Skip to main content

Some Problems in the Calculation of Transport Properties of Partially Ionized Gases

  • Chapter
  • First Online:
Fundamental Aspects of Plasma Chemical Physics

Part of the book series: Springer Series on Atomic, Optical, and Plasma Physics ((SSAOPP,volume 74))

  • 1658 Accesses

Abstract

In this chapter we discuss several problems to be taken into account when trying to calculate the transport coefficients of thermal plasmas to reach an adequate accuracy of the results. Some problems are discussed in other chapters of this book, dealing in particular with the different methods used in the calculation of transport cross sections (Chaps.3 and 4), with the role of electronically excited states in affecting the transport properties (Chap.5) as well as the different Saha equations in affecting the results in two-temperature plasmas (Chap.8).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Asinovsky E, Kirillin A, Pakhomov E, Shabashov V (1971) Experimental investigation of transport properties of low-temperature plasma by means of electric arc. P IEEE 59(4):592–601

    Article  Google Scholar 

  • Bacri J, Raffanel S (1987) Calculation of some thermodynamic properties of air plasmas: Internal partition functions, plasma composition, and thermodynamic functions. Plasma Chem Plasma Process 7(1):53–87

    Article  Google Scholar 

  • Bacri J, Raffanel S (1989) Calculation of transport coefficients of air plasmas. Plasma Chem Plasma P 9(1):133–154

    Article  Google Scholar 

  • Bauder U, Maecker H (1971) The determination of transport properties from arc experiments: Methods and results. P IEEE 59(4):588–592

    Article  Google Scholar 

  • Belyaev YN, Brezhnev BG, Erastov EM (1968) Resonant charge transfer of low energy carbon and nitrogen ions. Sov Phys JETP 27(6):924

    ADS  Google Scholar 

  • Billing GD, Wang L (1992) Semiclassical calculations of transport coefficients and rotational relaxation of nitrogen at high temperatures. J Phys Chem 96(6):2572–2575

    Article  Google Scholar 

  • Brokaw RS (1960) Thermal conductivity of gas mixtures in chemical equilibrium. II. J Chem Phys 32(4):1005–1006

    Article  ADS  Google Scholar 

  • Bruno D, Catalfamo C, Laricchiuta A, Giordano D, Capitelli M (2006) Convergence of Chapman-Enskog calculation of transport coefficients of magnetized argon plasma. Phys Plasmas 13(7):072307

    Article  ADS  Google Scholar 

  • Bruno D, Catalfamo C, Capitelli M, Colonna G, De Pascale O, Diomede P, Gorse C, Laricchiuta A, Longo S, Giordano D, Pirani F (2010) Transport properties of high-temperature Jupiter atmosphere components. Phys Plasmas 17(11):112315

    Article  ADS  Google Scholar 

  • Butler JN, Brokaw RS (1957) Thermal conductivity of gas mixtures in chemical equilibrium. J Chem Phys 26(6):1636–1643

    Article  ADS  Google Scholar 

  • Capitelli M (1970) Problems of determination of transport properties of argon-nitrogen mixtures at one atmosphere between 5 000 K and 15 000 K. Quaderni dell’Ingegnere Chimico Italiano 6:94–103

    Google Scholar 

  • Capitelli M (1972) Simplified expressions for the calculation of the contribution of the heavy components to the transport coefficients of partially ionized gases. Zeitschrift für Naturforschung A (Astrophysik, Physik und Physikalische Chemie) 27:809–812

    Google Scholar 

  • Capitelli M (1977) Transport coefficients of partially ionized gases. Journal de Physique Supplemént Colloque C3 (Paris) 38(8):C3 227–C3 237

    Google Scholar 

  • Capitelli M, Devoto RS (1973) Transport coefficients of high-temperature nitrogen. Phys Fluids 16(11):1835

    Article  ADS  Google Scholar 

  • Capitelli M, Gorse C, Fauchais P (1977) Transport coefficients of high temperature N2-H2 mixtures. J de Physique 38(6):653

    Article  Google Scholar 

  • Capitelli M, Celiberto R, Gorse C, Giordano D (1996) Transport properties of high temperature air components: a review. Plasma Chem Plasma P 16:S267-S302

    Article  Google Scholar 

  • Capitelli M, Colonna G, Gorse C, D’Angola A (2000a) Transport properties of high temperature air in local thermodynamic equilibrium. Eur Phys J D 11(2):279–289

    Article  ADS  Google Scholar 

  • Capitelli M, Ferreira CM, Gordiets BF, Osipov R (2000b) Plasma kinetics in atmospheric gases. Springer, New York

    Book  Google Scholar 

  • Capitelli M, Gorse C, Longo S, Giordano D (2000c) Collision integrals of high-temperature air species. J Thermophys Heat Transf 14(2):259–268

    Article  Google Scholar 

  • Capitelli M, Cappelletti D, Colonna G, Gorse C, Laricchiuta A, Liuti G, Longo S, Pirani F (2007) On the possibility of using model potentials for collision integral calculations of interest for planetary atmospheres. Chem Phys 338(1):62–68

    Article  ADS  Google Scholar 

  • Capitelli M, Colonna G, D’Angola A (2011) Fundamental aspects of plasma chemical physics: Thermodynamics. Springer series on atomic, optical, and plasma physics, vol 66. Springer, New York

    Google Scholar 

  • Bruno D, Colonna G, Laricchiuta A, Capitelli M (2012) Reactive and internal contributions to the thermal conductivity of local thermodynamic equilibrium nitrogen plasma: The effect of electronically excited states. Phys Plasmas 19: 122309

    Article  ADS  Google Scholar 

  • Chandra N, Temkin A (1976) NASA Techn Note D-8347

    Google Scholar 

  • Chang WCS, Uhlenbeck GE (1951) Transport Phenomena in Polyatomic Gases. report CM-681 University of Michigan Engineering Research

    Google Scholar 

  • D’Angola A, Colonna G, Gorse C, Capitelli M (2008) Thermodynamic and transport properties in equilibrium air plasmas in a wide pressure and temperature range. Eur Phys J D 46(1):129–150

    Article  ADS  Google Scholar 

  • D’Angola A, Colonna G, Gorse C, Capitelli M (2011) Thermodynamic properties of high temperature air in local thermodynamic equilibrium: II accurate analytical expression for electron molar fractions. Eur Phys J D 65(3):453–457

    Article  ADS  Google Scholar 

  • D’Angola A, Colonna G, Bonomo A, Bruno D, Laricchiuta A, Capitelli M (2012) A phenomenological approach for the transport properties of air plasmas. Eur Phys J D 66: 205

    Article  ADS  Google Scholar 

  • Devoto RS (1967a) Simplified expressions for the transport properties of ionized monatomic gases. Phys Fluids 10(10):2105–2112

    Article  ADS  Google Scholar 

  • Devoto RS (1967b) Transport coefficients of partially ionized argon. Phys Fluids 10(2):354–364

    Article  ADS  Google Scholar 

  • Devoto RS (1968) Transport coefficients of partially ionized hydrogen. J Plasma Phys 2(4):617–631

    Article  ADS  Google Scholar 

  • Dickinson AS, Lee MS (1986) Classical trajectory calculations for anisotropy-dependent cross sections for He-N2 mixtures. J Phys B: Atom Mol Phys 19(19):3091

    Article  ADS  Google Scholar 

  • Fox RL (1970) Effect of inelastic collisions on electron transport coefficients. Phys Fluids 13(6):1480

    Article  ADS  Google Scholar 

  • Gianturco FA, Serna S, Sanna N (1991) Dynamical decoupling in the quantum calculations of transport coefficients. I - coupled state results for He-N2 gaseous mixtures. Mol Phys 74(5):1071

    Google Scholar 

  • Gianturco FA, Serna S, Sanna N (1994) An improved He-CO interaction potential from a multiproperty analysis. Mol Phys 81(2):421

    Article  ADS  Google Scholar 

  • Haarman JW (1973) Thermal conductivity measurements of He, Ne, Ar, Kr, N2 and CO2 with a transient hot wire method. AIP Conf Proc 11(1):193–202

    Article  ADS  Google Scholar 

  • Hahn HS, Mason EA, Smith FJ (1971) Quantum transport cross sections in a completely ionized gas. Phys Fluids 14(2):278–287

    Article  ADS  Google Scholar 

  • Hansen C (1960) vol TR-R50. Technical Rep. NASA, Ames Research Center, Ames, Iowa

    Google Scholar 

  • Hermann W, Schade E (1970) Transportfunktionen von stickstoff bis 26000 K. Zeitschrift für Physik A Hadrons and Nuclei 233:333–350

    Article  ADS  Google Scholar 

  • Hirschfelder JO, Curtiss CF, Bird RB (1966) Molecular theory of gases and liquids. Wiley, New York

    Google Scholar 

  • Imam-Rahajoe S, Curtiss CF, Bernstein RB (1965) Numerical evaluation of quantum effects on transport cross sections. J Chem Phys 42(2):530–536

    Article  ADS  Google Scholar 

  • Kosarim AV, Smirnov BM (2005) Electron terms and resonant charge exchange involving oxygen atoms and ions. J Exp Theor Phys 101(4):611–627

    Article  ADS  Google Scholar 

  • Kosarim AV, Smirnov BM, Capitelli M, Celiberto R, Laricchiuta A (2006) Resonant charge exchange involving electronically excited states of nitrogen atoms and ions. Phys Rev A 74(6):062707

    Article  ADS  Google Scholar 

  • Laricchiuta A, Colonna G, Bruno D, Celiberto R, Gorse C, Pirani F, Capitelli M (2007) Classical transport collision integrals for a Lennard-Jones like phenomenological model potential. Chem Phys Lett 445(4–6):133–139

    Article  ADS  Google Scholar 

  • Laricchiuta A, Bruno D, Capitelli M, Catalfamo C, Celiberto R, Colonna G, Diomede P, Giordano D, Gorse C, Longo S, Pagano D, Pirani F (2009) High temperature Mars atmosphere. Part I: Transport cross sections. Eur Phys J D 54(3):607–612

    Google Scholar 

  • Levin E, Schwenke DW, Stallcop JR, Partridge H (1994) Comparison of semi-classical and quantum-mechanical methods for the determination of transport cross sections. Chem Phys Lett 227(6):669

    Article  ADS  Google Scholar 

  • Liboff RL (1959) Transport coefficients determined using the shielded Coulomb potential. Phys Fluids 2(1):40–46

    Article  MATH  ADS  Google Scholar 

  • Mason EA, Monchick L (1962) Heat conductivity of polyatomic and polar gases. J Chem Phys 36(6):1622–1639

    Article  ADS  Google Scholar 

  • Morris JC, Rudis RP, Yos JM (1970) Measurements of electrical and thermal conductivity of hydrogen, nitrogen, and argon at high temperatures. Phys Fluids 13(3):608–617

    Article  ADS  Google Scholar 

  • Murphy AB (1995) Transport coefficients of air, argon-air, nitrogen-air, and oxygen-air plasmas. Plasma Chem Plasma P 15(2):279

    Article  Google Scholar 

  • Murphy AB (2000) Transport coefficients of hydrogen and argon–hydrogen plasmas. Plasma Chem Plasma P 20(3):279–297

    Article  Google Scholar 

  • Nyeland C, Billing GD (1988) Transport coefficients of diatomic gases: Internal-state analysis for rotational and vibrational degrees of freedom. J Phys Chem 92:1752

    Article  Google Scholar 

  • Parker GA, Pack RT (1978) Rotationally and vibrationally inelastic scattering in the rotational IOS approximation. ultrasimple calculation of total (differential, integral, and transport) cross sections for nonspherical molecules. J Chem Phys 68(4):1585

    Google Scholar 

  • Plantikow U, Steinberger S (1970) Elektrische und thermische leitfähigkeit von wasserstoff bis 27 000 K. Zeitschrift für Physik A Hadrons and Nuclei 109:231

    Google Scholar 

  • Popović S, Konjević N (1976) On the thermal conductivity of hydrogen at elevated temperatures. Zeitschrift für Naturforschung A (Astrophysik, Physik und Physikalische Chemie) 31:1042

    Google Scholar 

  • Rat V, Murphy AB, Aubreton J, Elchinger MF, Fauchais P (2008) Treatment of non-equilibrium phenomena in thermal plasma flows. J Phys D: Appl Phys 41(18):183001

    Article  ADS  Google Scholar 

  • Schreiber PW, II AMH, Benedetto KR (1971) Argon and nitrogen plasma viscosity measurements. Phys Fluids 14(12):2696–2702

    Google Scholar 

  • Schreiber PW, II AMH, Benedetto KR (1972) Measurement of nitrogen plasma transport properties. AIAA J 10(5):670–6747

    Google Scholar 

  • Sharma R, Singh G, Singh K (2011) Higher-order contributions to transport coefficients in two-temperature hydrogen thermal plasma. Phys Plasmas 18(6):063504

    Article  MathSciNet  ADS  Google Scholar 

  • Shashkov AG, Abramenko TN, Aleinikova VI (1985) Determination of the true thermal conductivities of helium and nitrogen at atmospheric pressure and temperatures from the normal boiling points to 6700 K. J Eng Phys Thermophys 49:818–827

    Article  Google Scholar 

  • Singh G, Singh K (2006) Estimation of higher-order contribution to viscosity of hydrogen plasmas including electronically excited states. Phys Plasmas 13(12):122309

    Article  ADS  Google Scholar 

  • Singh G, Singh K, Sharma R (2009) Estimation of higher-order contributions to viscosity in thermal plasmas: role of unlike interactions. Phys Plasmas 16:114507

    Article  ADS  Google Scholar 

  • Spitzer L, Härm R (1953) Transport phenomena in a completely ionized gas. Phys Rev 89(5):977–981

    Article  MATH  ADS  Google Scholar 

  • Stallcop JR, Partridge H, Levin E (2001) Effective potential energies and transport cross sections for atom-molecule interactions of nitrogen and oxygen. Phys Rev A 64(4):042722 1–12

    Google Scholar 

  • Touloukian YS (1970) Thermophysical properties of matter. IFI/Plenum, New York

    Google Scholar 

  • van de Sanden MCM, Schram PPJM, Peeters AG, van der Mullen JAM, Kroesen GMW (1989) Thermodynamic generalization of the saha equation for a two-temperature plasma. Phys Rev A 40(9):5273

    Article  ADS  Google Scholar 

  • Wang L, Billing GD (1992) Rotational relaxation and transport coefficients for gaseous hydrogen chloride. J Chem Soc Faraday T 88(2):163

    Article  Google Scholar 

  • Yos JM (1965) vol RAD-TF 65-7. AVCO Coporation, Wilmington, Massachusetts (USA)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Capitelli, M., Bruno, D., Laricchiuta, A. (2013). Some Problems in the Calculation of Transport Properties of Partially Ionized Gases. In: Fundamental Aspects of Plasma Chemical Physics. Springer Series on Atomic, Optical, and Plasma Physics, vol 74. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8172-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8172-1_10

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-8171-4

  • Online ISBN: 978-1-4419-8172-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics