Skip to main content

Earthworm Immunity

  • Chapter
Invertebrate Immunity

Abstract

Earthworms belonging to oligochaete annelids became a model for comparative immunologists in the early sixties with the publication of results from transplantation experiments that proved the existence of self/nonself recognition in earthworms. This initiated extensive studies on the earthworm immune mechanisms that evolved to prevent the invasion of pathogens. In the last four decades important cellular and humoral pathways were described and numerous biologically active compounds were characterized and often cloned.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Mechnikoff EE. Sur la lutte des cellules de l’organisme contre de l’invasion des microbes. Ann Inst Pasteur 1887; 1:322–340.

    Google Scholar 

  2. Janeway CA. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol 1989; 54:1–13.

    PubMed  CAS  Google Scholar 

  3. Little TJ, Hultmark D, Read AF. Invertebrate immunity and the limits of mechanistic immunology. Nat Immunol 2005; 6:651–654.

    Article  PubMed  CAS  Google Scholar 

  4. Schulenburg H, Boehnisch C, Michiels NK. How do invertebrates generate a highly specific innate immune response? Mol Immunol 2007; 44:3338–3344.

    Article  PubMed  CAS  Google Scholar 

  5. Mill PJ. Physiology of Annelids. New York: Academic Press, 1978:1–683.

    Google Scholar 

  6. Rahemtulla F, Lovtrup S. The comparative biochemistry of invertebrate mucopolysaccharides II. Nematoda; Annelida. Comp Biochem Physiol B 1974; 49:639–646.

    Article  PubMed  CAS  Google Scholar 

  7. Rahemtulla F, Lovtrup S. The comparative biochemistry of invertebrate mucopolysaccharides III. Oligocheta and Hirudinea. Comp Biochem Physiol B 1975; 50:627–629.

    Article  PubMed  CAS  Google Scholar 

  8. Chapron C. Etude histologique, infrastructurale et experimentale de la regeneration cephalique chez les lombriciens, Eisenia foetida. Ann Embr Morphol 1970; 3:235–239.

    Google Scholar 

  9. Valembois P. Degenerescence et regeneration de l’epiderme a la suite d’une xenogreffe de paroi du corps entre lombriciens. C R Acad Sci Paris 1971; 96:59–64.

    Google Scholar 

  10. Burke JM. Wound healing in Eisenia foetida (Oligochaeta). I. Histology and 3H-thymidine radioautography of the epidermis. J Exp Zool 1974; 188:49–63.

    Article  PubMed  CAS  Google Scholar 

  11. Burke JM. Wound healing in Eisenia foetida (Oligochaeta). II. A fine structural study of the role of the epidermis. Cell Tissue Res 1974; 154:61–82.

    Article  PubMed  CAS  Google Scholar 

  12. Burke JM. Wound healing of Eisenia foetida (Oligochaeta). III. A fine structural study of the role of non-epidermal tissues. Cell Tissue Res 1974; 154:83–112.

    Article  PubMed  CAS  Google Scholar 

  13. Dales RP, Kalac Y. Phagocytic defence by the earthworm Eisenia foetida against certain pathogenic bacteria. Comp Biochem Physiol 1992; 101A:487–490.

    Article  Google Scholar 

  14. Cameron GR. Inflammation in earthworms. J Pathol 1932; 35:933–972.

    Article  Google Scholar 

  15. Villaro AC, Sesma P, Alegría D et al. Relationship of symbiotic microorganisms to metanephridium: phagocytic activity in the metanephridial epithelium of two species of Oligochaeta. J Morphol 1985; 186:307–314.

    Article  Google Scholar 

  16. Ratcliffe NA, Rowley AF, Fitzgerald SW et al. Invertebrate immunity: basic concepts and recent advances. Internat Rev Cytol 1985; 97:183–349.

    Article  CAS  Google Scholar 

  17. Valembois P, Lassegues M, Roch P. Formation of brown bodies in the coelomic cavity of the earthworm Eisenia fetida andrei and attendant changes in shape and adhesive capacity of constitutive cells. Dev Comp Immunol 1992; 16:95–101.

    Article  PubMed  CAS  Google Scholar 

  18. Keilin ND. Parasitic autotomy of the host as a mode of liberation of coelomic parasites from the body of the earthworm. Parasitology 1925; 17:170–172.

    Article  Google Scholar 

  19. Herlan-Meewis H. Regeneration in annelids. Advances in Morphogenesis, Vol. 4. M. Abercrombie and J. Brachet. New York: Academic Press, 1965:155–215.

    Google Scholar 

  20. Alonso-Bedate M, Sequeros E. Neorosecretory phenomena in the cerebral ganglia of clitellated Allolobophora caliginosa. Acta Embryol Morphol Exp 1983; 4:93–103.

    Google Scholar 

  21. Alonso-Bedate M, Sequeros E. Suggested regulatory mechanisms for caudal regeneration in Allolobophora molleri (Annelida: Oligochaeta). Comp Biochem Physiol 1985; 81A:225–228.

    Article  Google Scholar 

  22. Stein E, Avtalion RR, Cooper EL. The coelomocytes of the earthworm Lumbricus terrestris: morphology and phagocytic properties. J Morphol 1977; 153:467–477.

    Article  PubMed  CAS  Google Scholar 

  23. Šíma P. Annelid coelomocytes and haemocytes: roles in cellular immune reactions. In: Větvička V, Šíma P, Cooper EL, Bilej M, Roch P, eds. Immunology of Annelids. Boca Raton: CRC Press, 1994:115–165.

    Google Scholar 

  24. Engelmann P, Pal J, Berki T et al. Earthworm leukocytes react with different mammalian antigen-specific monoclonal antibodies. Zoology 2002; 105:257–265.

    Article  PubMed  CAS  Google Scholar 

  25. Stein E, Cooper EL. The role of opsonins in phagocytosis by coelomocytes of the earthworm, Lumbricus terrestris. Dev Comp Immunol 1981; 5:415–425.

    PubMed  CAS  Google Scholar 

  26. Bilej M, Scheerlinck JP, Van Den Driessche T et al. The flow cytometric analysis of in vitro phagocytic activity of earthworm coelomocytes (Eisenia foetida, Annelida). Cell Biol Internat Rep 1990; 14:831–837.

    Article  Google Scholar 

  27. Bilej M, Vetvicka V, Tuckova L et al. Phagocytosis of synthetic particles in earthworms. Effect of antigenic stimulation and opsonization. Folia Biol (Praha) 1990; 36:273–280.

    CAS  Google Scholar 

  28. Laulan A, Lestage J, Bouc AM et al. The phagocytic activity of Lumbricus terrestris leukocytes is enhanced by the vertebrate opsonins: IgG and complement C3b fragment. Dev Comp Immunol 1988; 12:269–277.

    Article  PubMed  CAS  Google Scholar 

  29. Cooper EL, Roch P. Immunological profile of annelids: transplantation immunity In: Větvička V, Šíma P, Cooper EL, Bilej M, Roch P, eds. Immunology of Annelids. Boca Raton: CRC Press, 1994:201–243.

    Google Scholar 

  30. Bailey S, Miller BJ, Cooper EL. Transplantation immunity in annelids. II. Adoptive transfer of the xenograft reaction. Immunology 1971; 21:81–86.

    PubMed  CAS  Google Scholar 

  31. Parry MJ. Survival of body wall autografts, allografts and xenografts in the earthworm Eisenia foetida. J Invert Pathol 1978; 31:383–388.

    Article  CAS  Google Scholar 

  32. Cooper EL. Transplantation immunity in helminths and annelids. Transplantation Proc 1970; 2:216–221.

    CAS  Google Scholar 

  33. Hostetter R, Cooper EL. Cellular anamnesis in earthworms. Cell Immunol 1973; 9:384–392.

    Article  PubMed  CAS  Google Scholar 

  34. Bilej M, Rossmann P, Sinkora M et al. Cellular expression of the cytolytic factor in earthworms Eisenia foetida. Immunol Lett 1998; 60:23–29.

    Article  PubMed  CAS  Google Scholar 

  35. Cotuk A, Dales RP. Lysozyme activity in the coelomic fluid and coelomocytes of the earthworm Eisenia foetida SAV in relation to bacterial infection. Comp Biochem Physiol 1984; 78A:469–474.

    Article  CAS  Google Scholar 

  36. Cossarizza A, Cooper EL, Suzuki MM et al. Earthworm leukocytes that are not phagocytic and cross-react with several human epitopes can kill human tumor cell lines. Exp Cell Res 1996; 224:174–182.

    Article  PubMed  CAS  Google Scholar 

  37. Quaglino D, Cooper EL, Salvioli S et al. Earthworm coelomocytes in vitro: cellular features and “granuloma” formation during cytotoxic activity against the mammalian tumor cell target K562. Eur J Cell Biol 1996; 70:278–288.

    PubMed  CAS  Google Scholar 

  38. Josková R, Šilerová M, Procházková P et al. Identification and cloning of an invertebrate-type lysozyme from Eisenia andrei. Dev Comp Immunol 2009; 33:932–938.

    Article  PubMed  CAS  Google Scholar 

  39. Cho JH, ParkCB, Yoon YG et al. Lumbricin I, anovel proline-rich antimicrobial peptide from the earthworm: purification, cDNA cloning and molecular characterization. Biochim Biophys Acta 1998; 1408:67–76.

    PubMed  CAS  Google Scholar 

  40. Wang X, Wang X, Zhang Y et al. An antimicrobial peptide of the earthworm Pheretima tschiliensis: cDNA cloning, expression and immunolocalization. Biotechnol Lett 2003; 25:1317–1323.

    Article  PubMed  CAS  Google Scholar 

  41. Liu YQ, Sun ZJ, Wang C et al. Purification of a novel antibacterial short peptide in earthworm Eisenia foetida. Acta Biochim Biophys Sin (Shanghai) 2004; 36:297–302.

    Article  Google Scholar 

  42. Roch P. Protein analysis of earthworm coelomic fluid: 1) polymorphic system of the natural hemolysin of Eisenia fetida andrei. Dev Comp Immunol 1979; 3:599–608.

    Article  PubMed  CAS  Google Scholar 

  43. Valembois P, Roch P, Lassegues M et al. Antibacterial activity of the haemolytic system from the earthworm Eisenia fetida andrei. J Invert Pathol 1982; 40:21–27.

    Article  Google Scholar 

  44. Roch P, Lassegues M, Valembois P. Antibacterial activity of Eisenia fetida andrei coelomic fluid: III. Relationship within the polymorphic hemolysins. Dev Comp Immunol 1991; 15:27–32.

    Article  PubMed  CAS  Google Scholar 

  45. Kauschke E, Mohrig W. Cytotoxic activity in the coelomic fluid of the annelid Eisenia foetida Sav. J Comp Physiol [B] 1987; 157:77–83.

    CAS  Google Scholar 

  46. Bilej M, Brys L, Beschin A et al. Identification of a cytolytic protein in the coelomic fluid of Eisenia foetida earthworms. Immunol Lett 1995; 45:123–128.

    Article  PubMed  CAS  Google Scholar 

  47. Cooper EL, Cossarizza A, Suzuki MM et al. Autogeneic but not allogeneic earthworm effector coelomocytes kill the mammalian tumor cell target K562. Cell Immunol 1995; 166:113–122.

    Article  PubMed  CAS  Google Scholar 

  48. Ito Y, Yoshikawa A, Hotani T et al. Amino acid sequences of lysozymes newly purified from invertebrates imply wide distribution of a novel class in the lysozyme family. Eur J Biochem 1999; 259:456–461.

    Article  PubMed  CAS  Google Scholar 

  49. Du Pasquier L, Duprat P. Humoral and cellular aspects of a nonspecific natural immunity in the oligochetee Eisenia foetida Sav. (Lumbricinae), C R Acad Sci Hebd Seances Acad Sci D 1968; 266:538–541.

    Google Scholar 

  50. Roch P, Valembois P, Davant N et al. Protein analysis of earthworm coelomic fluid. II. Isolation and biochemical characterization of the Eisenia foetida andrei factor (EFAF). Comp Biochem Physiol 1981; 69B:829–836.

    CAS  Google Scholar 

  51. Roch P. Isolation of agglutinins and lysins from earthworm coelomic fluid by gel filtration followed by chromatofocusing. J Chromat 1984; 290:231–235.

    Article  CAS  Google Scholar 

  52. Roch P, Valembois P, Lassegues M. Genetic and biochemical polymorphism of earthworm humoral defenses. Prog Clin Biol Res 1987; 233:91–102.

    PubMed  CAS  Google Scholar 

  53. Valembois P, Roch P, Lassegues M. Simultaneous existence of haemolysins and hemagglutinins in the coelomic fluid and in the cocoon albumen of the earthworm Eisenia fetida andrei. Comp Biochem Physiol 1984; 78A:141–145.

    Article  Google Scholar 

  54. Lassegues M, Roch P, Valembois P. Antibacterial activity of Eiseniafetida andrei coelomic fluid: evidence, induction and animal protection. J Invert Pathol 1989; 53:1–6.

    Article  Google Scholar 

  55. Hirigoyenberry F, Lassegues M, Roch P. Antibacterial activity of Eisenia foetida andrei coelomic fluid: immunological study of the two major antibacterial proteins. J Invert Pathol 1992; 59:69–74.

    Article  Google Scholar 

  56. Valembois P, Roch P, Lassegues M. Antibacterial molecules in annelids. In: Brehelin M, ed. Immunity in Invertebrates. Berlin: Springer-Verlag, 1986:74–93.

    Google Scholar 

  57. Sinkora M, Bilej M, Tuckova L et al. Hemolytic function of opsonizing proteins of earthworm’s coelomic fluid. Cell Biol Int 1993; 17:935–939.

    Article  PubMed  CAS  Google Scholar 

  58. Valembois P, Roch P, Lassegues M. Evidence of plasma clotting system in earthworms. J Invertebr Pathol 1988; 51:221–228.

    Article  CAS  Google Scholar 

  59. Roch P, Canicatti C, Valembois P. Interactions between earthworm hemolysins and sheep red blood cell membranes. Biochim Biophys Acta 1989; 983:193–198.

    Article  PubMed  CAS  Google Scholar 

  60. Lassegues M, Milochau A, Doignon F et al. Sequence and expression of an Eisenia-fetida-derived cDNA clone that encodes the 40-kDa fetidin antibacterial protein. Eur J Biochem 1997; 246:756–762.

    Article  PubMed  CAS  Google Scholar 

  61. Milochau A, Lassegues M, Valembois P. Purification, characterization and activities of two hemolytic and antibacterial proteins from coelomic fluid of the annelid Eisenia fetida andrei. Biochim Biophys Acta 1997; 1337:123–132.

    Article  PubMed  CAS  Google Scholar 

  62. Sekizawa Y, Hagiwara K, Nakajima T et al. A novel protein, lysenin, that causes contraction of the isolated rat aorta: its purification from the coelomic fluid of the earthworm, Eisenia foetida. Biomed Res 1996; 17:197–203.

    CAS  Google Scholar 

  63. Sekizawa Y, Kubo T, Kobayashi H et al. Molecular cloning of cDNA for lysenin, a novel protein in the earthworm Eisenia foetida that causes contraction of rat vascular smooth muscle. Gene 1997; 191:97–102.

    Article  PubMed  CAS  Google Scholar 

  64. Bruhn H, Winkelmann J, Andersen C et al. Dissection of the mechanisms of cytolytic and antibacterial activity of lysenin, a defence protein of the annelid Eisenia fetida. Dev Comp Immunol 2006; 30:597–606.

    Article  PubMed  CAS  Google Scholar 

  65. Procházková P, Šilerová M, Felsberg J et al. Relationship between hemolytic molecules in Eisenia fetida earthworms. Dev Comp Immunol 2006; 30:381–392.

    Article  PubMed  CAS  Google Scholar 

  66. Yamaji A, Sekizawa Y, Emoto K et al. Lysenin, a novel sphingomyelin-specific binding protein. J Biol Chem 1998; 273:5300–5306.

    Article  PubMed  CAS  Google Scholar 

  67. Yamaji-Hasegawa A, Makino A, Baba T et al. Oligomerization andpore formation of a sphingomyelin-specific toxin, lysenin. J Biol Chem 2003; 278:22762–22770.

    Article  PubMed  CAS  Google Scholar 

  68. Lange S, Nussler F, Kauschke E et al. Interaction of earthworm hemolysin with lipid membranes requires sphingolipids. J Biol Chem 1997; 272:20884–20892.

    Article  PubMed  CAS  Google Scholar 

  69. Lange S, Kauschke E, Mohrig W et al. Biochemical characteristics of Eiseniapore, a pore-forming protein in the coelomic fluid of earthworms. Eur J Biochem 1999; 262:547–556.

    Article  PubMed  CAS  Google Scholar 

  70. Eue I, Kauschke E, Mohrig W et al. Isolation and characterization of earthworm hemolysins and agglutinins. Dev Comp Immunol 1998; 22:13–25.

    Article  PubMed  CAS  Google Scholar 

  71. Koenig S, Wagner F, Kauschke E et al. Mass spectrometric analyses of CL(39), CL(41) and H(1), H(2), H(3) confirm identity with fetidin and lysenin produced by earthworm leukocytes. Dev Comp Immunol 2003; 27:513–520.

    Article  PubMed  CAS  Google Scholar 

  72. Beschin A, Bilej M, Hanssens F et al. Identification and cloning of a glucan-and lipopolysaccharide-binding protein from Eisenia foetida earthworm involved in the activation of prophenoloxidase cascade. J Biol Chem 1998; 273:24948–24954.

    Article  PubMed  CAS  Google Scholar 

  73. Beschin A, Bilej M, Brys L et al. Convergent evolution of cytokines. Nature 1999; 400:627–628.

    Article  PubMed  CAS  Google Scholar 

  74. Bilej M, De Baetselier P, Van Dijck E et al. Distinct carbohydrate recognition domains of an invertebrate defense molecule recognize Gram-negative and Gram-positive bacteria. J Biol Chem 2001; 276:45840–45847.

    Article  PubMed  CAS  Google Scholar 

  75. Procházková P, Šilerová M, Stijlemans B et al. Evidence for proteins involved in prophenoloxidase cascade in Eisenia fetida earthworms. J Comp Physiol B 2006; 176:581–587.

    Article  PubMed  CAS  Google Scholar 

  76. Šilerová M, Procházková P, Josková R et al. Comparative study of the CCF-like pattern recognition protein in different lumbricid species. Dev Comp Immunol 2006; 30:765–771.

    Article  PubMed  CAS  Google Scholar 

  77. Yamamoto M, Aono R, Horikoshi K. Structure of the 87-kDa beta-1,3-glucanase gene of Bacillus circulans IAM1165 and properties of the enzyme accumulated in the periplasm of Escherichia coli carrying the gene. Biosci Biotechnol Biochem 1993; 57:1518–1525.

    Article  PubMed  CAS  Google Scholar 

  78. Bachman ES, McClay DR. Molecular cloning of the first metazoan beta-1,3-glucanase from eggs of the sea urchin Strongylocentrotus purpuratus. Proc Natl Acad Sci USA 1996; 93:6808–6813.

    Article  PubMed  CAS  Google Scholar 

  79. Kozhemyako VB, Rebrikov DV, Lukyanov SA et al. Molecular cloning and characterization of an endo-1,3-beta-D-glucanase from the mollusk Spisula sachalinensis. Comp Biochem Physiol B Biochem Mol Biol 2004; 137:169–178.

    Article  PubMed  CAS  Google Scholar 

  80. Seki N, Muta T, Oda T et al. Horseshoe crab (1,3)-beta-D-glucan-sensitive coagulation factor G. A serine protease zymogen heterodimer with similarities to beta-glucan-binding proteins. J Biol Chem 1994; 269:1370–1374.

    PubMed  CAS  Google Scholar 

  81. Lee WJ, Lee JD, Kravchenko VV et al. Purification and molecular cloning of an inducible gram-negative bacteria-binding protein from the silkworm, Bombyx mori. Proc Natl Acad Sci USA 1996; 93:7888–7893.

    Article  PubMed  CAS  Google Scholar 

  82. Dimopoulos G, Richman A, Muller HM et al. Molecular immune responses of the mosquito Anopheles gambiae to bacteria and malaria parasites. Proc Natl Acad Sci USA 1997; 94:11508–11513.

    Article  PubMed  CAS  Google Scholar 

  83. Shin SW, Park SS, Park DS et al. Isolation and characterization of immune-related genes from the fall webworm, Hyphantria cunea, using PCR-based differential display and subtractive cloning. Insect Biochem Mol Biol 1998; 28:827–837.

    Article  PubMed  CAS  Google Scholar 

  84. Kim YS, Han SJ, Ryu JH et al. Lipopolysaccharide-activated kinase, an essential component for the induction of the antimicrobial peptide genes in Drosophila melanogaster cells. J Biol Chem 2000; 275:2071–2079.

    Article  PubMed  CAS  Google Scholar 

  85. Ma C, Kanost MR. A beta1,3-glucan recognition protein from an insect, Manduca sexta, agglutinates microorganisms and activates the phenoloxidase cascade. J Biol Chem 2000; 275:7505–7514.

    Article  PubMed  CAS  Google Scholar 

  86. Ochiai M, Ashida M. A pattern-recognition protein for beta-1,3-glucan. The binding domain and the cDNA cloning of beta-1,3-glucan recognition protein from the silkworm, Bombyx mori. J Biol Chem 2000; 275:4995–5002.

    Article  PubMed  CAS  Google Scholar 

  87. Aggarwal BB, Kohr WJ, Hass PE et al. Human tumor necrosis factor. Production, purification and characterization. J Biol Chem 1985; 260:2345–2354.

    PubMed  CAS  Google Scholar 

  88. Luo G, Niesel DW, Shaban RA et al. Tumor necrosis factor alpha binding to bacteria: evidence for a high-affinity receptor and alteration of bacterial virulence properties. Infect Immun 1993; 61:830–835.

    PubMed  CAS  Google Scholar 

  89. Olson EJ, Standing JE, Griego-Harper N et al. Fungal beta-glucan interacts with vitronectin and stimulates tumor necrosis factor alpha release from macrophages. Infect Immun 1996; 64:3548–3554.

    PubMed  CAS  Google Scholar 

  90. Lucas R, Magez S, De Leys R et al. Mapping the lectin-like activity of tumor necrosis factor. Science 1994; 263:814–817.

    Article  PubMed  CAS  Google Scholar 

  91. Magez S, Geuskens M, Beschin A et al. Specific uptake of tumor necrosis factor-alpha is involved in growth control of Trypanosoma brucei. J Cell Biol 1997; 137:715–727.

    Article  PubMed  CAS  Google Scholar 

  92. Olivares Fontt EO, De Baetselier P, Heirman C et al. Effects of granulocyte-macrophage colony-stimulating factor and tumor necrosis factor alpha on Trypanosoma cruzi trypomastigotes. Infect Immun 1998; 66:2722–2727.

    PubMed  CAS  Google Scholar 

  93. Hribar M, Bloc A, van der Goot FG et al. The lectin-like domain of tumor necrosis factor-alpha increases membrane conductance in microvascular endothelial cells and peritoneal macrophages. Eur J Immunol 1999; 29:3105–3111.

    Article  PubMed  CAS  Google Scholar 

  94. van der Goot FG, Pugin J, Hribar M et al. Membrane interaction of TNF is not sufficient to trigger increase in membrane conductance in mammalian cells. FEBS Lett 1999; 460:107–111.

    Article  PubMed  Google Scholar 

  95. Bloc A, Lucas R, Van Dijck E et al. An invertebrate defense molecule activates membrane conductance in mammalian cells by means of its lectin-like domain. Dev Comp Immunol 2002; 26:35–43.

    Article  PubMed  CAS  Google Scholar 

  96. Bilej M, Josková R, Van den Bergh R et al. An invertebrate TNF functional analogue activates macrophages via lectin-saccharide interaction with ion channels. Int Immunol 2006; 18:1663–1670.

    Article  PubMed  CAS  Google Scholar 

  97. Green JC, Bartels CL, Warren-Hicks WJ et al. Protocols of Short-Term Toxicity Screening of Hazardous Waste Sites, US Environmental Protection Agency, EPA/600/3-88/029, ERLC, Corvallis (OR); 1989.

    Google Scholar 

  98. Goven AJ, Kennedy J. Environmental pollution and toxicity in invertebrates: an earthworm model for immunotoxicology. Adv Comp Environ Physiol 1996; 24:169–211.

    CAS  Google Scholar 

  99. M ihara H, Maruyama M, Sumi H. Novel thrombolytic therapy discovered from traditional oriental medicine using the earthworm. Southeast Asian J Trop Med Public Health 1992; 23(Suppl 2): 131–140.

    Google Scholar 

  100. Mihara H, Sumi H, Yoneta T et al. A novel fibrinolytic enzyme extracted from the earthworm, Lumbricus rubellus. Jpn J Physiol 41:461–472.

    Google Scholar 

  101. Nakajima N, Mihara H, Sumi H. Characterization of potent fibrinolytic enzymes in earthworm, Lumbricus rubellus. Biosci Biotechnol Biochem 1993; 57:1726–1730.

    Article  PubMed  CAS  Google Scholar 

  102. Nakajima N, Ishihara K, Sugimoto M et al. Chemical modification of earthworm fibrinolytic enzyme with human serum albumin fragment and characterization of the protease as atherapeutic enzyme. Biosci Biotechnol Biochem 1996; 60:293–300.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Bilej .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Landes Bioscience and Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bilej, M., Procházková, P., Šilerová, M., Josková, R. (2010). Earthworm Immunity. In: Söderhäll, K. (eds) Invertebrate Immunity. Advances in Experimental Medicine and Biology, vol 708. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8059-5_4

Download citation

Publish with us

Policies and ethics