Skip to main content
Log in

Evidence for proteins involved in prophenoloxidase cascade Eisenia fetida earthworms

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

The prophenoloxidase cascade represents one of the most important defense mechanisms in many invertebrates. Following the recognition of microbial saccharides by pattern recognition molecules, proteinases cleave inactive prophenoloxidase to its active form, phenoloxidase. Phenoloxidase is a key enzyme responsible for the catalysis of the melanization reaction. Final product melanin is involved in wound healing and immune responses. Prophenoloxidase cascade has been widely described in arthropods; data in other invertebrate groups are less frequent. Here we show detectable phenoloxidase activity in 90-kDa fraction of the coelomic fluid of earthworms Eisenia fetida. Amino acid sequencing of peptides from the active fraction revealed a partial homology with invertebrate phenoloxidases and hemocyanins. Moreover, the level of phenoloxidase activity is lower and the activation slower as compared to other invertebrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CF:

Coelomic fluid

LBSS:

Lumbricus balanced salt solution

PBS:

Phosphate buffered solution

proPO:

Prophenoloxidase

PO:

Phenoloxidase

l-DOPA:

l-β-3,4-Dihydroxyphenylalanine

ppA:

Prophenoloxidase-activating enzyme

CPC:

Cetylpyridium chloride

Hc:

Hemocyanin

References

  • Armstrong P, Qiuigley J (1999) Alpha2-macroglobulin: an evolutionarily conserved arm of the innate immune system. Dev Comp Immunol 23:375–390

    Article  PubMed  CAS  Google Scholar 

  • Ashida M, Yamazaki IH (1990) Biochemistry of the phenol oxidase system in insects: with special reference to its activation. In: Ohnishi E, Ishizaki H (eds) Molting and metamorphosis. Japan Scientific Society Press, Tokyo, pp 239–265

    Google Scholar 

  • Aspan A, Hall M, Söderhäll K (1990) The effect of endogenous proteinase inhibitors on the prophenoloxidase activating enzyme, a serine proteinase form crayfish haemocytes. Insect Biochem 20:485–492

    Article  CAS  Google Scholar 

  • Aspan A, Huang TS, Cerenius L, Söderhäll K (1995) cDNA cloning of prophenoloxidase from the freshwater crayfish Pacifastacus leniusculus and its activation. Proc Natl Acad Sci USA 92:939–943

    Article  PubMed  CAS  Google Scholar 

  • Beschin A, Bilej M, Hanssens F, Raymakers J, Van Dyck E, Revets H, Brys L, Gomez J, De Baetselier P, Timmermans M (1998) Identification and cloning of a glucan- and lipopolysaccharide-binding protein from Eisenia foetida earthworm involved in the activation of prophenoloxidase cascade. J Biol Chem 273:24948–24954

    Article  PubMed  CAS  Google Scholar 

  • Bilej M, De Baetselier P, Van Dijck E, Stijlemans B, Colige A, Beschin A (2001) Distinct carbohydrate recognition domains of an invertebrate defense molecule recognize Gram-negative and Gram-positive bacteria. J Biol Chem 276:45840–45847

    Article  PubMed  CAS  Google Scholar 

  • Cerenius L, Söderhäll K (2004) The prophenoloxidase-activating system in invertebrates. Immunol Rev 198:116–126

    Article  PubMed  CAS  Google Scholar 

  • Chase MR, Raina K, Bruno J, Sugumaran M (2000) Purification, characterization and molecular cloning of prophenoloxidases from Sarcophaga bullata. Insect Biochem Mol Biol 30:953–967

    Article  PubMed  CAS  Google Scholar 

  • Cooper EL, Roch P (2004) Earthworm immunity: a model of immune competence. Pedobiologia 47:676–688

    Google Scholar 

  • Cooper EL, Kvell K, Engelmann P, Nemeth P (2006) Still waiting for the toll? Immunol Lett 104:18–28

    Article  PubMed  CAS  Google Scholar 

  • Dales RP (1983) Observations on granulomata in the polychaetus annelid Nereis diversicolor. J Invertebr Pathol 42:288–291

    Article  Google Scholar 

  • Daquinag AC, Nakamura S, Takao T, Shimonishi Y, Tsukamoto T (1995) Primary structure of a potent endogenous dopa-containing inhibitor of phenol oxidase from Musca domestica. Proc Natl Acad Sci USA 92:2964–2968

    Article  PubMed  CAS  Google Scholar 

  • Daquinag AC, Sato T, Koda H, Takao T, Fukuda M, Shimonishi Y, Tsukamoto T (1999) A novel endogenous inhibitor of phenoloxidase from Musca domestica has a cystine motif commonly found in snail and spider toxins. Biochemistry 38:2179–2188

    Article  PubMed  CAS  Google Scholar 

  • De Gregorio E, Han SJ, Lee WJ, Baek MJ, Osaki T, Kawabata S, Lee BL, Iwanaga S, Lemaitre B, Brey PT (2002) An immune-responsive Serpin regulates the melanization cascade in Drosophila. Dev Cell 3:581–592

    Article  PubMed  Google Scholar 

  • Decker H, Jaenicke E (2004) Recent findings on phenoloxidase activity and antimicrobial activity of hemocyanins. Dev Comp Immunol 28:673–687

    Article  PubMed  CAS  Google Scholar 

  • Decker H, Rimke T (1998) Tarantula hemocyanin shows phenoloxidase activity. J Biol Chem 273:25889–25892

    Article  PubMed  CAS  Google Scholar 

  • Decker H, Terwilliger N (2000) Cops and robbers: putative evolution of copper oxygen-binding proteins. J Exp Biol 203(12):1777–1782

    PubMed  CAS  Google Scholar 

  • Decker H, Ryan M, Jaenicke E, Terwilliger N (2001) SDS-induced phenoloxidase activity of hemocyanins from Limulus polyphemus, Eurypelma californicum, and Cancer magister. J Biol Chem 276:17796–17799

    Article  PubMed  CAS  Google Scholar 

  • Dishaw LJ, Smith SL, Bigger CH (2005) Characterization of a C3-like cDNA in a coral: phylogenetic implications. Immunogenetics 57:535–548

    Article  PubMed  CAS  Google Scholar 

  • Dodds AW, Law SKA (1998) The phylogeny and evolution of the thioester bond-containing proteins C3, C4, and alpha2-macroglobulin. Immunol Rev 166:15–26

    Article  PubMed  CAS  Google Scholar 

  • Field SG, Kurtz J, Cooper EL, Michiels NK (2004) Evaluation of an innate immune reaction to parasites in earthworms. J Invertebr Pathol 86:45–49

    Article  PubMed  CAS  Google Scholar 

  • Fujimoto K, Masuda K, Asada N, Ohnishi E (1993) Purification and characterization of prophenoloxidases from pupae of Drosophila melanogaster. J Biochem (Tokyo) 113:285–291

    CAS  Google Scholar 

  • Harisha S (2005) Enzymology. In: Harisha S (ed) An introduction to practical biotechnology. Laxmi Publications Ltd, New Delhi, pp 70–72

    Google Scholar 

  • Jaenicke E, Decker H (2003) Tyrosinases from crustaceans form hexamers. Biochem J 371:515–523

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–665

    Article  PubMed  CAS  Google Scholar 

  • Lee SY, Lee BL, Söderhäll K (2004) Processing of crayfish hemocyanin subunits into phenoloxidase. Biochem Biophys Res Commun 322:490–496

    Article  PubMed  CAS  Google Scholar 

  • Levashina EA, Blandin S, Moita LF, Lagueux M, Kafatos FC (2003) Thioester-containing proteins of protostomes. In: Ezekowitz RAB, Hoffmann JA (eds) Innate immunity. Humana Press Inc, Totowa, pp 55–174

    Google Scholar 

  • Liang Z, Sottrup-Jensen L, Aspan A, Hall M, Söderhäll K (1997) Pacifastin, a novel 155-kDa heterodimeric proteinase inhibitor containing a unique transferrin chain. Proc Natl Acad Sci USA 94:6682–6687

    Article  PubMed  CAS  Google Scholar 

  • Marino R, Kimura Y, De Santis R, Lambris JD, Pinto MR (2002) Complement in urochordates: cloning and characterization of two C3-like genes in the ascidian Ciona intestinalis. Immunogenetics 53:1055–1064

    Article  PubMed  CAS  Google Scholar 

  • Nagai T, Kawabata S (2000) A link between blood coagulation and prophenol oxidase activation in arthropod host defense. J Biol Chem 275:29264–29267

    Article  PubMed  CAS  Google Scholar 

  • Porchet-Henneré E, Vernet G (1992) Cellular immunity in an annelid (Nereis diversicolor, Polychaeta): production of melanin by a sub-population of granulocytes. Cell Tissue Res 269:167–174

    Article  PubMed  Google Scholar 

  • Salvato B, Santamaria M, Beltramini M, Alzuet G, Casella L (1998) The enzymatic properties of Octopus vulgaris hemocyanin: o-diphenol oxidase activity. Biochemistry 37:14065–14077

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Ferrer A, Rodriguez-Lopez JN, Garcia-Canovas F,Garcia-Carmona F (1995) Tyrosinase: a comprehensive review of its mechanism. Biochim Biophys Acta 1247:1–11

    PubMed  Google Scholar 

  • Smith VJ, Soderhall K (1991) A comparison of phenoloxidase activity in the blood of marine invertebrates. Dev Comp Immunol 15:251–261

    Article  PubMed  CAS  Google Scholar 

  • Solomon EI, Baldwin MJ, Lowery MD (1992) Electronic structures of active sites in copper proteins: contributions to reactivity. Chem Rev 92:521–542

    Article  CAS  Google Scholar 

  • Stein E, Cooper EL (1981) The role of opsonins in phagocytosis by coelomocytes of the earthworm, Lumbricus terrestris. Dev Comp Immunol 5:415–425

    PubMed  CAS  Google Scholar 

  • Sugumaran M, Kanost MR (1993) Regulation of insect hemolymph phenoloxidases. In: Beckage E, Thompson SN, Federick BA (eds) Parasites and pathogens of insects. Academic, San Diego, pp 317–342

    Google Scholar 

  • Söderhäll K, Cerenius L (1998) Role of the prophenoloxidase-activating system in invertebrate immunity. Curr Opin Immunol 10:23–28

    Article  PubMed  Google Scholar 

  • Söderhäll K, Cerenius L, Johansson MW (1994) The prophenoloxidase activating system and its role in invertebrate defence. Ann N Y Acad Sci 712:155–161

    Article  PubMed  Google Scholar 

  • Valembois P, Seymour J, Roch P (1991) Evidence and cellular localization of an oxidative activity in the coelomic fluid of the earthworm Eisenia fetida andrei. J Invert Pathol 57:177–183

    Article  CAS  Google Scholar 

  • Valembois P, Lassegues M, Roch P (1992) Formation of brown bodies in the coelomic cavity of the earthworm Eisenia fetida andrei and attendant changes in shape and adhesive capacity of constitutive cells. Dev Comp Immunol 16:95–101

    Article  PubMed  CAS  Google Scholar 

  • Zhu Y, Thangamani S, Ho B, Ding JL (2005) The ancient origin of the complement system. Embo J 24:382–394

    Article  PubMed  CAS  Google Scholar 

  • Zlateva T, Di Muro P, Salvato B, Beltramini M (1996) The o-diphenol oxidase activity of arthropod hemocyanin. FEBS Lett 384:251–254

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Czech Science Foundation (310/04/0806; B500200613), Institutional Research Concept (AVOZ50200510) and a bilateral international scientific and technological cooperation grant of the Ministry of the Flemish Community (BOF-BWS 03/06) and was performed within the frames of an Interuniversity Attraction Pole Program. Authors are grateful to Prof. Söderhäll, Uppsala, for providing probe containing the gene coding for PO in crayfish P. leniusculus. All experiments comply with the current laws of the Czech Republic and Belgium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petra Procházková.

Additional information

Communicated by G. Heldmaier

Rights and permissions

Reprints and permissions

About this article

Cite this article

Procházková, P., Šilerová, M., Stijlemans, B. et al. Evidence for proteins involved in prophenoloxidase cascade Eisenia fetida earthworms. J Comp Physiol B 176, 581–587 (2006). https://doi.org/10.1007/s00360-006-0081-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-006-0081-z

Keywords

Navigation