudomonas aeruginosa. J Gen Microbiol 13:572–581

    Google Scholar 

  • Holloway BW (1984) Pseudomonas. In: Ball C (ed) Genetics and breeding of industrial microorganisms. CRC Press Inc. Boca Raton, Florida, p 63–92

    Google Scholar 

  • Holloway BW, Krishnapillai LV, Morgan AF (1979) Chromosomal genetics of Pseudomonas. Microbiol Rev 43:73–102

    Google Scholar 

  • Inouye S, Nakazawa A, Nakazawa T (1981) Molecular cloning of TOL genes xy1B and xy1E in E. coli. J Bacteriol 145:1137–1143

    Google Scholar 

  • Itoh Y, Watson JM, Haas D, Leisinger T (1984) Genetic and molecular characterization of the Pseudomonas plasmid pVS1. Plasmid 11:206–220

    Google Scholar 

  • Jeenes DJ, Soldati L, Baur H, Watson JM, Mercenier A, Reimmann C, Leisinger T, Haas D (1986) Expression of biosynthetic genes from Pseudomonas aeruginosa and Escherichia coli in the heterologous host. Mol Gen Genet, in press

  • MacPherson AJF, Jones-Mortimer MC, Henderson PJF (1981) Identification of the araE transport protein of E. coli. Biochem J 196:269–283

    Google Scholar 

  • Marmur J (1961) A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218

    Google Scholar 

  • Mermod N, Lehrbach PR, Reineke W, Timmis KN (1984) Transcription of the TOL plasmid toluate catabolic pathway operon of Pseudomonas putida is determined by a pair of coordinately and positively regulated overlapping promoters. EMBO J 3:2461–2466

    Google Scholar 

  • Miller JH (1972) Experiments in molecular genetics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  • Minton NP, Atkinson T, Sherwood RF (1983) Molecular cloning of the Pseudomonas carboxypeptidase G2 gene and its expression in Escherichia coli and Pseudomonas putida. J Bacteriol 156:1222–1227

    Google Scholar 

  • Minton NP, Clarke LE (1985) Identification of the promoter of the Pseudomonas gene coding for carboxypeptidase G2. J Mol Appl Genet 3:26–35

    Google Scholar 

  • Patte JC, Morand P, Boy R, Richaud C, Borne F (1980) The relA locus and the regulation of lysine biosynthesis in E. coli. Mol Gen Genet 179:319–325

    Google Scholar 

  • Rolfe B, Holloway BW (1966) Alterations in host specificity of baterial deoxyribonucleic acid after an increase in growth temperature of Pseudomonas aeruginosa. J Bacteriol 92:43–48

    Google Scholar 

  • Schroeter A, Klatt G, Kersten R, Mach F (1981) Lysinbiosynthese bei Pseudomonas aeruginosa PAO1 III. Weitere Charakterisierung Lysin-auxotropher mutanten von Ps. aeruginosa PAO1. Z Allg Mikrobiol 21:343–346

    Google Scholar 

  • Stanisich V, Holloway BW (1972) A mutant sex factor of Pseudomonas aeruginosa. Genet Res 19:91–108

    Google Scholar 

  • Stragier P, Richaud F, Borne F, Patte JC (1983a) Regulation of diaminopimelate decarboxylase synthesis in E. coli I Identification of a lysR gene encoding an activator of the lysA gene. J Mol Biol 168:307–320

    Google Scholar 

  • Stragier P, Danos O, Patte JC (1983b) Regulation of diaminopimelate decarboxylase synthesis in E. coli. II Nucleotide sequence of the lysA gene and its regulatory region. J Mol Biol 168:321–331

    Google Scholar 

  • Stragier P, Patte JC (1983c) Regulation of diaminopimelate decarboxylase synthesis in E. coli. III Nucleotide sequence and regulation of the lysR gene. J Mol Biol 168:333–350

    Google Scholar 

  • Stragier P, Borne F, Richaud F, Richaud C, Patte JC (1983d) Regulatory pattern of the Escherichia coli lysA gene: expression of chromosoma lysA-lacZ fusions. J Bacteriol 156:1198–1203

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by P. Tiollais

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, C., Cami, B., Borne, F. et al. Heterologous expression and regulation of the lysA genes of Pseudomonas aeruginosa and Escherichia coli . Mol Gen Genet 203, 430–434 (1986). https://doi.org/10.1007/BF00422067

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00422067

Key words

Navigation