Skip to main content

Abstract

An important component of ecological assessments is the ability to predict and display changes in ecosystem structure and function over a variety of spatial and temporal scales. These changes can occur over short (less than 1 year) or long time frames (over 100 years). Models may emphasize structural responses (changes in species composition, growth forms, canopy height, amount of old growth, etc.) or functional responses (cycling of carbon, nutrients, and water). Both are needed to display changes in ecosystem components for use in robust ecological assessments. Structure and function models vary in the ecosystem components included, algorithms employed, level of detail, and spatial and temporal scales incorporated. They range from models that track individual organisms to models of broad-scale landscape changes. This chapter describes models appropriate for ecological assessments. The models selected for inclusion can be implemented in a spatial framework and for the most part have been run in more than one system. Model assumptions, advantages, limitations, and applications are discussed, and model features are summarized in Table 18.1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aber, J. D.; Melillo, J. M. 1982. FORTNITE: a computer model of organic matter and nitrogen dynamics in forest ecosystems.Madison: Univ. of Wisconsin Research Bulletin #R3130.

    Google Scholar 

  • Acevedo, M. F.; Urban, D. L.; Ablan, M. 1996. Landscape scale forest dynamics: GIS, gap, and transition models. In: Goodchild, M. F.; Steyaert, L. T.; Parks, B. O., eds. GIS and environmental modeling: progress and research issues.Fort Collins, CO: GIS World Books: 181–185.

    Google Scholar 

  • Allen, T. F. H.; Starr, T. B. 1982. Hierarchy: perspectives for ecological complexity.Chicago: University of Chicago Press.

    Google Scholar 

  • Baker, W. L. 1989a. A review of models of landscape change. Landscape Ecol.2:111–133.

    Article  Google Scholar 

  • Baker, W. L. 1989b. Landscape ecology and nature reserve design in the Boundary Waters Canoe Area, Minnesota. Ecology70:23–35.

    Article  Google Scholar 

  • Band, L. E. 1989. A terrain based watershed information system. Hydrol. Process.3:151–162.

    Article  Google Scholar 

  • Band, L. E. 1991. Distributed parameterization of complex terrain. Surv. Geophys.12:249–270.

    Article  Google Scholar 

  • Band, L. E.; Wood, E. F. 1988. Strategies for large-scale, distributed hydrologic simulation. Appl. Math. Cornput. 27:23–37.

    Article  Google Scholar 

  • Band, L. E.; Patterson, P.; Nemani, R.; Running, S. W. 1993. Forest ecosystem processes at the watershed scale: incorporating hillslope hydrology. Agr. Forest Meteorol.63:93–126.

    Article  Google Scholar 

  • Baron, J.; Ojima, D. S.; Holland, E. A.; Parton, W. J. 1994. Analysis of nitrogen saturation potential in Rocky Mountain tundra and forest: implications for aquatic systems. Bio geochemistry27:61–82.

    Google Scholar 

  • Baron, J. S.; Hartman, M. D.; Band, L. E.; Lammers, R. L. 1998a. Sensitivity of high elevation Rocky Mountain watersheds to climate change. Proceedings of the fifth national watershed coalition annual meeting, May 1997. Reno, NV: 269–273.

    Google Scholar 

  • Baron, J. S.; Hartman, M. D.; Kittel, T. G. F.; Band, L. E.; Ojima, D. S.; Lammers, R. B. 1998b. Effects of land cover, water redistribution, and temperature on ecosystem processes in the South Platte Basin. Ecol. Appl.8:1037-1051.

    Google Scholar 

  • Bart, J. 1995. Acceptance criteria for using individualbased models to make management decisions. Ecol. Appl.5:411–420.

    Article  Google Scholar 

  • Beven, K. J.; Kirkby, M. J. 1979. A physically-based, variable contributing area model of basin hydrology. Hydrolog. Soc. Bull.24:43–69.

    Article  Google Scholar 

  • Bonan, G. B. 1989a. A computer model of the solar radiation, soil moisture, and soil thermal regimes in boreal forests. Ecol. Model.45:275–306.

    Article  Google Scholar 

  • Bonan, G. B. 1989b. Environmental factors and ecological processes controlling vegetation patterns in boreal forests. Landscape Ecol.3:111–130.

    Article  Google Scholar 

  • Bonan, G. B. 1990a. Carbon and nitrogen cycling in North American boreal forests. I. litter quality and soil thermal effects in interior Alaska. Biogeochemistry 10:1–28.

    Article  Google Scholar 

  • Bonan, G. B. 1990b. Carbon and nitrogen cycling in North American boreal forests. II. biogeographic patterns. Can. J. For. Res.20:1077–1088.

    Article  CAS  Google Scholar 

  • Botkin, D. B. 1992. The ecology of forests: theory and evidence.Oxford, UK: Oxford University Press.

    Google Scholar 

  • Botkin, D. B.; Janak, J. F.; Wallis, J. R. 1972. Some ecological consequences of a computer model of forest growth. J. Ecol.60:849–872.

    Article  Google Scholar 

  • Bugmann, H. K. M.; Fischlin, A. 1996. Simulating forest dynamics in a complex topography using gridded climatic data. Climatic Change34:201–211.

    Google Scholar 

  • Bugmann, H. K. M.; Yan, X.; Sykes, M. T.; Martin, P.; Lindner, M.; Desanker, P. V.; Cumming, S. G. 1996. A comparison of forest gap models: model structure and behavior. Climatic Change34:289–313.

    Google Scholar 

  • Burke, I. C.; Kittel, T. G. F.; Lauenroth, W. K.; Snook, P.; Yonker, C. M.; Parton, W. J. 1991. Regional analysis of the Central Great Plains: sensitivity to climate variability. BioScience41:685–692.

    Article  Google Scholar 

  • Childress, W. M.; Rykiel, Jr., E. J.; Forsythe, W.; Li, B. L.; Wu, H. 1996. Transition rule complexity in grid-based automata models. Landscape Ecol.11:257–266.

    Article  Google Scholar 

  • Coffin, D. P.; Lauenroth, W. K. 1990. A gap dynamics simulation model of succession in a semiarid grassland. Ecol. Model.49:229–266.

    Article  Google Scholar 

  • Coffin, D. P.; Lauenroth, W. K. 1996. Transient responses of North-American grasslands to changes in climate. Climatic Change34:269–278.

    Article  Google Scholar 

  • Cole, C. V.; Paustian, K.; Elliott, E. T.; Metherell, A. L.; Ojima, D. S.; Parton, W. J. 1993. Analysis of agroecosystem carbon pools. Water Air Soil Pollut.70: 357–371.

    Article  CAS  Google Scholar 

  • Costanza, R.; Sklar, F. H.; White, M. L. 1990. Modeling coastal landscape dynamics. BioScience40:91–107.

    Article  Google Scholar 

  • Creed, I. F.; Band, L. E.; Foster, N. W.; Morrison, I. K.; Nicolson, J. A.; Semkin, R. S.; Jeffries, D. S. 1996. Regulation of nitrate-N release from temperate forests: a test of the N flushing hypothesis. Water Resour. Res. 32:3337–3354.

    Article  CAS  Google Scholar 

  • Dale, V. H.; Shugart, H. H. 1985. A comparison of tree growth models. Ecol. Model.29:145–169.

    Article  Google Scholar 

  • Dale, V. H.; Hemstrom, M.; Franklin, J. 1986. Modeling the long-term effects of disturbances on forest succession, Olympic Peninsula, Washington. Can. J. For. Res.16:56–67.

    Article  Google Scholar 

  • Dale, V. H.; Gardner, R. H.; DeAngelis, D. L.; Eagar, C. C.; Webb, J. W. 1991. Elevation-mediated effects of balsam woolly adelgid on southern Appalachian spruce-fir forests. Can. J. For. Res.21:1639–1648.

    Article  Google Scholar 

  • Daly, C.; Bachelet, D.; Lenihan, J.; Neilson, R. P.; Parton, W. J.; Ojima, D. 2000. Dynamic simulation of tree-grass interactions for global change studies. Ecol. Appl.10:449–469.

    Google Scholar 

  • Donner, B. L.; Running, S. W. 1986. Water stress response after thinning Pinus contorta stands in Montana. For. Sci.32:614–625.

    Google Scholar 

  • Dunning, J. B., Jr.; Stewart, D. J.; Danielson, B. J.; Noon, B. R.; Root, T. L.; Lamberson, R. H.; Stevens, E. E. 1995. Spatially explicit population models: current forms and future uses. Ecol. Appl.5:3–11.

    Article  Google Scholar 

  • Friend, A. D.; Shugart, H. H.; Running, S. W. 1993. A physiology-based gap model of forest dynamics. Ecology 74:792–797.

    Article  Google Scholar 

  • Ginsberg, R. B. 1971. Semi-Markov processes and mobility. J. Math. Soc.1:233–262.

    Article  Google Scholar 

  • Ginsberg, R. B. 1972. Critique of probabilistic models: application of the semi-Markov model to migration. J. Math. Soc.2:83–103.

    Article  Google Scholar 

  • Grant, W. E. 1988. Models for conservation and wildlife management. Ecol. Model.41:325–326.

    Article  Google Scholar 

  • Green, D. G. 1989. Simulated effects of fire, dispersal, and spatial pattern on competition within forest mosaics. Vegetado82:139–153.

    Article  Google Scholar 

  • Hall, F. G.; Strebel, D. E.; Sellers, P. J. 1988. Linking knowledge among spatial and temporal scales: vegetation, atmosphere, climate and remote sensing. Landscape Ecol.2:3–22.

    Article  Google Scholar 

  • Hansen, A. J.; Garman, S. L.; Weigand, J. F.; Urban, D. L.; McComb, W. C.; Raphael, M. G. 1995. Alternative silvicultural regimes in the Pacific Northwest: simulations of ecological and economic effects. Ecol. Appl.5:535–554.

    Article  Google Scholar 

  • He, H. S.; Mladenoff, D. J. 1999. Dynamics of fire disturbance and succession on a heterogeneous forest landscape: a spatially explicit and stochastic simulation approach. Ecology80:81–99.

    Article  Google Scholar 

  • Henderson, W.; Wilkins, C. W. 1975. The interaction of bushfires and vegetation. Search6:130–133.

    Google Scholar 

  • Holland, E. A.; Parton, W. J.; Detling, J. K.; Coppock, D. L. 1992. Physiological responses of plant populations to herbivory and their consequences for ecosystem nutrient flow. Amer. Naturalist140:685–706.

    Article  CAS  Google Scholar 

  • Holt, R. D.; Pacala, S. W.; Smith, T. W.; Liu, J. 1995. Linking contemporary vegetation models with spatially explicit animal population models. Ecol. Appl. 5:20–27.

    Article  Google Scholar 

  • Humphries, H. C.; Coffin, D. P.; Lauenroth, W. K. 1996. An individual-based model of alpine plant distributions. Ecol. Model.84:99–126.

    Article  Google Scholar 

  • Hunsaker, C. T.; Nisbet, R. A.; Lam, D. C. L.; Browder, J. A.; Baker, W. L.; Turner, M. G.; Botkin, D. B. 1993. Spatial models of ecological systems and processes: the role of GIS. In: Goodchild, M. F.; Parks, B. O.; Steyaert, L. T., eds. Environmental modeling with GIS. Oxford, UK: Oxford University Press: 248–264.

    Google Scholar 

  • Hunt, E. R., Jr.; Running, S. W. 1992. Simulated dry matter yields for aspen and spruce stands in North American boreal forest. Can. J. Remote Sens.18:126–133.

    Google Scholar 

  • Hunt, E. R., Jr.; Piper, S. C.; Nemani, R.; Keeling, C. D.; Otto, R. D.; Running, S. W. 1996. Global net carbon exchange and intra-annual atmospheric CO2 concentrations predicted by an ecosystem process model and three-dimensional atmospheric transport model. Global Biogeochem. Cycle.10:431–456.

    Article  CAS  Google Scholar 

  • Keane, R. E.; Arno, S. F.; Brown, J. K. 1989. FIRE-SUM—an ecological process model for fire succession in western conifer forests.Gen. Tech. Rep. INT-266. Ogden, UT: U.S. Dept. Agric., For. Serv., Intermountain Res. Sta.

    Google Scholar 

  • Keane, R. E.; Arno, S. F.; Brown, J. K. 1990a. Simulating cumulative fire effects in ponderosa pine/Douglasfir forests. Ecology71:189.

    Article  Google Scholar 

  • Keane, R. E.; Arno, S. F.; Brown, J. K.; Tomback, D. F. 1990b. Modelling stand dynamics in whitebark pine (Pinus albicaulis) forests. Ecol. Model.51:73–95.

    Article  Google Scholar 

  • Keane, R. E.; Long, D. G.; Menakis, J. P.; Hann, W. J.; Bevins, C. D. 1996a. Simulating coarse-scale vegetation dynamics using the Columbia River basin succession model—CRBSUM.INT-GTR-340. Ogden, UT: U.S. Dept. Agric., For. Serv., Intermountain For. and Range Exp. Sta.

    Google Scholar 

  • Keane, R. E.; Morgan, P.; Running, S. W. 1996b. FIRE-BGC—a mechanistic ecological process model for simulating fire succession on coniferous forest landscapes of the Northern Rocky Mountains.INT-RP-484. Ogden, UT: U.S. Dept. Agric., For. Serv., Intermountain Res. Sta.

    Google Scholar 

  • Kessell, S. R. 1976. Gradient modeling: a new approach to fire modeling and wilderness resource management. Environ. Manage.1:39–48.

    Article  Google Scholar 

  • Kessell, S. R. 1977. Gradient modeling: a new approach to fire modeling and resource management. In: Hall, C. A. S.; Day, Jr., D. W., eds. Ecosystem modeling in theory and practice: an introduction with case histories. New York: John Wiley & Sons: 575–605.

    Google Scholar 

  • Kessell, S.R. 1979. Phytosociological inference and resource management. Environ. Manage.3:29–40.

    Article  Google Scholar 

  • Kessell, S. R. 1990. An Australian geographical information and modeling system for natural area management. Int. J. Geogr. Inf. Syst.4:333–362.

    Article  Google Scholar 

  • Kessell, S. R.; Cattelino, P. J. 1978. Evaluation of a fire behavior information integration system for southern California chaparral wildlands. Environ. Manage.2:135–159.

    Article  Google Scholar 

  • Kessell, S. R.; Fischer, W. C. 1981. Predicting postfire plant succession for fire management planning.INT-GTR-94. Ogden, UT: U.S. Dept. Agric., For. Serv., Intermountain For. Range Exp. Sta.

    Google Scholar 

  • Kessell, S. R.; Good, R. B. 1982. PREPLAN (Pristine Environment Planning Language and Simulator) user’s guide for Kosciusko National Park. Sydney: National Parks and Wildlife Service of New South Wales, Special Publication.

    Google Scholar 

  • Kessell, S. R., Good, R. B.; Hopkins, A. J. M. 1984. Implementation of two new resource management information systems in Australia. Environ. Manage.8: 251–270.

    Article  Google Scholar 

  • Korol, R. L.; Running, S. W.; Milner, K. S.; Hunt, Jr., E. R. 1991. Testing a mechanistic carbon balance model against observed tree growth. Can. J. For. Res. 21:1098–1105.

    Article  Google Scholar 

  • Kremer, R. G. 1991. Simulating forest response to air pollution: integrating physiological responses to sulphur dioxide with climate-dependent growth processes. Ecol. Model.54:111–126.

    Article  CAS  Google Scholar 

  • Lammers, R. B.; Band, L. E.; Tague, C. L. 1997. Scaling behaviour of watershed processes. In: van Gardingen, P.; Foody, G.; Curran, P., eds. Scaling up from cell to landscape.Cambridge, UK: Cambridge University Press: 295–317.

    Google Scholar 

  • Lenihan, J. M.; Daly, C.; Bachelet, D.; Neilson, R. P. 1998. Simulating broad scale fire severity in a dynamic global vegetation model. Northwest Sci.72:91–103.

    Google Scholar 

  • Liu, J. 1992. ECOLECON: a spatially-explicit model for ecological economics of species conservation in complex forest landscapes.Dissertation. Athens: University of Georgia.

    Google Scholar 

  • Liu, J. 1993. ECOLECON: an ECOLogical-ECONomic model for species conservation in complex forest landscapes. Ecol. Model.70:63–87.

    Article  Google Scholar 

  • Lyon, D.; Monz, C. A.; Brown, R.; Metherell, A. K. 1995. Soil organic matter changes over two decades of winter wheat-fallow cropping in western Nebraska. In: Paul, E. A.; Cole, C. V., eds. Soil organic matter in temperate agricultural ecosystems: a site network approach.Chelsea, UK: Lewis Publishers.

    Google Scholar 

  • Marsden, M. A. 1983. Modeling the effect of wildfire frequency on forest structure and succession in the northern Rocky Mountains. J. Environ. Manage.16: 45–62.

    Google Scholar 

  • McKelvey; K. B.; Noon, B. R.; Lamberson, R. H. 1992. Conservation planning for species occupying fragmented landscapes: the case of the northern spotted owl. In: Kareiva, P. M.; Kingsolver, J. G.; Huey, R. B., eds. Biotic interactions and global change.Boston: Sinauer: 424–450.

    Google Scholar 

  • McLeod, S. D.; Running, S. W. 1988. Comparing site quality indices and productivity in ponderosa pine stands of western Montana. Can. J. For. Res.18:346–352.

    Article  Google Scholar 

  • Metherell, A. K.; Harding, L. A.; Cole, C. V.; Parton, W. J. 1993. CENTURY soil organic matter model environment, technical documentation, agroecosystem version 4.0.Unit Technical Report No. 4. Fort Collins, CO: U.S. Dept. Agric., Agric. Res. Serv.; Great Plains System Res.

    Google Scholar 

  • Metherell, A. K.; Gambardella, C. A.; Parton, W. J.; Peterson, G. A.; Harding, L. A.; Cole, C. V. 1995. Simulation of soil organic matter dynamics in dryland wheat-fallow cropping systems. In: Lal, R., Kimball, J.; Levine, E.; Stewart, B. A., eds. Soil management and greenhouse effect.Boca Raton: CRC Press: 259–270.

    Google Scholar 

  • Mladenoff, D. J.; He, H. S. 1999. Design, behavior and application of LANDIS, an object-oriented model of forest landscape disturbance and succession. In: Mladenoff, D. J.; Baker, W. L., eds. Advances in spatial modeling of forest landscape change: approaches and applications. Cambridge, UK: Cambridge University Press: 125–162.

    Google Scholar 

  • Mladenoff, D. J.; Host, G. E.; Boeder, J.; Crow, T. R. 1996. LANDIS: a spatial model of forest landscape disturbance, succession, and management. In: Good-child, M. F.; Steyaert, L. T.; Parks, B. O., eds. GIS and environmental modeling: progress and research issues.Fort Collins, CO: GIS World Books: 175–179.

    Google Scholar 

  • Neilson, R. P. 1995. A model for predicting continental-scale vegetation distribution and water balance. Ecol. Appl.5:362–385.

    Article  Google Scholar 

  • Neilson, R. P.; Marks, D. 1994. A global perspective of regional vegetation and hydrologie sensitivities and risks from climatic change. J. Veg. Sci.5:715–730.

    Article  Google Scholar 

  • Nemani, R.; Running, S. W. 1989. Testing a theoretical climate-soil-leaf area hydrologie equilibrium of forests using satellite data and ecosystem simulation. Agr. Forest Meteorol.44:245–294.

    Article  Google Scholar 

  • Nemani R; Pierce, R.; Band, L. E.; Running, S. W. 1991. Forest ecosystem processes at the watershed scale: sensitivity to remotely sensed leaf area index observations. Int. J. Remote Sens.14:2519–2534.

    Article  Google Scholar 

  • Nemani, R.; Running, S. W.; Band, L. E.; Peterson, D. L. 1993. Regional hydroecological simulation system: an illustration of the integration of ecosystem models in a GIS. In: Goodchild, M. F.; Parks, B. O.; Steyaart, L. T., eds. Environmental modeling with GIS. Oxford, UK: Oxford University Press: 296–304.

    Google Scholar 

  • Ojima, D. S.; Schimel, D. S.; Parton, W. J.; Owensby, C. E. 1994. Long-and short-term effects of fire on nitrogen cycling in tallgrass prairie. Biogeochemistry 24:67–84.

    Article  Google Scholar 

  • Olson, J. S.; Watts, J. A.; Allison, L. J. 1983. Carbon in live vegetation of major world ecosystems.ORNL-5862. Oak Ridge, TN: Oak Ridge Natl. Lab.

    Google Scholar 

  • Parton, W. J.; Schimel, D. S.; Cole, C. V.; Ojima, D. S. 1987. Analysis of factors controlling soil organic matter levels in Great Plains grasslands. Soil Sci. Soc. Amer. J.51:1173–1179.

    Google Scholar 

  • Parton, W. J.; Stewart, J. W. B.; Cole, C. V. 1988. Dynamics of C, N, P, and S in grassland soils: a model. Biogeochemistry5:109–131.

    Article  CAS  Google Scholar 

  • Parton, W. J.; Schimel, D. S.; Ojima, D. S. 1994. Environmental change in grasslands: assessment using models. Climate Change28:111–141.

    Article  CAS  Google Scholar 

  • Pastor, J.; Post, W. M. 1986. Influences of climate, soil moisture, and succession on forest carbon and nitrogen cycles. Biogeochemistry2:3–27.

    Article  Google Scholar 

  • Pastor, J.; Bonde, J.; Johnston, C.; Naiman, R. J. 1993. Markovian analysis of the spatially dependent dynamics of beaver ponds. Lectures Math. Life Sci. 23:5–27.

    Google Scholar 

  • Paustian, K.; Andren, O.; Clarholm, M.; Hansson, A. C.; Johansson, G.; Lagerlof, J.; Lindberg, T.; Pettersson, R.; Sohlenius, B. 1990. Carbon and nitrogen budgets of four agro-ecosystems with annual and perennial crops, with and without N fertilization. J. Appl. Ecol. 27:60–84.

    Article  Google Scholar 

  • Pielke, R. A.; Cotton, W. R.; Walko, R. L.; Tremback, C. J.; Lyons, W. A.; Grasso, L. D.; Nichols, M. E.; Moran, M. D.; Wesley, D. A.; Lee, T. J.; Copeland, J. H. 1992. A comprehensive meteorological modeling system—RAMS. Meteorol. Atmos. Phys.49:69–91.

    Article  Google Scholar 

  • Potter; M. W.; Kessell, S. R.; Cattelino, P. J. 1979. FOR-PLAN: a forest planning language and simulator. Environ. Manage.3:59–72.

    Article  Google Scholar 

  • Prentice, I. C.; Cramer, W.; Harrison, S. P.; Leemans, R.; Monserud, R. A.; Solomon, A. M. 1992. A global biome model based on plant physiology and dominance, soil properties and climate. J. Biogeography 19:117–134.

    Article  Google Scholar 

  • Pulliam, H. R.; Dunning, Jr., J. B.; Liu, J. 1992. Population dynamics in complex landscapes: a case study. Ecol. Appl.2:165–177.

    Article  Google Scholar 

  • Rasmussen, P. E.; Parton, W. J. 1994. Long-term effects of residue management in wheat/fallow: I. inputs, yield, and soil organic matter. Soil Sci. Soc. Amer. J. 58:523–530.

    Article  Google Scholar 

  • Roberts, D. W. 1996a. Landscape vegetation modelling with vital attributes and fuzzy systems theory. Ecol. Model.90:175–184.

    Article  Google Scholar 

  • Roberts, D. W. 1996b. Modelling forest dynamics with vital attributes and fuzzy systems theory. Ecol. Model. 90:161–173.

    Article  Google Scholar 

  • Running, S.W.; Coughlan, J. C. 1988. A general model of forest ecosystem processes for regional application. Ecol. Model.42:125–154.

    Article  CAS  Google Scholar 

  • Running, S. W.; Gower, S. T. 1991. FOREST-BGC, a general model of forest ecosystem processes for regional applications. II. dynamic carbon allocation and nitrogen budgets. Tree Physiol. 9:147–160.

    PubMed  CAS  Google Scholar 

  • Running, S. W.; Hunt, Jr., E. R.1993. Generalization of a forest ecosystem process model for other biomes, BIOME-BGC, and an application for global-scale models. In: Ehleringer, J. R.; Field, C, eds. Scaling physiological processes: leaf to globe.San Diego, CA: Academic Press: 141–158.

    Google Scholar 

  • Running, S. W.; Nemani, R. R. 1991. Regional hydrologic and carbon balance responses of forests resulting from potential climate change. Climatic Change 19:349–368.

    Article  CAS  Google Scholar 

  • Running, S. W.; Nemani, R. R.; Hungerford, R. D. 1987. Extrapolation of synoptic meteorological data in mountainous terrain, and its use for simulating forest evapotranspiration and photosynthesis. Can. J. For. Res.17:472–483.

    Article  Google Scholar 

  • Running, S. W.; Nemani, R. R.; Peterson, D. L.; Band, L. E.; Potts, D. F.; Pierce, L. L.; Spanner, M. A. 1989. Mapping regional forest evapotranspiration and photosynthesis by coupling satellite data with ecosystem simulation. Ecology70:1090–1101.

    Article  Google Scholar 

  • Sanford, R. L., Jr.; Parton, W. J.; Ojima, D. S.; Lodge, D. J. 1991. Hurricane effects on soil organic matter dynamics and forest production in the Luquillo Experimental Forest, Puerto Rico: results of simulation modeling. Biotropica23:364–372.

    Article  Google Scholar 

  • Schimel, D. S.; Parton, W. J.; Kittel, T. G. F.; Ojima, D. S.; Cole, C. V. 1990. Grassland biogeochemistry: links to atmospheric processes. Climate Change17:13–25.

    Article  Google Scholar 

  • Schimel, D. S.; Kittel, T. G. F.; Parton, W. J. 1991. Terrestrial biogeochemical cycles: global interactions with the atmosphere and hydrology. Tellus43AB: 188–203.

    Google Scholar 

  • Schimel, D. S.; Braswell, B. H.; Holland, E. A.; McKeown, R.; Ojima, D. S.; Painter, T. H.; Parton, W. J.; Townsend, A. R. 1994. Climatic, edaphic, and biotic controls over storage and turnover of carbon in soils. Global Biogeochem. Cycle.8:279–293.

    Article  CAS  Google Scholar 

  • Schimel, D. S.; Braswell, B. H.; McKeown, R.; Ojima, D. S.; Parton, W. J.; Pulliam, W. 1996. Climate and nitrogen controls on geography and timescales of terrestrial biogeochemical cycling. Global Biogeochem. Cycle.10:677–692.

    Article  CAS  Google Scholar 

  • Shugart, H. H. 1984. A theory of forest dynamics: the ecological implications of forest succession models. New York: Springer-Verlag.

    Google Scholar 

  • Shugart, H. H. 1998. Terrestrial ecosystems in changing environments.Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Shugart, H. H.; Smith, T. M. 1996. A review of forest patch models and their application to global change research. Climatic Change34:131–153.

    Article  Google Scholar 

  • Sklar, F. H.; Costanza, R. 1986. A spatial simulation of ecosystem succession in a Louisiana Coastal landscape. In: Crosbie, R.; Luker, P., eds. Proceedings of the 1986 Summer Computer Simulation Conference, Society for Computer Simulation.San Diego, CA: 467–472.

    Google Scholar 

  • Sklar, F. H.; Costanza, R. 1991. The development of dynamic spatial models for landscape ecology: a review and prognosis. In: Turner, M. G.; Gardner, R. H., eds. Quantitative methods in landscape ecology: the analysis and interpretation of environmental heterogeneity. New York: Springer-Verlag: 239–288.

    Google Scholar 

  • Sklar, F. H.; Costanza, R.; Day, J. W. 1985. Dynamic spatial simulation modelling of coastal wetland habitat succession. Ecol. Model.29:261–281.

    Article  Google Scholar 

  • Smith, T. M.; Urban, D. L. 1988. Scale and resolution of forest structural pattern. Vegetado74:143–150.

    Article  Google Scholar 

  • Thiéry, J. M.; D’Herbès, J. M.; Valentin, C. 1995. A model simulating the genesis of banded vegetation patterns in Niger. J. Ecol.83:497–507.

    Article  Google Scholar 

  • Turner, M. G.; Dale, V. H. 1991. Modeling landscape disturbance. In: Turner, M. G.; Gardner, R. H., eds. Quantitative methods in landscape ecology: the analysis and interpretation of environmental heterogeneity. New York: Springer-Verlag: 323–351.

    Google Scholar 

  • Turner, M. G.; Wu, Y.; Romme, W. H.; Wallace, L. L. 1993. A landscape simulation model of winter foraging by large ungulates. Ecol. Model.69:163–184.

    Article  Google Scholar 

  • Turner, M. G.; Wu, Y.; Wallace, L. L.; Romme, W. H.; Brenkert, A. 1994. Simulating winter interactions among ungulates, vegetation, and fire in northern Yellowstone National Park. Ecol. Appl.4:472–496.

    Article  Google Scholar 

  • Turner, M. G.; Arthaud, G. J.; Engstrom, R. T.; Hejl, S. J.; Liu, J.; Loeb, S.; McKelvey, K. 1995. Usefulness of spatially explicit population models in land management. Ecol. Appl.5:12–16.

    Article  Google Scholar 

  • Urban, D. L. 1990. A versatile model to simulate forest pattern: a user’s guide to ZELIG version 1.0.

    Google Scholar 

  • Urban, D. L.; Shugart, H. H. 1992. Individual-based models of forest succession. In: Glenn-Lewin, D. C.; Peet, R. K.; Veblen, T. T. eds. Plant succession: theory and prediction.London: Chapman and Hall: 249–292.

    Google Scholar 

  • Urban, D. L.; Smith, T. M. 1989. Extending individual-based forest models to simulate large-scale environmental patterns. Bull. Ecol. Soc. Amer.70:284.

    Google Scholar 

  • Urban, D. L.; Bonan, G. B.; Smith, T. M; Shugart, H. H. 1991. Spatial applications of gap models. For. Ecol. Manage.42:95–110.

    Article  Google Scholar 

  • VEMAP Members. 1995. Vegetation/ecosystem modeling and analysis project: comparing biogeography and biogeochemistry models in a continental-scale study of terrestrial ecosystem responses to climate change and CO2 doubling. Global Biogeochem. Cycle.9: 407–437.

    Article  Google Scholar 

  • Watt, A. S. 1947. Pattern and process in the plant community. J. Ecol.35:1–22.

    Article  Google Scholar 

  • Wedin, D. A.; Tilman, D. 1996. Influence of nitrogen loading and species composition on the carbon balance of grasslands. Science274:1720–1723.

    Article  PubMed  CAS  Google Scholar 

  • Weishampel, J. F.; Urban, D. L.; Smith, J. B.; Shugart, H. H. 1992. A comparison of semivariograms from a forest transect model and remotely sensed data. J. Veg. Sci.3:521–526.

    Article  Google Scholar 

  • Woolhouse, M. E. J.; Harmsen, R. 1987. A transition matrix model of seasonal changes in mite populations. Ecol. Model.37:167–189.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Humphries, H.C., Baron, J. (2001). Ecosystem Structure and Function Modeling. In: Jensen, M.E., Bourgeron, P.S. (eds) A Guidebook for Integrated Ecological Assessments. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8620-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8620-7_19

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-98583-1

  • Online ISBN: 978-1-4419-8620-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics