Skip to main content

Drought Resistance and Its Improvement

  • Chapter
  • First Online:
Plant Breeding for Water-Limited Environments

Summary

Plant breeding has been successful in developing drought resistant crop cultivars. However the traditional breeding method by using yield as a selection index and performing multi-environmental yield trials has been costly and slow. Plant physiology is now incorporated into the breeding program by using physiological selection criteria relevant to the designated plant ideotype and subsequent plant performance in the target stress environment. Genomics offer a great potential for the improvement of breeding efficiency towards water limited environments. There are still inherent problems in deploying marker assisted selection and transgenic technology into breeding program for drought resistance. The potential of genomics can be realized only when it will be well synchronized with plant breeding concept, theory and methods.

It has often been voiced and published that “drought resistance” is complex and therefore its improvement is difficult. This chapter aims to diffuse some of these beliefs and demonstrate that the issue is not as complex as seen by the novice or as seen from the “gene discovery” platform.

Breeding for drought resistance can basically follow an analogy of breeding for disease resistance in terms of concept and design (with few exceptions). Drought resistance is approached in terms of its components, namely dehydration avoidance, dehydration tolerance and drought escape. The most widespread and effective mechanism of drought resistance in crop plants is dehydration avoidance, which is the ability of the plant to maintain its hydration. It is controlled by plant constitutive traits and plant adaptive traits. Dehydration tolerance which is the ability to function in a dehydrated state is rare but can sometimes be important. It is shown that when stress physiology, plant genetics and knowledge of the target environment are combined it is possible to design an appropriate plant ideotype to be used as guide in breeding for the specific water limited environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

References

  • Ali, M., Jensen, C.R., Mogensen, V.O., Andersen, M.N., and Henson, I.E., 1999. Root signaling and osmotic adjustment during intermittent soil drying sustain grain yield of field grown wheat. Field Crops Res. 62, 35–52.

    Article  Google Scholar 

  • Araus, J.L., Reynolds, M.P., Acevedo, E., 1993. Leaf posture, grain yield, growth, leaf structure, and carbon isotope discrimination in wheat. Crop Sci. 33, 1273–1279.

    Article  Google Scholar 

  • Araus, J.L., Villegas, D., Aparicio, N., García Del Moral, L.F., El Hani, S., Rharrabti, Y., Ferrio, J.P., Royo, C., 2003. Environmental factors determining carbon isotope discrimination and yield in durum wheat under mediterranean conditions. Crop Sci. 43, 170–180.

    Article  Google Scholar 

  • Blum, A. 1970. Effects of plant density and growth duration on sorghum yield under limited water supply. Agron. J. 62, 333–336.

    Article  Google Scholar 

  • Blum, A., 1972. Effect of planting date on water-use and its efficiency in dryland grain sorghum. Agron. J. 64, 775–778.

    Article  Google Scholar 

  • Blum, A., 2005. Drought resistance, water-use efficiency, and yield potential – are they compatible, dissonant, or mutually exclusive? Aust. J. Agric. Res. 56, 1159–1168.

    Article  Google Scholar 

  • Blum, A., Arkin, G.F., 1984 Sorghum root growth and water-use as affected by water supply and growth duration. Field Crops Res. 9, 131–142.

    Article  Google Scholar 

  • Blum, A., Mayer, J., Gozlan, G., 1982. Infrared thermal sensing of plant canopies as a screening technique for dehydration avoidance in wheat. Field Crops Res. 5, 137–146.

    Article  Google Scholar 

  • Blum, A., Naveh, M., 1976. Improved water-use efficiency by promoted plant competition in dryland sorghum. Agron. J. 68, 111–116.

    Article  Google Scholar 

  • Caird, M.A., Richards, J.H., Hsiao, T.C., 2007. Significant transpirational water loss occurs throughout the night in field-grown tomato. Funct. Plant Biol. 34, 172–177.

    Article  Google Scholar 

  • Chimenti, C.A., Marcantonio, M., Hall, A.J., 2006. Divergent selection for osmotic adjustment results in improved drought tolerance in maize (Zea mays L.) in both early growth and flowering phases. Field Crops Res. 95, 305–315.

    Article  Google Scholar 

  • Condon, A.G., Richards, R.A., Rebetzke, G.J., Farquhar, G.D., 2002. Improving intrinsic water-use efficiency and crop yield. Crop Sci. 42, 122–131.

    Article  PubMed  Google Scholar 

  • Craufurd, P.Q., Wheeler, T.R., Ellis, R.H., Summerfield, R.J., Williams, J.H., 1999. Effect of temperature and water deficit on water-use efficiency, carbon isotope discrimination and specific leaf area in peanut. Crop Sci. 39, 136–142.

    Article  Google Scholar 

  • Davies, W.J., Jones, H.G., 1991. Abscisic acid: Physiology and Biochemistry. Bios Scientific Publishers, London, pp. 266.

    Google Scholar 

  • De Wit, C.T., 1958. Transpiration and crop yields, Versl. Landbouwk. Onderz., Institute of Biological and Chemical Research on Field Crops and Herbage, Wageningen, The Netherlands, 64:6.

    Google Scholar 

  • Donald, C.M., Hamblin, J., 1976. The biological yield and harvest index of cereals as agronomic and plant breeding criteria. Adv. Agron. 28, 361–405.

    Article  Google Scholar 

  • Farquhar, G.D., Ehleringer, J.R., Hubick K., 1989. Carbon isotope discrimination and photosynthesis. Ann. Rev. Plant Physiol. Plant Mol. Biol. 40, 503–537.

    Article  CAS  Google Scholar 

  • Fischer, R.A., Turner, N.C., 1978. Plant productivity in the arid and semiarid zones, Ann. Rev. Plant Physiol., 29, 277–317).

    Google Scholar 

  • Fischer, R.A., Rees, D., Sayre, K.D., Lu, Z.M., Condon, A.G., Saavedra, A.L., 1998. Wheat yield progress associated with higher stomatal conductance and photosynthetic rate, and cooler canopies. Crop Sci. 38, 1467–1475.

    Article  Google Scholar 

  • Frank, A.B., Ray, I.M., Berdahl, J.D., Karn, J.F., 1997. Carbon isotope discrimination, ash, and canopy temperature in three wheatgrass species. Crop Sci. 7, 1573–1576.

    Article  Google Scholar 

  • French, R.J., Schultz, J.E., 1984. Water use efficiency of wheat in a Mediterranean-type environment. I. The relation between yield water use and climate. Aust. J. Agric. Res. 35, 743–764.

    Google Scholar 

  • Hall, A.E., Richards, R.A., Condon, A.G., Wright, G.C., Farquhar, G.D. 1994. Carbon isotope discrimination and plant breeding. Plant Breed. Rev. 12, 81–113.

    Google Scholar 

  • Hanks, K.J., 1983. Yield and water-use relationships, an overview. In: Limitations to Efficient Water Use in Crop Production. Taylor, H.M., Jordan, W.R., Sinclair, T.R., (Eds), American Society of Agronomy, Madison, Wisconsin (USA), pp. 393–410.

    Google Scholar 

  • Horie T., Matsuura S., Takai T., Kuwasaki K., Ohsumi A., Shiraiwa T. 2006. Genotypic difference in canopy diffusive conductance measured by a new remote-sensing method and its association with the difference in rice yield potential. Plant Cell Environ. 29, 653–660.

    Article  PubMed  Google Scholar 

  • Horton, P., 2000. Prospects for crop improvement through the genetic manipulation of photosynthesis, morphological and biochemical aspects of light capture. J. Exp. Bot. 51, 475–485.

    Article  CAS  PubMed  Google Scholar 

  • Ismail, A.M., Hall, A.E., Bray, E.A., 1994. Drought and pot size effects on transpiration efficiency and carbon isotope discrimination of cowpea accessions and hybrids Aust. J. Plant Physiol., 21, 23–35.

    Google Scholar 

  • Izanloo, A., Condon, A.G., Langridge, P., Tester, M., Schnurbusch, T., 2008. Different mechanisms of adaptation to cyclic water stress in two South Australian bread wheat cultivars J. Exp. Bot. 59, 3327–3346.

    Article  CAS  Google Scholar 

  • Juenger, T.E., Mckay, J.K., Hausmann, N., Keurentjes, J. J. B., Sen, S., Stowe, K.A., Dawson, T.E., Simms, E. L., Richards, J.H., 2005. Identification and characterization of QTL underlying whole-plant physiology in Arabidopsis thaliana, 13C, stomatal conductance and transpiration efficiency. Plant Cell Environ. 28, 697–708.

    Article  CAS  Google Scholar 

  • Kato, Y., Kamoshita, A., Yamagishi, J., 2008. Preflowering abortion reduces spikelet number in upland rice (Oryza sativa L.) under water stress. Crop Sci. 48, 2389–2395.

    Article  Google Scholar 

  • Kerstiens, G., 1997. In vivo manipulation of cuticular water permeance and its effect on stomatal response to air humidity. New Phytol. 137, 473–480.

    Article  Google Scholar 

  • Kerstiens, G., 2006. Water transport in plant cuticles, an update. J. Exp. Bot. 57, 2493–2499.

    Article  CAS  PubMed  Google Scholar 

  • Kijne, J. W., Barker, Randolph, Molden, D. J. (Eds), 2003. Water Productivity in Agriculture: Limits and Opportunities for Improvement, CABI, UK, 332 pp.

    Book  Google Scholar 

  • Kirkegaard, J.A., Lilley, J.M., Howe, G.N., Graham, J.M., 2007. Impact of subsoil water use on wheat yield. Aust. J. Agric. Res. 58, 303–315.

    Article  Google Scholar 

  • Kobata, T., Okuno, T., Yamamoto, T. 1996. Contributions of capacity for soil water extraction and water use efficiency to maintenance of dry matter production in rice subjected to drought. Japanese J. Crop Sci. 65, 652–662.

    CAS  Google Scholar 

  • Li, C.Y., Berninger, F., Koskela, J., Sonninen, E., 2000. Drought responses of Eucalyptus microtheca provenances depend on seasonality of rainfall in their place of origin. Aust. J. Plant Physiol. 27, 231–238.

    Google Scholar 

  • Lu, Z.M., Zeiger, E., 1994. Selection for higher yields and heat resistance in pima cotton has caused genetically determined changes in stomatal conductances. Physiol. Plant. 92, 273–278.

    Article  CAS  Google Scholar 

  • Lu, Z.M., Radin, J.W., Turcotte, E.L., Percy, R., Zeiger, E., 1994. High yields in advanced lines of pima cotton are associated with higher stomatal conductance, reduced leaf area and lower leaf temperature. Physiol. Plant. 92, 266–272.

    Article  CAS  Google Scholar 

  • Martin, B., Tauer, C.G., Lin, R.K., 1999. Carbon isotope discrimination as a tool to improve water-use efficiency in tomato. Crop Sci. 39, 1775–1783.

    Article  Google Scholar 

  • Matus, A., Slinkard, A.E., Vankessel, C., 1996. Carbon isotope discrimination and indirect selection for transpiration efficiency at flowering in lentil (Lens culinaris medikus), spring bread wheat (Triticum aestivum L.) durum wheat (T.turgidum l), and canola (Brassica napus L.). Euphytica 87, 141–151.

    Article  Google Scholar 

  • Menendez C.M. Hall W.E., 1995 Heritability of carbon isotope discrimination and correlations with earliness in cowpea. Crop Sci. 35, 673–678, 3032.

    Google Scholar 

  • Merah, O., 2001. Potential importance of water status traits for durum wheat improvement under Mediterranean conditions. J. Agric. Sci. 137, 139–145.

    Article  Google Scholar 

  • Meyers, R.J.K., Foale, M.A., Done, A.A., 1984. Response of grain sorghum to varying irrigation frequency in the Ord irrigation area. II. Evapotranspiration water-use efficiency. Aust. J. Agric. Res. 35, 31–42.

    Google Scholar 

  • Mitchell, J.H., Fukai, S., Cooper, M., 1996. Influence of phenology on grain yield variation among barley cultivars grown under terminal drought. Aust. J. Agric. Res. 47, 757–774.

    Article  Google Scholar 

  • Monclus, R., Dreyer, E., Villar, M., Delmotte, F.M., Delay D., Petit, J.M., Barbaroux, C., Thiec, D., Bréchet, C., Brignolas, F., 2006. Impact of drought on productivity and water use efficiency in 29 genotypes of Populus deltoides × Populus nigra. New Phytol. 169, 765–777.

    Article  PubMed  Google Scholar 

  • Monneveux, P., Rekika, D., Acevedo, E., Merah, O., 2006. Effect of drought on leaf gas exchange, carbon isotope discrimination, transpiration efficiency and productivity in field grown durum wheat genotypes. Plant Sci. 170, 867–872.

    Article  CAS  Google Scholar 

  • Monneveux, P., Sheshshayee, M.S., Akhter, J., Ribaut, J.M., 2007. Using carbon isotope discrimination to select maize (Zea mays L.) inbred lines and hybrids for drought tolerance. Plant Sci. 173, 390–396.

    Article  CAS  Google Scholar 

  • Morgan, J.A., Lecain, D.R., Mccaig, T.N., Quick, J.S., 1993. Gas exchange, carbon isotope ­discrimination, and productivity in winter wheat. Crop Sci. 33, 178–186.

    Article  CAS  Google Scholar 

  • Munoz, P., Voltas, J., Araus, J.L., Igartua, E., Romagosa, I., 1998. Changes over time in the adaptation of barley releases in north-eastern Spain. Plant Breed. 117, 531–535.

    Article  Google Scholar 

  • Ngugi, E.C.K., Austin, R.B., Galwey, N.W., Hall, M.A., 1996. Associations between grain yield and carbon isotope discrimination in cowpea. Europ. J. Agron. 5, 9–17.

    Article  Google Scholar 

  • Ngugi, E.C.K., Galwey, N.W., Austin, R.B., 1994. Genotype x environment interaction in carbon isotope discrimination and seed yield in cowpea (Vigna unguiculata l. walp.). Euphytica 73, 213–224.

    Article  Google Scholar 

  • O’Toole, J.C., 1982. Adaptation of rice to drought-prone environments. In: Drought Resistance in Crops With Emphasis on Rice. IRRI (Eds), International Rice Research Institute, Los Banos, Phillippines, pp. 195–213.

    Google Scholar 

  • Parry, M. A. J., Madgwick, P. J., Carvahlo, J. F. C., and Andralojc, P. J., 2007. Prospects for increasing photosynthesis by overcoming the limitations of Rubisco. J. Agric. Sci. 145, 31–43.

    Article  CAS  Google Scholar 

  • Passioura, J.B., 1996. Drought and drought tolerance. Plant Growth Reg.20, 79–83.

    Article  CAS  Google Scholar 

  • Peuke, A.D., Gessler, A., Rennenberg, H., 2006. The effect of drought on C and N stable isotopes in different fractions of leaves, stems and roots of sensitive and tolerant beech ecotypes. Plant Cell Environ. 29, 823–835.

    Article  CAS  PubMed  Google Scholar 

  • Pinheiro, H.A., Damatta, F.M., Chaves, A.R.M., Loureiro, M.E., 2005. Drought tolerance is associated with rooting depth and stomatal control of water use in clones of Coffea canephora. Ann. Bot. 96, 101–108.

    Article  PubMed  Google Scholar 

  • Read, J.J., Johnson, D.A., Asay, K.H., Tieszen, L.L., 1991. Carbon Isotope Discrimination, Gas Exchange, and Water-Use Efficiency in Crested Wheatgrass Clones. Crop Sci. 31, 1203–1208.

    Article  Google Scholar 

  • Rebetzke, G.J., Condon, A.G., Farquhar, G.D., Appels, R., Richards, R.A., 2008. Quantitative trait loci for carbon isotope discrimination are repeatable across environments and wheat mapping populations. Theor. Appl. Gen. 118, 123–137.

    Article  CAS  Google Scholar 

  • Rebetzke, G.J., Richards, R.A., 1999. Genetic improvement of early vigour in wheat. Aust. J. Agric. Res. 50, 291–301.

    Article  Google Scholar 

  • Reynolds, M.P., Balota, M., Delgado, M.I.B., Amani, I., Fischer, R.A., 1994. Physiological and morphological traits associated with spring wheat yield under hot, irrigated conditions. Aust. J. Plant Physiol. 21, 717–730.

    Article  Google Scholar 

  • Reynolds, M., Tuberosa, R. 2008. Translational research impacting on crop productivity in drought-prone environments Curr. Opin. Plant Biol. 11, 171–179.

    Article  Google Scholar 

  • Richards, R.A., Passioura, J.B., 1989. A breeding program to reduce the diameter of the major xylem vessel in the seminal roots of wheat and its effect on grain yield in rain-fed environments Aust. J. Agric. Res. 40, 943–950.

    Article  Google Scholar 

  • Sanguineti, M.C., Tuberosa, R., Landi, P., Salvi, S., Maccaferri, M., Casarini, E., Conti, S., 1999. QTL analysis of drought related traits and grain yield in relation to genetic variation for leaf abscisic acid concentration in field-grown maize. J. Exp. Bot. 50, 1289–1297.

    Article  CAS  Google Scholar 

  • Saranga, Y., Jiang, C.X., Wright, R.J., Yakir, D., Paterson, A.H., 2004. Genetic dissection of cotton physiological responses to arid conditions and their inter-relationships with productivity. Plant Cell Environ. 27, 263–277.

    Article  CAS  Google Scholar 

  • Sayre, K.D., Acevedo, E., Austin, R.B., 1995. Carbon isotope discrimination and grain yield for three bread wheat germplasm groups grown at different levels of water stress. Field Crops Res. 41, 45–54.

    Article  Google Scholar 

  • Sellin, A., 2001. Hydraulic and stomatal adjustment of Norway spruce trees to environmental stress. Tree Physiol. 21, 879–888.

    CAS  PubMed  Google Scholar 

  • Sheehy, J.E., Mitchell, P.L., Hardy, B, (eds.) 2000. Redesigning Rice Photosynthesis to Increase Yield. Elsevier Science, Amsterdam, (The Netherlands), pp. 300.

    Google Scholar 

  • Shimshi, D., Ephrat, J., 1975. Stomatal behavior of wheat cultivars in relation to their transpiration, photosynthesis and yield. Agron. J. 67, 326–331.

    Article  Google Scholar 

  • Siddique, K.H.M., Tennan, t D., Perry, M.W., Belford, R.K., 1990. Water use and water use efficiency of old and modern wheat cultivars in a Mediterranean-type environment Aust. J. Agric. Res. 41, 431–447.

    Article  Google Scholar 

  • Solomon, K.F., Labuschagne, M.T., 2004. Variation in water use and transpiration efficiency among durum wheat genotypes grown under moisture stress and non-stress conditions. J. Agric. Sci. 141, 31–41.

    Article  Google Scholar 

  • Specht, J.E., Chase, K., Macrander, M., Graef, G.L., Chung, J., Markwell, J.P., Germann, M., Orf, J.H., Lark, K.G., 2001. Soybean response to water; a QTL analysis of drought tolerance. Crop Sci.41, 493–509.

    Article  CAS  Google Scholar 

  • Tangpremsri, T., Fukai, S., Fischer, K.S., Henzell, R.G., 1991. Genotypic variation in osmotic adjustment in grain sorghum.2. Relation with some growth attributes. Aust. J. Agric. Res. 42, 759–767.

    Article  Google Scholar 

  • Westgate, M.E., Passioura, J.B., Munns, R., 1996. Water status and ABA content of floral organs in drought-stressed wheat. Aust. J. Plant Physiol. 23, 763–772.

    Article  CAS  Google Scholar 

  • White, J.W., Castillo, J.A., Ehleringer, J., 1990. Associations between productivity, root growth and carbon isotope discrimination in Phaseolus-vulgaris under water deficit. Aust. J. Plant Physiol.17, 189–198.

    Article  CAS  Google Scholar 

  • Zong, Lin Zhu, Liang, Suo, Xu, Xing, Li, Shu Hua, Jing, Ji Hai, Monneveux P., 2008. Relationships between carbon isotope discrimination and leaf morpho-physiological traits in spring-planted spring wheat under drought and salinity stress in Northern China. Aust. J. Agric. Res. 59, 941–949.

    Article  CAS  Google Scholar 

  • Abraham EM, Huang B, Bonos SA et al (2004) Evaluation of drought resistance for Texas bluegrass, Kentucky bluegrass, and their hybrids. Crop Sci 44:1746–1753

    Article  Google Scholar 

  • Abreu ME, Munné-Bosch S (2008) Salicylic acid may be involved in the regulation of drought-induced leaf senescence in perennials: a case study in field-grown Salvia officinalis L. plants. Environ Exp Bot 64:105–112

    Article  CAS  Google Scholar 

  • Alpert P (2000) The discovery, scope, and puzzle of desiccation tolerance in plants. Plant Ecol 151:5–17

    Article  Google Scholar 

  • Al-Yassin A, Grando S, Kafawin O et al (2005) Heritability estimates in contrasting environments as influenced by the adaptation level of barley germplasm. Ann Appl Biol 147:235–244

    Article  Google Scholar 

  • Andersen MN, Asch F, Wu Y et al (2002) Soluble invertase expression is an early target of drought stress during the critical, abortion-sensitive phase of young ovary development in maize. Plant Physiol 130:591–604

    Article  CAS  PubMed  Google Scholar 

  • Anderson SR, Lauer MJ, Schoper JB et al (2004) Pollination timing effects on kernel set and silk receptivity in four maize hybrids. Crop Sci 44:464–473

    Article  Google Scholar 

  • Angadi SV, Entz MH (2002) Root system and water use patterns of different height sunflower cultivars. Agron J 94:136–145

    Article  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Ann Rev Plant Biol 55:373–399

    Article  CAS  Google Scholar 

  • Araus JL, Sánchez C, Cabrera-Bosquet L (2010) Is heterosis in maize mediated through better water use? New Phytol 187:392–406

    CAS  PubMed  Google Scholar 

  • Athar M, Johnson DA (1996) Nodulation biomass production and nitrogen fixation in alfalfa under drought. J Plant Nutr 19:185–199

    Article  CAS  Google Scholar 

  • Atkin OK, Macherel D (2009) The crucial role of plant mitochondria in orchestrating drought tolerance. Ann Bot 103:581–597

    Article  CAS  PubMed  Google Scholar 

  • Auge RM (2004) Arbuscular mycorrhizae and soil/plant water relations. Can J Soil Sci 84:373–381

    Google Scholar 

  • Babu RC, Shashidhar HE, Lilley JM et al (2001) Variation in root penetration ability, osmotic adjustment and dehydration toleance among accessions of rice adapted to rainfed lowland and upland ecosystem. Plant Breed 120:233–238

    Google Scholar 

  • Babu RC, Zhang J, Blum A et al (2004) HVA1, a LEA gene from barley confers dehydration tolerance in transgenic rice (Oryza sativa L) via cell membrane protection. Plant Sci 166:855–862

    Article  CAS  Google Scholar 

  • Bacelar EA, Correia CM, Moutinho-Pereira JM (2004) Sclerophylly and leaf anatomical traits of five field-grown olive cultivars growing under drought conditions. Tree Physiol 24:233–239

    PubMed  Google Scholar 

  • Badawi GH, Yamauchi Y, Shimada E et al (2004) Enhanced tolerance to salt stress and water ­deficit by overexpressing superoxide dismutase in tobacco (Nicotiana tabacum) chloroplasts. Plant Sci 166:919–928

    Article  CAS  Google Scholar 

  • Bajji M, Kinet JM, Lutts S (2002) The use of the electrolyte leakage method for assessing cell membrane stability as a water stress tolerance test in durum wheat. Plant Growth Regul 36:61–70

    Article  CAS  Google Scholar 

  • Bakken AK, Macduff J, Humphreys M (1997) A stay-green mutation of Lolium perenne affects NO3-uptake and translocation of N during prolonged n starvation. New Phytol 135:41–50

    Article  CAS  Google Scholar 

  • Baldocchi OO, Verma SB, Kosenberg NJ et al (1983) Leaf pubescence effects on the mass and energy exchange between soybean canopies and the atmosphere. Agron J 75:537–541

    Article  Google Scholar 

  • Bancal MO, Robert C, Ney B (2007) Modelling wheat growth and yield losses from late epidemics of foliar diseases using loss of green leaf area per layer and pre-anthesis reserves. Ann Bot 100:777–789

    Article  CAS  PubMed  Google Scholar 

  • Bandurska H (1998) Implication of ABA and proline on cell membrane injury of water deficit stressed barley seedlings. Acta Physiol Plant 20:375–381

    Article  CAS  Google Scholar 

  • Bänziger M, Setimela PS, Hodson D et al (2006) Breeding for improved drought tolerance in maize adapted to Southern Africa. Agric Water Manag 80:212–224

    Article  Google Scholar 

  • Barbour MM (2007) Stable oxygen isotope composition of plant tissue: a review. Funct Plant Biol 34:83–94

    Article  CAS  Google Scholar 

  • Barbour MM, Warren CR, Farquhar GD et al (2010) Variability in mesophyll conductance between barley genotypes, and effects on transpiration efficiency and carbon isotope discrimination. Plant Cell Environ 33:1176–1185

    PubMed  Google Scholar 

  • Barker T, Campos H, Cooper M et al (2005) Improving drought tolerance in maize. Plant Breed Rev 25:173–253

    CAS  Google Scholar 

  • Basnayake J, Ludlow M, Cooper M et al (1993) Genotypic variation of osmotic adjustment and desiccation tolerance in contrasting sorghum inbred lines. Field Crops Res 35:51–62

    Article  Google Scholar 

  • Basnayake J, Cooper M, Ludlow MM et al (1995) Inheritance of osmotic adjustment to water stress in three grain sorghum crosses. Theor Appl Genet 90:675–682

    Article  Google Scholar 

  • Basnayake J, Cooper M, Henzell RG et al (1996) Influence of rate of development of water deficit on the expression of maximum osmotic adjustment and desiccation tolerance in three grain sorghum lines. Field Crops Res 49:65–76

    Article  Google Scholar 

  • Basu PS, Berger JD, Turner NC et al (2007) Osmotic adjustment of chickpea (Cicer arietinum) is not associated with changes in carbohydrate composition or leaf gas exchange under drought. Ann Appl Biol 150:217–225

    Article  CAS  Google Scholar 

  • Becana M, Dalton DA, Moran JF et al (2001) Reactive oxygen species and antioxidants in legume nodules. Physiol Plant 109:372–381

    Article  Google Scholar 

  • Beckett RP (2001) ABA-induced tolerance to ion leakage during rehydration following desiccation in the moss Atrichum androgynum. Plant Growth Regul 35:131–135

    Article  CAS  Google Scholar 

  • Benjamin JG, Nielsen DC (2006) Water deficit effects on root distribution of soybean, field pea and chickpea. Field Crops Res 97:248–253

    Article  Google Scholar 

  • Bernier J, Kumar A, Ramaiah V et al (2007) A large-effect QTL for grain yield under reproductive-stage drought stress in upland rice. Crop Sci 47:507–516

    Article  Google Scholar 

  • Betrán FJ, Beck D, Bänziger M et al (2003a) Secondary traits in parental inbreds and hybrids under stress and non-stress environments in tropical maize. Field Crops Res 83:51–65

    Article  Google Scholar 

  • Betrán FJ, Beck D, Bänziger M et al (2003b) Genetic analysis of inbred and hybrid grain yield under stress and nonstress environments in tropical maize. Crop Sci 43:807–817

    Article  Google Scholar 

  • Bewley JO (1979) Physiological aspects of desiccation tolerance. Ann Rev Plant Physiol 30:195–205

    Article  CAS  Google Scholar 

  • Bidinger FR, Serraj R, Rizvi SMH et al (2005) Field evaluation of drought tolerance QTL effects on phenotype and adaptation in pearl millet [Pennisetum glaucum (L) R Br] topcross hybrids. Field Crops Res 94:14–32

    Article  Google Scholar 

  • Bidinger FR, Nepolean T, Hash CT et al (2007) Quantitative trait loci for grain yield in pearl millet under variable postflowering moisture conditions. Crop Sci 47:969–980

    Article  Google Scholar 

  • Blum A (1970) Effects of plant density and growth duration on sorghum yield under limited water supply Agron J 62:333–336

    Article  Google Scholar 

  • Blum A (1972) Effect of planting date on water-use and its efficiency in dryland grain sorghum. Agron J 64:775–778

    Article  Google Scholar 

  • Blum A (1973) Components analysis of yield responses to drought of sorghum hybrids. Exp Agric 9:159–170

    Article  Google Scholar 

  • Blum A (1988) Plant breeding for stress environments. CRC Press, Boca Raton

    Google Scholar 

  • Blum A (1997) Constitutive traits affecting plant performance under drought stress. In: Edmeades GO, Banziger M, Mickelson HR et al (eds) Developing drought and low N tolerant maize. CIMMYT, El Batan

    Google Scholar 

  • Blum A (1998) Improving wheat grain filling under stress by stem reserve mobilization. Euphytica 100:77–83

    Article  Google Scholar 

  • Blum A (2004) Sorghum physiology. In: Nguyen HT, Blum A (eds) Physiology and biotechnology integration for plant breeding. CRC Press, Boca Raton

    Google Scholar 

  • Blum A (2005) Drought resistance, water-use efficiency, and yield potential – are they compatible, dissonant, or mutually exclusive? Aust J Agric Res 56:1159–1168

    Article  Google Scholar 

  • Blum A (2009) Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress. Field Crops Res 112:119–123

    Article  Google Scholar 

  • Blum A, Arkin GF (1984) Sorghum root growth and water-use as affected by water supply and growth duration. Field Crops Res 9:131–142

    Article  Google Scholar 

  • Blum A, Ebercon A (1981) Cell membrane stability as a measure of drought and heat tolerance in wheat. Crop Sci 21:43–47

    Article  Google Scholar 

  • Blum A, Naveh M (1976) Improved water-use efficiency by promoted plant competition in dryland sorghum. Agron J 68:111–116

    Article  Google Scholar 

  • Blum A, Pnuel Y (1990) Physiological attributes associated with drought resistance of wheat cultivars in a Mediterranean environment. Aust J Agric Res 41:799–810

    Article  Google Scholar 

  • Blum A, Sinmena B (1995) Isolation and characterization of variant wheat cultivars for ABA sensitivity. Plant Cell Environ 18:77–78

    Article  Google Scholar 

  • Blum A, Sullivan CY (1986) The comparative drought resistance of landraces of sorghum and millet from dry and humid regions. Ann Bot 57:835–846

    Google Scholar 

  • Blum A, Arkin GF, Jordan WR (1977a) Sorghum root morphogenesis and growth. I. Effect of maturity genes. Crop Sci 17:149–153

    Article  Google Scholar 

  • Blum A, Jordan WR, Arkin GF (1977b) Sorghum root morpho-genesis and growth. II. Manifestation of heterosis. Crop Sci 17:153–157

    Article  Google Scholar 

  • Blum A, Sinmena B, Ziv O (1980) An evaluation of seed and seedling drought tolerance screening tests in wheat. Euphytica 29:727–736

    Article  Google Scholar 

  • Blum A, Gozlan G, Mayer J (1981) The manifestation of dehydration avoidance in wheat breeding germplasm. Crop Sci 21:495–499

    Article  Google Scholar 

  • Blum A, Mayer J, Gozlan G (1982) Infrared thermal sensing of plant canopies as a screening technique for dehydration avoidance in wheat. Field Crops Res 5:137–146

    Article  Google Scholar 

  • Blum A, Golan G, Mayer J et al (1989) The drought response of landraces of wheat from the Northern Negev desert in Israel. Euphytica 43:87–96

    Article  Google Scholar 

  • Blum A, Ramaiah S, Kanemasu ET et al (1990) Recovery of wheat from drought stress at the tillering developmental stage. Field Crops Res 24:67–85

    Article  Google Scholar 

  • Blum A, Sinmena B, Mayer J et al (1994) Stem reserve mobilisation supports wheat grain filling under heat stress. Aust J Plant Physiol 21:771–781

    Article  Google Scholar 

  • Blum A, Munns R, Passioura JB et al (1996) Genetically engineered plants resistant to soil drying and salt stress: how to interpret osmotic relations? Plant Physiol 110:1051

    CAS  PubMed  Google Scholar 

  • Blum A, Golan G, Mayer J et al (1997) The effect of dwarfing genes on sorghum grain filling from remobilized stem reserves, under stress. Field Crops Res 52:43–54

    Article  Google Scholar 

  • Blum A, Zhang JX, Nguyen HT (1999) Consistent differences among wheat cultivars in osmotic adjustment and their relationship to plant production. Field Crops Res 64:287–291

    Article  Google Scholar 

  • Blum A, Klueva N, Nguyen HT (2001) Wheat cellular thermotolerance is related to yield under heat stress. Euphytica 117:117–123

    Article  Google Scholar 

  • Bohnert HJ, Shen B (1999) Transformation and compatible solutes. Sci Hort 78:237–260

    Article  CAS  Google Scholar 

  • Bolanos J, Edmeades GO (1996) The importance of the anthesis-silking interval in breeding for drought tolerance in tropical maize. Field Crops Res 48:65–80

    Article  Google Scholar 

  • Bonnett GD, Incoll LD (1992) Effects on the stem of winter barley of manipulating the source and sink during grain-filling. 1. Changes in accumulation and loss of mass from internodes. J Exp Bot 44:75–82

    Article  Google Scholar 

  • Borrell AK, Hammer GL (2000) Nitrogen dynamics and the physiological basis of stay-green in sorghum. Crop Sci 40:1295–1307

    Article  Google Scholar 

  • Borrell AK, Incoll LD, Dalling MJ (1993) The influence of the rht1 and rht2 alleles on the deposition and use of stem reserves in wheat Ann Bot 71:317–326

    Article  Google Scholar 

  • Borrell AK, Hammer GL, Henzell RG (2000) Does maintaining green leaf area in sorghum improve yield under drought? II. Dry matter production and yield. Crop Sci 40:1037–1048

    Article  Google Scholar 

  • Boyer JS (1976) Photosynthesis at low potentials. Philos Trans R Soc Lond Ser B 273:501–511

    Article  Google Scholar 

  • Boyer JS, Westgate ME (2004) Grain yields with limited water. J Exp Bot 55:2385–2394

    Article  CAS  PubMed  Google Scholar 

  • Boyer JS, Johnson RR, Saupe SG (1980) Afternoon water deficits and grain yields in old and new soybean cultivars. Agron J 72:981–986

    Article  Google Scholar 

  • Buchanan-Wollaston V (1997) The molecular biology of leaf senescence. J Exp Bot 48:181–199

    Article  Google Scholar 

  • Busscher WJ, Lipiec J, Bauer PJ et al (2000) Improved root penetration of soil hard layers by a selected genotype. Commun Soil Sci Plant Anal 31:3089–3101

    Article  CAS  Google Scholar 

  • Cabrera-Bosquet L, Sánchez C, Araus JL (2009a) Oxygen isotope enrichment reflects yield ­potential and drought resistance in maize. Plant Cell Environ 32:1487–1499

    Article  CAS  PubMed  Google Scholar 

  • Cabrera-Bosquet L, Sanchez C, Araus JL (2009b) How yield relates to ash content, 13C and 18O in maize grown under different water regimes. Ann Bot 104:1207–1216

    Article  CAS  PubMed  Google Scholar 

  • Campos H, Cooper M, Habben JE et al (2004) Improving drought tolerance in maize: a view from industry. Field Crops Res 90:19–34

    Article  Google Scholar 

  • Carleton AH, Foote WH (1968) Heterosis for grain yield and leaf area and their components in two six-rowed barley crosses. Crop Sci 8:554–560

    Article  Google Scholar 

  • Castiglioni P, Warner D, Bensen RJ et al (2008) Bacterial RNA chaperones confer abiotic stress tolerance in plants and improved grain yield in maize under water-limited conditions. Plant Physiol 147:446–455

    Article  CAS  PubMed  Google Scholar 

  • Castleberry CW, Crum CW, Krull CF (1984) Genetic yield improvement of US maize cultivars under varying fertility and climatic environments. Crop Sci 24:33–37

    Article  Google Scholar 

  • Ceccarelli S (1987) Yield potential and drought tolerance of segregating populations of barley in contrasting environments. Euphytica 36:265–273

    Article  Google Scholar 

  • Ceccarelli S (1989) Wide adaptation: how wide? Euphytica 40:197–205

    Google Scholar 

  • Ceccarelli S, Grando S (1991) Environment of selection and type of germplasm in barley breeding for low-yielding conditions. Euphytica 57:207–219

    Article  Google Scholar 

  • Ceccarelli S, Grando S (2007) Decentralized-participatory plant breeding: an example of demand driven research. Euphytica 155:349–360

    Article  Google Scholar 

  • Ceccarelli S, Grando S, Impiglia A (1998) Choice of selection strategy in breeding barley for stress environments. Euphytica 10:307–318

    Article  Google Scholar 

  • Cha KW, Lee YJ, Koh HJ et al (2002) Isolation, characterization, and mapping of the stay green mutant in rice. Theor Appl Genet 104:526–532

    Article  CAS  PubMed  Google Scholar 

  • Chapman SC, Edmeades GO (1999) Selection improves drought tolerance in tropical maize populations. II. Direct and correlated responses among secondary traits. Crop Sci 39:1315–1324

    Article  Google Scholar 

  • Chimenti CA, Marcantonio M, Hall AJ (2006) Divergent selection for osmotic adjustment results in improved drought tolerance in maize (Zea mays L) in both early growth and flowering phases. Field Crop Res 95:305–315

    Article  Google Scholar 

  • Christopher JT, Manschadi AM, Hammer GL et al (2008) Developmental and physiological traits associated with high yield and stay-green phenotype in wheat. Aust J Agric Res 59:354–364

    Article  Google Scholar 

  • Clark LJ, Whalley WR, Barraclough PB (2003) How do roots penetrate strong soil? Plant Soil 255:93–104

    Article  CAS  Google Scholar 

  • Clarke JM, McCaig TN, DePauw RM (1994) Inheritance of glaucousness and epicuticular wax in durum wheat. Crop Sci 34:327–331

    Article  Google Scholar 

  • Cochard H, Casella E, Mencuccini M (2007) Xylem vulnerability to cavitation varies among poplar and willow clones and correlates with yield. Tree Physiol 27:1761–1767

    PubMed  Google Scholar 

  • Collins NC, Tardieu F, Tuberosa R (2008) Quantitative trait loci and crop performance under abiotic stress: where do we stand? Plant Physiol 147:469–486

    Article  CAS  PubMed  Google Scholar 

  • Condon AG, Richards RA, Rebetzke GJ (2004) Breeding for high water-use efficiency. J Exp Bot 55:2447–2460

    Article  CAS  PubMed  Google Scholar 

  • Condon AG, Kirkegaard JA, Rebetzke GJ (2009) Wheat yield and water use: what do they have to do with carbon isotope discrimination? In: Interdrought-III, Shanghai (in press)

    Google Scholar 

  • Cooper M, Hammer GL (eds) (1996) Plant adaptation and crop improvement. CABI, Oxon

    Google Scholar 

  • Cox TS, Shroyer JP, Liu B-H et al (1988) Genetic improvement in agronomic traits of hard red winter wheat cultivars from 1919 to 1987. Crop Sci 28:756–760

    Article  Google Scholar 

  • Dahlberg JA (2000) Collection, conversion, and utilization of sorghum. In: Smith CW, Frederiksen RA (eds) Sorghum: origin, history, technology and production. Wiley, New York

    Google Scholar 

  • Degenkolbe T, Do P, Zuther et al (2008) Expression profiling of rice cultivars differing in their tolerance to long-term drought stress. Plant Mol Biol 69:133–153

    Article  PubMed  CAS  Google Scholar 

  • Derouw A, Winkel T (1998) Drought avoidance by asynchronous flowering in pearl millet stands cultivated on-farm and on-station in Niger. Exp Agric 34:19–39

    Article  Google Scholar 

  • Dodd JL (1979) Grain sink size and predisposition of Zea mays to stalk rot. Phytopathology 70:534–535

    Article  Google Scholar 

  • Du WJ, Fu SX, Yu DY (2009) Genetic analysis for the leaf pubescence density and water status traits in soybean [Glycine max (L) Merr] Plant Breed 128:259–265

    Article  Google Scholar 

  • Duvick DN (1997) What is yield In: Edmeades GO, Banziger M, Mickelson HR et al (eds) Developing drought and low-N tolerant maize. CIMMYT, El Batan

    Google Scholar 

  • Eapen D, Barroso ML, Ponce G et al (2005) Hydrotropism: root growth responses to water. Trends Plant Sci 10:44–50

    Article  CAS  PubMed  Google Scholar 

  • Edmeades GO, Bolanos J, Chapman SC et al (1999) Selection improves drought tolerance in tropical maize populations. I. Gains in biomass, grain yield, and harvest index. Crop Sci 39:1306–1315

    Article  Google Scholar 

  • Efisue A, Tongoona P, Derera J et al (2008) Farmers’ perceptions on rice varieties in sikasso region of mali and their implications for rice breeding. J Agron Crop Sci 194:393–400

    Article  Google Scholar 

  • Erickson PI, Ketring DL (1985) Evaluation of peanut genotypes for resistance to water stress in situ. Crop Sci 25:870–876

    Article  Google Scholar 

  • Fan X-W, Li F-M, Song L et al (2009) Defense strategy of old and modern spring wheat varieties during soil drying. Physiol Plant 136:310–323

    Article  CAS  PubMed  Google Scholar 

  • Farquhar GD, Ehleringer JR, Hubick K (1989) Carbon isotope discrimination and photosynthesis. Ann Rev Plant Physiol Plant Mol Biol 40:503–537

    Article  CAS  Google Scholar 

  • Farrant JM, Kruger LA (2001) Longevity of dry Myrothamnus flabellifolius in simulated field conditions. Plant Growth Regul 35:109–120

    Article  CAS  Google Scholar 

  • Farrant JM, Cooper K, Kruger et al (1999) The effect of drying rate on the survival of three desiccation-tolerant angiosperm species. Ann Bot 84:371–379

    Article  Google Scholar 

  • Febrero A, Fernandez SM, Cano JL et al (1998) Yield, carbon isotope discrimination, canopy reflectance and cuticular conductance of barley isolines of differing glaucousness. J Exp Bot 49:1575–158

    Article  CAS  Google Scholar 

  • Fellows KJ, Boyer JS (1978) Altered ultrastructure of cells of sunflower leaves having low water potentials. Protoplasma 93:381–386

    Article  Google Scholar 

  • Ferrio JP, Mateo MA, Bort J et al (2007) Relationships of grain δ13C and δ18O with wheat phenology and yield under water-limited conditions. Ann Bot 150:207–215

    CAS  Google Scholar 

  • Fischer RA, Wood JT (1979) Drought resistance in spring wheat cultivars. III. Yield associations with morpho-physiological traits. Aust J Agric Res 30:1001–1010

    Article  Google Scholar 

  • Fischer RA, Rees D, Sayre KD et al (1998) Wheat yield progress associated with higher stomatal conductance and photosynthetic rate, and cooler canopies. Crop Sci 38:1467–1475

    Article  Google Scholar 

  • Fischer KS, Lafitte R, Fukai S (eds) (2003) Breeding rice for drought-prone environments. International Rice Research Institute, Los Baños

    Google Scholar 

  • Flexas J, Medrano H (2002) Drought-inhibition of photosynthesis in C3 plants: stomatal and non-stomatal limitations revisited. Ann Bot 89:183–189

    Article  CAS  PubMed  Google Scholar 

  • Flexas J, Bota J, Loreto F et al (2004) Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biol (Stuttg) 6:269–279

    Article  CAS  Google Scholar 

  • Flower DJ, Ludlow MM (1986) contribution of osmotic adjustment to the dehydration tolerance of water-stressed pigeonpea (Cajanus cajan [L] millsp) leaves. Plant Cell Environ 9:33–40

    Google Scholar 

  • Fokar M, Blum A, Nguyen HT (1998) Heat tolerance in spring wheat. II. Grain filling. Euphytica 104:9–15

    Article  Google Scholar 

  • Foulkes MJ, Scott RK, Sylvester-Bradley R (2002) The ability of wheat cultivars to withstand drought in UK conditions: formation of grain yield. J Agric Sci 138:153–169

    Article  Google Scholar 

  • Foulkes MJ, Sylvester-Bradley R, Weightman R et al (2007) Identifying physiological traits associated with improved drought resistance in winter wheat. Field Crops Res 103:11–24

    Article  Google Scholar 

  • Frahm MA, Rosas JC, Mayek-Perez N et al (2004) Breeding beans for resistance to terminal drought in the Lowland tropics. Euphytica 136:223–232

    Article  Google Scholar 

  • Fukai S, Pantuwan G, Jongdee B et al (1999) Screening for drought resistance in rainfed lowland rice. Field Crops Res 64:61–74

    Article  Google Scholar 

  • Galle A, Feller U (2007) Changes of photosynthetic traits in beech saplings (Fagus sylvatica) under severe drought stress and during recovery. Physiol Plant 131:412–421

    Article  CAS  PubMed  Google Scholar 

  • Gan S, Amasino RM (1995) Inhibition of leaf senescence by autoregulated production of cytokinin. Science 270:1986–1988

    Article  CAS  PubMed  Google Scholar 

  • Giese BN (1976) Roles of the cer-j and cer-p loci in determining the epicuticular wax composition on barley seedling leaves. Hereditas 82:137–148

    Article  Google Scholar 

  • Giuliani S, Sanguineti MC, Tuberosa R et al (2005) Root-ABA1, a major constitutive QTL, affects maize root architecture and leaf ABA concentration at different water regimes. J Exp Bot 56:3061–3070

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez A, Ayerbe L (2010) Effect of terminal water stress on leaf epicuticular wax load, residual transpiration and grain yield in barley. Euphytica 172:341–349

    Article  Google Scholar 

  • Gonzalez A, Martin I, Ayerbe L (1999) Barley yield in water-stress conditions. The influence of precocity, osmotic adjustment and stomatal conductance. Field Crops Res 62:23–34

    Article  Google Scholar 

  • Gonzalez EM, Galvez L, Royuela M et al (2001) Insights into the regulation of nitrogen fixation in pea nodules: lessons from drought abscisic acid and increased photoassimilate availability. Agronomie 21:607–613

    Article  Google Scholar 

  • Hall AE, Richards RA, Condon AG et al (1994) Carbon isotope discrimination and plant breeding. Plant Breed Rev 12:81–113

    Google Scholar 

  • Hammer G, Cooper M, Tardieu F et al (2006) Models for navigating biological complexity in breeding improved crop plants. Trends Plant Sci 11:587–593

    Article  CAS  PubMed  Google Scholar 

  • Hammer G, Dong Z, McLean G et al (2009) Can changes in canopy and/or root system architecture explain historical maize yield trends in the U.S. corn belt? Crop Sci 49:299–312

    Article  Google Scholar 

  • Haque MM, Mackill DJ, Ingram KT (1992) Inheritance of leaf epicuticular wax content in rice. Crop Sci 32:865–868

    Article  CAS  Google Scholar 

  • Harris K, Subudhi PK, Borrell A et al (2007) Sorghum stay-green QTL individually reduce post-flowering drought-induced leaf senescence. J Exp Bot 58:327–338

    Article  CAS  PubMed  Google Scholar 

  • Harvey HP, van den Driessche R (1997) Nutrition, xylem cavitation and drought resistance in hybrid poplar. Tree Physiol 17:647–654

    PubMed  Google Scholar 

  • Hauck B, Gay AP, Macduff J et al (1997) Leaf senescence in a non-yellowing mutant of festuca pratensis – implications of the stay-green mutation for photosynthesis, growth and nitrogen nutrition Plant. Cell Environ 20:1007–1018

    Article  CAS  Google Scholar 

  • Haussmann BIG, Obilana AB, Ayiecho PO et al (1999) Quantitative-genetic parameters of sorghum [Sorghum bicolor (L) Moench] grown in semi-arid areas of Kenya. Euphytica 105:109–118

    Article  Google Scholar 

  • Haussmann BIG, Mahalakshmi V, Reddy BVS et al (2003) QTL mapping of stay-green in two sorghum recombinant inbred populations. Theor Appl Genet 106:133–142

    Google Scholar 

  • Holbrook FS, Welsh JR (1980) Soil water-use by semi-dwarf and tall wheat cultivars under dryland conditions. Crop Sci 20:244–247

    Article  Google Scholar 

  • Hooker TS, Millar AA, Kunst L (2002) Significance of the expression of the CER6 condensing enzyme for cuticular wax production in Arabidopsis. Plant Physiol 129:1568–1580

    Article  CAS  PubMed  Google Scholar 

  • Horie T, Matsuura S, Takai T et al (2006) Genotypic difference in canopy diffusive conductance measured by a new remote-sensing method and its association with the difference in rice yield potential. Plant Cell Environ 29:653–660

    Article  PubMed  Google Scholar 

  • Horner TW, Frey KJ (1957) Methods for determining natural areas for oat varietal recommendations. Agron J 49:313–315

    Article  Google Scholar 

  • Hsiao TC (1973) Plant responses to water stress. Ann Rev Plant Physiol 24:519–532

    Article  CAS  Google Scholar 

  • Huang BR, Fry J, Wang B (1998) Water relations and canopy characteristics of tall fescue cultivars during and after drought stress. HortScience 33:837–840

    Google Scholar 

  • Huang Y, Xiao B, Xiong L (2007) Characterization of a stress responsive proteinase inhibitor gene with positive effect in improving drought resistance in rice. Planta 226:73–85

    Article  CAS  PubMed  Google Scholar 

  • Hurd, EA (1974) Phenotype and drought tolerance in wheat. Agric Meteor 14:39–55

    Article  Google Scholar 

  • Hyoun Chin J, Lu X, Haefele SM et al (2010) Development and application of gene-based markers for the major rice QTL Phosphorus uptake. Theor Appl Genet 120:1073–1086

    Article  CAS  Google Scholar 

  • Innes P, Blackwell RD (1983) Some effects of leaf posture on yield and water economy of winter wheat. J Agric Sci Camb 101:367–376

    Article  Google Scholar 

  • Irvine RB, Harvey BL, Rossnagel BG (1980) Rooting capabilities as it relates to soil moisture extraction and osmotic potential of semi-dwarf and normal statured genotypes of six-rowed barley. Can J Plant Sci 60:241–248

    Article  Google Scholar 

  • Islam MA, Du H, Ning J et al (2009) Characterization of Glossy1-homologous genes in rice involved in leaf wax accumulation and drought resistance. Plant Mol Biol 70:443–456

    Article  CAS  PubMed  Google Scholar 

  • Ito K, Tanakamaru K, Morita S et al (2006) Lateral root development, including responses to soil drying, of maize (Zea mays) and wheat (Triticum aestivum) seminal roots. Physiol Plant 127:260–267

    Article  CAS  Google Scholar 

  • Izanloo A, Condon AG, Langridge P et al (2008) Different mechanisms of adaptation to cyclic water stress in two South Australian bread wheat cultivars. J Exp Bot 59:3327–3346

    Article  CAS  PubMed  Google Scholar 

  • James AT, Lawn RJ, Cooper M (2008) Genotypic variation for drought stress response traits in soybean. II. Inter-relations between epidermal conductance, osmotic potential, relative water content, and plant survival. Aust J Agric Res 59:670–678

    Article  Google Scholar 

  • Jefferson PG (1994) Genetic variation for epicuticular wax production in Altai wild rye populations that differ in glaucousness. Crop Sci 34:367–371

    Article  Google Scholar 

  • Jenkins MT (1932) Differential resistance of inbred and crossbred strains of corn to drought and heat injury. Agron J 24:504–506

    Article  Google Scholar 

  • Jenks MA, Hasegawa PM, Mohan Jain S (eds) (2007) Advances in molecular breeding towards drought and salt tolerant crops. Springer, Dordrecht

    Google Scholar 

  • Jiang YW, Huang BR (2001) Physiological responses to heat stress alone or in combination with drought: a comparison between tall fescue and perennial ryegrass HortScience 36:682–686

    Google Scholar 

  • Johnson DA, Asay KH (1993) Viewpoint – selection for improved drought response in cool-season grasses. J Range Manag 46:194–202

    Article  Google Scholar 

  • Johnson GR, Frey KJ (1967) Heritabilities of quantitative attributes of oat (Avena sp) at varying levels of environmental stress. Crop Sci 7:43–46

    Article  Google Scholar 

  • Johnson DA, Richards RA, Turner NC (1983) Yield water relations gas exchange and surface reflectance of near isogenic wheat lines differing in glaucousness. Crop Sci 23:318–321

    Article  Google Scholar 

  • Jones HG (1998) Stomatal control of photosynthesis and transpiration. J Exp Bot 49:387–398

    Article  Google Scholar 

  • Jordan WR, Monk RL, Miller FR et al (1983) Environmental physiology of sorghum. I. Environmental and genetic control of epicuticular wax load. Crop Sci 23:552–555

    Article  Google Scholar 

  • Jung C, Seo JS, Han SW et al (2008) Overexpression of AtMYB44 enhances stomatal closure to confer abiotic stress tolerance in transgenic Arabidopsis. Plant Physiol 146:623–635

    Article  CAS  PubMed  Google Scholar 

  • Kebede H, Subudhi PK, Rosenow DT et al (2001) Quantitative trait loci influencing drought tolerance in grain sorghum (Sorghum bicolor L Moench). Theor Appl Genet 103:266–276

    Article  CAS  Google Scholar 

  • Kholov J, Hash CT, Kakkera A et al (2010) Constitutive water-conserving mechanisms are correlated with the terminal drought tolerance of pearl millet [Pennisetum glaucum (L)]. J Exp Bot 61:369–377

    Article  CAS  Google Scholar 

  • Kim KS, Park SH, Jenks MA (2007) Changes in leaf cuticular waxes of sesame (Sesamum indicum L) plants exposed to water deficit. J Plant Physiol 164:1134–1143

    Article  CAS  PubMed  Google Scholar 

  • Kiniry JR (1993) Nonstructural carbohydrate utilization by wheat shaded during grain growth. Agron J 85:844–849

    Article  CAS  Google Scholar 

  • Koonjul PK, Minhas JS, Nunes C et al (2005) Selective transcriptional down-regulation of anther invertases precedes the failure of pollen development in water-stressed wheat. J Exp Bot 56:179–190

    CAS  PubMed  Google Scholar 

  • Kubo K, Jitsuyama Y, Iwama et al (2004) Genotypic difference in root penetration ability by durum wheat (Triticum turgidum L var. durum) evaluated by a pot with paraffin-Vaseline discs. Plant and Soil 262:169–177

    Article  CAS  Google Scholar 

  • Kubo K, Jitsuyama Y, Iwama K et al (2005) The reduced height genes do not affect the root penetration ability in wheat. Euphytica 141:105–111

    Article  Google Scholar 

  • Kuchel H, Williams K, Langridge P et al (2007) Genetic dissection of grain yield in bread wheat. II. QTL-by-environment interaction. Theor Appl Genet 115:1015–1027

    Article  CAS  PubMed  Google Scholar 

  • Kuhbauch W, Thome U (1989) Nonstructural carbohydrates of wheat stems as influenced by sink-source manipulations. J Plant Physiol 134:243–250

    Google Scholar 

  • Kumar R, Sarawgi AK, Ramos C et al (2006) Partitioning of dry matter during drought stress in rainfed lowland rice. Field Crops Res 96:455–465

    Article  Google Scholar 

  • Kumar R, Venuprasad R, Atlin GN (2007) Genetic analysis of rainfed lowland rice drought tolerance under naturally-occurring stress in eastern India: heritability and QTL effects. Field Crops Res 103:42–52

    Article  Google Scholar 

  • Lafitte HR, Courtois B (2002) Interpreting cultivar × environment interactions for yield in upland rice assigning value to drought-adaptive traits. Crop Sci 42:1409–1420

    Article  Google Scholar 

  • Lafitte HR, Edmeades GO, Johnson EC (1997) Temperature responses of tropical maize cultivars selected for broad adaptation. Field Crops Res 49:215–229

    Article  Google Scholar 

  • Lal S, Gulyani V, Khurana P (2008) Overexpression of HVA1 gene from barley generates tolerance to salinity and water stress in transgenic mulberry (Morus indica) Transgen Res 17:651–663

    Article  CAS  Google Scholar 

  • Lambert L, Beach RM, Kilen TC et al (1992) Soybean pubescence and its influence on larval development and oviposition preference of lepidopterous insects. Crop sci 32:463–466

    Article  Google Scholar 

  • Landi P, Sanguineti MC, Conti S et al (2001) Direct and correlated responses to divergent selection for leaf abscisic acid concentration in two maize populations. Crop Sci 41:335–344

    Article  CAS  Google Scholar 

  • Laporte MM, Shen B, Tarczynski MC (2002) Engineering for drought avoidance: expression of maize NADP-malic enzyme in tobacco results in altered stomatal function. J Exp Bot 53:699–705

    Article  CAS  PubMed  Google Scholar 

  • Lascano HR, Antonicelli GE, Luna CM et al (2001) Antioxidant system response of different wheat cultivars under drought: field and in vitro studies. Aust J Plant Physiol 28:1095–1102

    CAS  Google Scholar 

  • Leport L, Turner NC, French RJ et al (1999) Physiological responses of chickpea genotypes to terminal drought in a Mediterranean-type environment. Eur J Agron 11:279–291

    Article  Google Scholar 

  • Leport L, Turner NC, Davies SL et al (2006) Variation in pod production and abortion among chickpea cultivars under terminal drought. Eur J Agron 24:236–246

    Article  Google Scholar 

  • Levitt J (1980) Response of plants to environmental stresses water, radiation salt and other stresses. Academic, New York

    Google Scholar 

  • Liang GHL, Heyne HG, Walter TL (1966) Estimates of variety × environment interactions in yield tests of three small grains and their significance on the breeding program. Crop Sci 6:135–139

    Article  Google Scholar 

  • Lilley JM, Fukai S (1994) Effect of timing and severity of water deficit on four diverse rice cultivars 1. Rooting pattern and soil water extraction. Field Crops Res 37:205–213

    Article  Google Scholar 

  • Lilley JM, Ludlow MM, Mccouch SR et al (1996) Locating qtl for osmotic adjustment and dehydration tolerance in rice. J Exp Bot 47:1427–1436

    Article  CAS  Google Scholar 

  • Liu F, Andersen MN, Jensen CR (2004a) Root signal controls pod growth in drought-stressed soybean during the critical, abortion-sensitive phase of pod development. Field Crops Res 85:159–166

    Article  Google Scholar 

  • Liu F, Jensen CR, Andersen MN (2004b) Drought stress effect on carbohydrate concentration in soybean leaves and pods during early reproductive development: its implication in altering pod set. Field Crops Res 86:1–13

    Article  CAS  Google Scholar 

  • Liu JX, Liao DQ, Oane R et al (2006) Genetic variation in the sensitivity of anther dehiscence to drought stress in rice. Field Crops Res 96:87–100

    Article  Google Scholar 

  • Lopatecki LE, Longair EI, Kasting R (1962) Quantitative changes of soluble carbohydrates in stems of solid- and hollow- stemmed wheats during growth. Can J Bot 40:1223–1228

    Article  CAS  Google Scholar 

  • Lopezcastaneda C, Richards RA, Farquhar GD (1995) Variation in early vigor between wheat and barley. Crop Sci 35:472–479

    Article  Google Scholar 

  • Lu ZM, Radin JW, Turcotte EL et al (1994) High yields in advanced lines of pima cotton are associated with higher stomatal conductance, reduced leaf area and lower leaf temperature. Physiol Plant 92:266–272

    Article  CAS  Google Scholar 

  • Ludlow MM, and Bjorkman O (1984) Paraheliotropic leaf movement in Sirato as a protective mechanism against drought-induced damage to primary photosynthetic reactions: damage by excessive light and heat. Planta 161:505–510

    Article  Google Scholar 

  • Ludlow MM, Santamaria JM, Fukai S (1990) Contribution of osmotic adjustment to grain yield in Sorghum-Bicolor (L) Moench under water-limited conditions 2. Water stress after anthesis. Aust J Agric Res 41:67–78

    Article  Google Scholar 

  • Lynch J (1995) Root architecture and plant productivity. Plant Physiol 109:7–13

    CAS  PubMed  Google Scholar 

  • Lynch PJ, Frey KJ (1993) Genetic improvement in agronomic and physiological traits of oat since 1914. Crop Sci 33:984–988

    Article  Google Scholar 

  • Ma BL, Dwyer LM (1998) Nitrogen uptake and use of two contrasting maize hybrids differing in leaf senescence. Plant Soil 199:283–291

    Article  CAS  Google Scholar 

  • Maes B, Trethowan M, Reynolds MP et al (2001) The influence of glume pubescence on spikelet temperature of wheat under freezing conditions. Aust J Plant Physiol 28:141–148

    Google Scholar 

  • Malinowski DP, Kigel J, Pinchak WE (2009) Water deficit, heat tolerance, and persistence of summer-dormant grasses in the US Southern Plains. Crop Sci 49:2363–2370

    Article  Google Scholar 

  • Manschadi AM, Christopher J, deVoil P et al (2006) The role of root architectural traits in adaptation of wheat to water-limited environments. Funct Plant Biol 33:823–837

    Article  CAS  Google Scholar 

  • Manschadi AM, Hammer GL, Christopher J et al (2008) Genotypic variation in seedling root architectural traits and implications for drought adaptation in wheat (Triticum aestivum L). Plant Soil 303:115–129

    Article  CAS  Google Scholar 

  • Maroco JP, Rodrigues ML, Lopes C et al (2002) Limitations to leaf photosynthesis in field-grown grapevine under drought – metabolic and modelling approaches. Funct Plant Biol 29:451–459

    Article  Google Scholar 

  • Martineau JR, Williams JH, Specht JE (1979) Temperature tolerance in soybeans II. Evaluation of segregating populations for membrane thermostability. Crop Sci 19:79–1979

    Article  Google Scholar 

  • Marulanda A, Barea J-M, Azcón R (2009) Stimulation of plant growth and drought tolerance by native microorganisms (AM fungi and bacteria) from dry environments: mechanisms related to bacterial effectiveness. J Plant Growth Regul 28:115–124

    Article  CAS  Google Scholar 

  • Masle J, Farquhar GD, Wong SC (1993) Transpiration ratio and plant mineral content are related among genotypes of a range of species. Aust J Plant Physiol 19:709–721

    Article  Google Scholar 

  • Mathews KL, Malosetti M, Chapman S et al (2008) Multi-environment QTL mixed models for drought stress adaptation in wheat. Theor Appl Genet 117:1077–1091

    Article  PubMed  Google Scholar 

  • May OL, Kasperbauer MJ (1999) Genotypic variation for root penetration of a soil pan. J Sustain Agric 13:87–94

    Article  Google Scholar 

  • Mccaig TN, Morgan JA (1993) Root and shoot dry matter partitioning in near-isogenic wheat lines differing in height. Can J Plant Sci 73:679–689

    Google Scholar 

  • Mckersie BD, Bowley SR, Harjanto E et al (1996) Water-deficit tolerance and field performance of transgenic alfalfa overexpressing superoxide dismutase. Plant Physiol 111:1177–1181

    CAS  PubMed  Google Scholar 

  • Mclaughlin JE, Boyer JS (2004) Sugar-responsive gene expression, invertase activity, and senescence in aborting maize ovaries at low water potentials. Ann Bot 94:675–689

    Article  CAS  PubMed  Google Scholar 

  • Messmer R, Fracheboud Y, Bänziger M et al (2009) Drought stress and tropical maize: QTL-by-environment interactions and stability of QTLs across environments for yield components and secondary traits. Theor Appl Genet 119:913–930

    Article  PubMed  Google Scholar 

  • Mian M, Bailey MA, Ashley DA et al (1996) Molecular markers associated with water use efficiency and leaf ash in soybean. Crop Sci 36:1252–1257

    Article  CAS  Google Scholar 

  • Miller G, Suzuki N, Ciftci-Yilmaz S et al (2010) Reactive oxygen species homeostasis and signaling during drought and salinity stresses. Plant Cell Environ 32:453–467

    Article  CAS  Google Scholar 

  • Miralles DJ, Slafer GA, Lynch V (1997) Rooting patterns in near-isogenic lines of spring wheat for dwarfism. Plant Soil 197:79–86

    Article  CAS  Google Scholar 

  • Mitchell JH, Fukai S, Cooper M (1996) Influence of phenology on grain yield variation among barley cultivars grown under terminal drought. Aust J Agric Res 47:757–774

    Article  Google Scholar 

  • Moinuddin KCR, Khanna-Chopra R (2004) Osmotic adjustment in chickpea in relation to seed yield and yield parameters. Crop Sci 44:449–455

    Google Scholar 

  • Moinuddin KCR, Fischer RA, Sayre KD et al (2005) Osmotic adjustment in wheat in relation to grain yield under water deficit environments. Agron J 97:1062–1071

    Article  Google Scholar 

  • Morgan JM (1991) A gene controlling differences in osmoregulation in wheat. Aust J Plant Physiol 18:249–257

    Article  Google Scholar 

  • Morgan JM, Tan MK (1996) Chromosomal location of a wheat osmoregulation gene using RFLP analysis. Aust J Plant Physiol 23:803–806

    Article  CAS  Google Scholar 

  • Morgan JM, Hare RA, Fletcher RJ (1986) genetic variation in osmoregulation in bread and durum wheats and its relationship to grain yield in a range of field environments. Aust J Agric Res 37:449–457

    Article  Google Scholar 

  • Morgan JM, Rodriguezmaribona B, Knights EJ (1991) Adaptation to water-deficit in chickpea breeding lines by osmoregulation – relationship to grain yields in the field. Field Crops Res 27:61–70

    Article  Google Scholar 

  • Mungur R, Wood AJ, Lightfooot DA (2006) Water potential is maintained during water deficit in Nicotiana tabacum expressing the Escherichia coli glutamate dehydrogenase gene. Plant Growth Regul 50:231–238

    Article  CAS  Google Scholar 

  • Munns R (1988) Why measure osmotic adjustment? Aust J Plant Physiol 15:717–726

    Article  Google Scholar 

  • Munns R, Richards RA (2007) Recent advances in breeding wheat for drought and salt stresses. In: Jenks MA, Hasegawa PM, Jain SM (eds) Advances in molecular breeding toward drought and salt tolerant crops. Springer, Dordrecht

    Google Scholar 

  • Muñoz-Perea CG, Terán H, Allen RG et al (2006) Selection for drought resistance in dry bean landraces and cultivars. Crop Sci 46:2111–2120

    Article  Google Scholar 

  • Nagel OW, Konings H, Lambers H (1994) Growth rate, plant development and water relations of the ABA-deficient tomato mutant sitiens. Physiol Plant 92:102–108

    Article  CAS  Google Scholar 

  • Nakashima K, Ito Y, Yamaguchi-Shinozaki K (2009) Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol 149:88–95

    Article  CAS  PubMed  Google Scholar 

  • Ney B, Duthion C, Turc O (1994) Phenological response of pea to water stress during reproductive development. Crop Sci 34:141–146

    Article  Google Scholar 

  • Nguyen HT, Babu RC, Blum A (1997) Breeding for drought resistance in rice – physiology and molecular genetics considerations. Crop Sci 37:1426–1434

    Article  Google Scholar 

  • Nielsen OC, Bind BL, Verma SB et al (1984) Influence of soybean pubescence type on radiation balance. Agron J 76:924–930

    Article  Google Scholar 

  • Nizam-Uddin M, Marshall DR (1988) Variation in epicuticular wax content in wheat. Euphytica 38:3–9

    Article  Google Scholar 

  • Norton MR, Volaire F, Lelievre F et al (2009) Identification and measurement of summer dormancy in temperate perennial grasses. Crop Sci 49:2347–2352

    Article  Google Scholar 

  • Okosun LA, Akenova ME, Singh BB (1998) Screening for drought tolerance at seedling stage in cowpea (Vigna unguiculata [L] Walp) II. Selecting for root length and recovery ability traits. J Arid Agric 8:11–20

    Google Scholar 

  • Oliver SN, Dennis ES, Dolferus R (2007) ABA regulates apoplastic sugar transport and is a potential signal for cold-induced pollen sterility in rice. Plant Cell Physiol 48:1319–1330

    Article  CAS  PubMed  Google Scholar 

  • O’Toole JC, Bland WL (1987) Genotypic variation in crop plant root systems. Adv Agron 41:91–145

    Article  Google Scholar 

  • O’Toole JC, Namuco OS (1983) Role of panicle exsertion in water stress induced sterility. Crop Sci 23:1093–1097

    Article  Google Scholar 

  • O’Toole JC, Hsiao TC, Namuco OS (1984) Panicle water relations during water stress. Plant Sci Lett 33:137–143

    Article  Google Scholar 

  • Ouk M, Basnayake J, Tsubo M et al (2007) Genotype-by-environment interactions for grain yield associated with water availability at flowering in rainfed lowland rice. Field Crops Res 101:145–154

    Article  Google Scholar 

  • Paleg LG, Stewart GR, Starr R (1985) The effect of compatible solutes on proteins. Plant Soil 89:83–94

    Article  CAS  Google Scholar 

  • Palta JA, Fillery IRP, Rebetzke GJ (2007) Restricted-tillering wheat does not lead to greater investment in roots and early nitrogen uptake. Field Crops Res 104:52–59

    Article  Google Scholar 

  • Pandy S, Bhandari H (2008) Drought: economic costs and research implications. In: Serraj R, Bennett J, Hardy B (eds) Drought fronteirs in rice crop improvement for increased rainfed production. World Scientific and IRRI, Singapore/Los Banos

    Google Scholar 

  • Pantuwan G, Fukai S, Cooper M et al (2002) Yield response of rice (Oryza sativa L) genotypes to different types of drought under rainfed lowlands – Part 3. Plant factors contributing to drought resistance. Field Crops Res 73:181–200

    Article  Google Scholar 

  • Passioura JB, Spielmeyer W, Bonnett DG (2007) Requirements for success in marker-assisted breeding for drought-prone environments. In: Jenks MA, Hasegawa PM, Jain S (eds) Advances in molecular breeding towards drought and salt tolerant crops. Springer, Dordrecht

    Google Scholar 

  • Pastore D, Trono D, Laus MN et al (2007) Possible plant mitochondria involvement in cell adaptation to drought stress; A case study: durum wheat mitochondria. J Exp Bot 58:195–210

    Article  CAS  PubMed  Google Scholar 

  • Patterson RP, Hudak CM (1996) Drought-avoidant soybean germplasm maintains nitrogen-fixation capacity under water stress. Plant Soil 186:39–43

    Article  CAS  Google Scholar 

  • Pepe JF, Welsh JR (1979) Soil water depletion patterns under dryland field conditions of closely related height lines of winter wheat. Crop Sci 19:677–680

    Article  Google Scholar 

  • Perry MW, D’Antuono MF (1989) Yield improvement and associated characteristics of some Australian spring wheat cultivars introduced between 1860 and 1982. J Agric Sci Camb 112:295–301

    Article  Google Scholar 

  • Peters S, Mundree SG, Thomson JA (2007) Protection mechanisms in the resurrection plant Xerophyta viscosa (Baker): both sucrose and raffinose family oligosaccharides (RFOs) accumulate in leaves in response to water deficit. J Exp Bot 58:1947–1956

    Article  CAS  PubMed  Google Scholar 

  • Peters PJ, Jenks MA, Rich PJ et al (2009) Mutagenesis, selection, and allelic analysis of epicuticular wax mutants in sorghum. Crop Sci 49:1250–1258

    Article  CAS  Google Scholar 

  • Pimratch S, Jogloy S, Vorasoot N et al (2009) Heritability of N2 fixation traits and phenotypic and genotypic correlations between N2 fixation traits with drought resistance traits and yield in peanut. Crop Sci 49:791–800

    Article  CAS  Google Scholar 

  • Pinheiro HA, Damatta FM, Chaves ARM et al (2005) Drought tolerance is associated with rooting depth and stomatal control of water use in clones of Coffea canephora. Ann Bot 96:101–108

    Article  CAS  Google Scholar 

  • Poormohammad KS, Talia P, Maury P et al (2007) Genetic analysis of plant water status and osmotic adjustment in recombinant inbred lines of sunflower under two water treatments. Plant Sci 172:773–787

    Article  CAS  Google Scholar 

  • Porter JR, Klepper B, Belford RK (1986) A model (WHTROOT) which synchronizes root growth and development with shoot development for winter wheat. Plant Soil 92:133–145

    Article  Google Scholar 

  • Prester T, Weltzien E (2003) Exploiting heterosis in pearl millet for population breeding in arid environments. Crop Sci 43:767–776

    Article  Google Scholar 

  • Price AH, Steele KA, Moore BJ et al (2000) A combined RFLP and AFLP linkage map of upland rice (Oryza sativa L) used to identify QTLs for root-penetration ability. TAG 100:49–56

    Article  CAS  Google Scholar 

  • Price AH, Cairns JE, Horton P et al (2002) Linking drought-resistance mechanisms to drought avoidance in upland rice using a QTL approach: progress and new opportunities to integrate stomatal and mesophyll responses. J Exp Bot 53:989–1004

    Article  CAS  PubMed  Google Scholar 

  • Proctor MCF, Ligrone R, Duckett JG (2007) Desiccation tolerance in the moss Polytrichum formosum: physiological and fine-structural changes during desiccation and recovery. Ann Bot 99:75–93

    Article  CAS  Google Scholar 

  • Purcell LC, Serraj R, Sinclair TR et al (2004) Soybean N2 fixation estimates ureide concentration and yield responses to drought. Crop Sci 44:484–492

    CAS  Google Scholar 

  • Rahman H, Malik SA, Saleem M (2004) Heat tolerance of upland cotton during the fruiting stage evaluated using cellular membrane thermostability. Field Crops Res 85:149–158

    Article  Google Scholar 

  • Rajabi A, Griffiths H, Ober ES et al (2008) Genetic characteristics of water-use related traits in sugar beet. Euphytica 160:175–187

    Article  Google Scholar 

  • Ramos ML, Gordon AJ, Minchin FR et al (1999) Effect of water stress on nodule physiology and biochemistry of a drought tolerant cultivar of common bean (Phaseolus vulgaris L.). Ann Bot 83:57–63

    Article  CAS  Google Scholar 

  • Ray JD, Yu L, McCouch SR et al (1996) Mapping quantitative trait loci associated with root penetration ability in rice (Oryza sativa L.). TAG 92:627–636

    Article  CAS  Google Scholar 

  • Rebetzke GJ, Richards RA (1999) Genetic improvement of early vigour in wheat. Aust J Agric Res 50:291–301

    Article  Google Scholar 

  • Rebetzke GJ, Condon AG, Farquhar GD et al (2008a) Quantitative trait loci for carbon isotope discrimination are repeatable across environments and wheat mapping populations. TAG 118:123–137

    Article  CAS  PubMed  Google Scholar 

  • Rebetzke GJ, van Herwaarden AF, Jenkins C et al (2008b) Quantitative trait loci for water-soluble carbohydrates and associations with agronomic traits in wheat. Aust J Agric Res 59:891–905

    Article  CAS  Google Scholar 

  • Rebetzke GJ, Condon AG, Farquhar GD et al (2009) Water-use efficiency in wheat – the use of surrogate traits for breeding improved biomass and yield under drought. In: Interdrought-III, Shanghai, in press

    Google Scholar 

  • Rehman A, Nautiyal CS (2002) Effect of drought on the growth and survival of the stress-tolerant bacterium rhizobium sp NBRI2505 sesbania and its drought-sensitive transposon Tn5 mutant. Curr Microbiol 45:368–377

    Article  CAS  PubMed  Google Scholar 

  • Reitz LP (1974) Breeding for more efficient water-use – is it real or a mirage. Agric Meteorol 14:3–10

    Article  Google Scholar 

  • Reynolds MP, Balota M, Delgado MIB et al (1994) Physiological and morphological traits associated with spring wheat yield under hot, irrigated conditions. Aust J Plant Physiol 21:717–730

    Article  Google Scholar 

  • Reynolds MP, Ortiz-Monasterio JI, McNab A (eds) (2006) Application of physiology in wheat breeding. CIMMYT, El Batan

    Google Scholar 

  • Ribaut JM, Hoisington DA, Deutsch JA et al (1996) Identification of quantitative trait loci under drought conditions in tropical maize I. Flowering parameters and the anthesis-silking interval. Theor Appl Genet 92:905–914

    Article  CAS  Google Scholar 

  • Ribaut JM, Jiang C, Gonzalezdeleon D et al (1997) Identification of quantitative trait loci under drought conditions in tropical maize 2. Yield components and marker-assisted selection strategies. Theor Appl Genet 94:887–896

    Article  Google Scholar 

  • Richards RA, Passioura JB (1989) A Breeding program to reduce the diameter of the major xylem vessel in the seminal roots of wheat and its effect on grain yield in rain-fed environments. Aust J Agric Res 40: 943–950

    Article  Google Scholar 

  • Richards RA, Rawson HM, Johnson DA (1986) Glaucousness in wheat: its development and effect on water-use efficiency gas exchange and photosynthetic tissue temperatures. Aust J Plant Physiol 13:465–473

    Google Scholar 

  • Richards RA, Rebetzke GJ, Condon AG et al (2002) Breeding opportunities for increasing the efficiency of water use and crop yield in temperate cereals. Crop Sci 42:111–121

    Article  PubMed  Google Scholar 

  • Riga P, Vartanian N (1999) Sequential expression of adaptive mechanisms is responsible for drought resistance in tobacco. Aust J Plant Physiol 26:211–220

    Article  Google Scholar 

  • Ripley B, Frole K, Gilbert M (2010) Differences in drought sensitivities and photosynthetic limitations between co-occurring C3 and C4 (NADP-ME) Panicoid grasses. Ann Bot 105:493–503

    Article  CAS  PubMed  Google Scholar 

  • Rivero RM, Shulaev V, Blumwald E (2009) Cytokinin-dependent photorespiration and the protection of photosynthesis during water deficit. Plant Physiol 150:1530–1540

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues SM, Andrade MO, Gomes APS et al (2006) Arabidopsis and tobacco plants ectopically expressing the soybean antiquitin-like ALDH7 gene display enhanced tolerance to drought, salinity, and oxidative stress. J Exp Bot 57:1909–1918

    Article  CAS  PubMed  Google Scholar 

  • Rodriguezmaribona B, Tenorio JL, Conde JR et al (1992) Correlation between yield and osmotic adjustment of peas (Pisum sativum l) under drought stress. Field Crops Res 29:15–22

    Article  Google Scholar 

  • Romagosa I, Han F, Ullrich SE et al (1999) Verification of yield QTL through realized molecular marker – assisted selection responses in a barley cross. J Mol Breed 5:143–152

    Article  Google Scholar 

  • Rosenow DT, Ejeta G, Clark LE et al (1996) Breeding for pre- and post-flowering drought stress resistance in sorghum. In: Rosenow DT Yohe JM (ed) Proceedings of the international conference genetic improvement of sorghum and pearl millet, INTSORMIL, Lubbock

    Google Scholar 

  • Rubio MC, Gonzalez EM, Minchin FR et al (2002) Effects of water stress on antioxidant enzymes of leaves and nodules of transgenic alfalfa overexpressing superoxide dismutases. Physiol Plant 115:531–539

    Article  CAS  PubMed  Google Scholar 

  • Ruuska SA, Rebetzke GJ, Van Herwaarden AF et al (2006) Genotypic variation in water-soluble carbohydrate accumulation in wheat. Funct Plant Biol 33:799–809

    Article  CAS  Google Scholar 

  • Saadalla MM, Quick JS, Shanahan JF (1990) Heat tolerance in winter wheat 2. Membrane ­thermostability and field performance. Crop Sci 30:1248–1251

    Article  Google Scholar 

  • Saccardy K, Cornic G, Brulfert J et al (1996) Effect of drought stress on net CO2 uptake by Zea leaves. Planta 199:589–595

    Article  CAS  Google Scholar 

  • Sadras VO, Connor DJ, Whitfield DM (1993) Yield, yield components and source-sink relationships in water-stressed sunflower. Field Crops Res 31:27–39

    Article  Google Scholar 

  • Saini HS, Aspinall D (1981) Effect of water deficit on sporogenesis in wheat (Triticum aestivum L.). Ann Bot 48:623–633

    Google Scholar 

  • Saint Pierre C, Trethowan R, Reynolds M (2010) Stem solidness and its relationship to water-soluble carbohydrates: association with wheat yield under water deficit. Funct Plant Biol 37:166–174

    Article  CAS  Google Scholar 

  • Sanchez FJ, Manzanares M, de Andres EF et al (2001) Residual transpiration rate, epicuticular wax load and leaf colour of pea plants in drought conditions Influence on harvest index and canopy temperature. Eur J Agron 15:57–70

    Article  Google Scholar 

  • Sanchez AC, Subudhi PK, Rosenow DT et al (2002) Mapping QTLs associated with drought resistance in sorghum (Sorghum bicolor L Moench). Plant Mol Biol 48:713–726

    Article  CAS  PubMed  Google Scholar 

  • Sanguineti MC, Tuberosa R, Landi et al (1999) QTL analysis of drought related traits and grain yield in relation to genetic variation for leaf abscisic acid concentration in field-grown maize. J Exp Bot 50:1289–1297

    Article  CAS  Google Scholar 

  • Santamaria JM, Ludlow MM, Fukai S (1990) Contribution of osmotic adjustment to grain yield in Sorghum-bicolor (L.) moench under water-limited conditions 1. Water stress before anthesis. Aust J Agric Res 41:51–65

    Article  Google Scholar 

  • Saranga Y, Menz M, Jiang CX et al (2001) Genomic dissection of genotype x environment interactions conferring adaptation of cotton to arid conditions. Genome Res 11:1988–1995

    Article  CAS  PubMed  Google Scholar 

  • Sayar R, Khemira H, Kharrat M (2007) Inheritance of deeper root length and grain yield in half-diallel durum wheat (Triticum durum) crosses. Ann Appl Biol 151:213–220

    Article  Google Scholar 

  • Schnyder, H (1993) The role of carbohydrate storage and redistribution in the Source-Sink relations of wheat and barley during grain filling – a review. New Phytol 123:233–245

    Article  Google Scholar 

  • Schoper JB, Lambert RJ, Vasilas BL et al (1987) Plant factors controlling seed set in maize 1. The influence of silk, pollen, and ear-leaf water status and tassel heat treatment at pollination. Plant Physiol 8:121–125

    Article  Google Scholar 

  • Selote DS, Khanna-Chopra R (2004) Drought-induced spikelet sterility is associated with an inefficient antioxidant defence in rice panicles. Physiol Plant 121:462–471

    Article  CAS  Google Scholar 

  • Serraj R, Sinclair TR (1998) Soybean cultivar variability for nodule formation and growth under drought. Plant Soil 202:159–166

    Article  CAS  Google Scholar 

  • Serraj R, Sinclair TR (2002) Osmolyte accumulation: can it really help increase crop yield under drought conditions? Plant Cell Environ 25:333–341

    Article  PubMed  Google Scholar 

  • Serraj R, Vadez V, Sinclair TR (2001) Feedback regulation of symbiotic N2 fixation under drought stress. Agronomie 21:621–626

    Article  Google Scholar 

  • Shearman VJ, Sylvester-Bradley R, Scott RK et al (2005) Physiological processes associated with wheat yield progress in the UK. Crop Sci 45:175–185

    Google Scholar 

  • Shen B, Jensen RG, Bohnert HJ (1997) Mannitol protects against oxidation by hydroxyl radicals. Plant Physiol 115(2):527–532

    CAS  PubMed  Google Scholar 

  • Shen L, Courtois B, McNally KL et al (2001) Evaluation of near-isogenic lines of rice introgressed with QTLs for root depth through marker-aided selection. Theor Appl Genet 103:75–83

    Article  CAS  Google Scholar 

  • Sheoran IS, Saini HS (1996) Drought-induced male sterility in rice: changes in carbohydrate levels and enzyme activities associated with the inhibition of starch accumulation in pollen. Sexual Plant Reprod 9:161–169

    Article  Google Scholar 

  • Sinclair TR, Purcell LC, King C et al (2007) Drought tolerance and yield increase of soybean resulting from improved symbiotic N2 fixation. Field Crops Res 101:68–71

    Article  Google Scholar 

  • Singh TN, Aspinall D, Paleg LG (1972) Proline accumulation and varietal adaptability to drought in barley: a potential metabolic measure of drought resistance. Nature 236:188–189

    Article  CAS  Google Scholar 

  • Specht JE, Williams JH, Pearson DR (1985) Near-isogenic analyses of soybean pubescence genes. Crop Sci 25:92–96

    Article  Google Scholar 

  • Sreedhar L, Wolkers WF, Hoekstra FA et al (2002) In vivo characterization of the effects of abscisic acid and drying protocols associated with the acquisition of desiccation tolerance in alfalfa (Medicago sativa L.) somatic embryos. Ann Bot 89:391–400

    Article  CAS  PubMed  Google Scholar 

  • Srinivasan S, Gomez SM, Kumar S et al (2008) QTLs linked to leaf epicuticular wax, physio-morphological and plant production traits under drought stress in rice (Oryza sativa L.). Plant Growth Regul 56:245–256

    Article  CAS  Google Scholar 

  • Steele KA, Price AH, Shashidhar HE et al (2006) Marker-assisted selection to introgress rice QTLs controlling root traits into an Indian upland rice variety. Theor Appl Genet 112:208–221

    Article  CAS  PubMed  Google Scholar 

  • Steele KA, Virk DS, Kumar R et al (2007) Field evaluation of upland rice lines selected for QTLs controlling root traits. Field Crops Res 101:180–186

    Article  Google Scholar 

  • Stiller WN, Reid PE, Constable GA (2004) Maturity and leaf shape as traits influencing cotton cultivar adaptation to dryland conditions. Agron J 96:656–664

    Article  Google Scholar 

  • Taketa S, Chang CL, Ishii M et al (2002) Chromosome arm location of the gene controlling leaf pubescence of a Chinese local wheat cultivar ‘Hong-mang-mai’. Euphytica 125:141–147

    Article  CAS  Google Scholar 

  • Tambussi EA, Bort J, Guiamet J-J et al (2007) The photosynthetic role of ears in C3 cereals: metabolism, water use efficiency and contribution to grain yield. Crit Rev Plant Sci 26:1–16

    Article  CAS  Google Scholar 

  • Tang R-S, Zheng J-C, Jin Z-Q et al (2007) Possible correlation between high temperature-induced floret sterility and endogenous levels of IAA, GAs and ABA in rice (Oryza sativa L.). Plant Growth Regul 54:37–43

    Article  CAS  Google Scholar 

  • Tangpremsri T, Fukai S, Fischer KS et al (1991) Genotypic variation in osmotic adjustment in grain sorghum. 2. Relation with some growth attributes. Aust J Agric Res 42:759–767

    Article  Google Scholar 

  • Tangpremsri T, Fukai S, Fischer KS (1995) Growth and yield of sorghum lines extracted from a population for differences in osmotic adjustment. Aust J Agr Res 46:61–74

    Article  Google Scholar 

  • Tenkouano A, Miller FR, Frederiksen RA et al (1993) Genetics of nonsenescence and charcoal rot resistance in sorghum Theor Appl Genet 85:644–648

    Article  Google Scholar 

  • Teulat B, Monneveux P, Wery J et al (1997) Relationships between relative water content and growth parameters under water stress in barley – a QTL study. New Phytol 137(1):99–107

    Article  Google Scholar 

  • Teulat B, This D, Khairallah M et al (1998) Several QTLs involved in osmotic adjustment trait variation in barley (Hordeum vulgare L.). Theor Appl Genet 96:688–698

    Article  CAS  Google Scholar 

  • Thiaw S, Hall AE (2004) Comparison of selection for either leaf-electrolyte-leakage or pod set in enhancing heat tolerance and grain yield of cowpea. Field Crops Res 86:239–253

    Article  Google Scholar 

  • Thomas H, Howarth CJ (2000) Five ways to stay green. J Exp Bot 51:329–337

    Article  CAS  PubMed  Google Scholar 

  • Toldi O, Tuba Z, Scott P (2009) Vegetative desiccation tolerance: is it a goldmine for bioengineering crops? Plant Sci 176:187–199

    Article  CAS  Google Scholar 

  • Tollenaar M, Wu J (1999) Yield improvement in temperate maize is attributable to greater stress tolerance. Crop Sci 39:1597–1604

    Article  Google Scholar 

  • Tomar SMS, Kumar GT (2004) Seedling survivability as a selection criterion for drought tolerance in wheat. Plant Breed 123:392–394

    Article  Google Scholar 

  • Toyofuku K, Loreti E, Vernieri P et al (2000) Glucose modulates the abscisic acid-inducible Rab16A gene in cereal embryos. Plant Mol Biol 42:451–454

    Article  CAS  PubMed  Google Scholar 

  • Tripathy JN, Zhang J, Robin S et al (2000) QTLs for cell membrane stability mapped in rice (Oryza sativa L.) under drought stress. Theor Appl Genet 100:1197–1202

    Article  CAS  Google Scholar 

  • Tuinstra MR, Grote EM, Goldsbrough PB et al (1997) Genetic analysis of post-flowering drought tolerance and components of grain development in Sorghum bicolor (L) Moench. Mol Breed 3:439–448

    Article  CAS  Google Scholar 

  • Turner NC, Abbo S, Berger JD et al (2007a) Osmotic adjustment in chickpea (Cicer arietinum L.) results in no yield benefit under terminal drought. J Exp Bot 58:187–194

    Article  CAS  PubMed  Google Scholar 

  • Turner NC, Palta JA, Shrestha R et al (2007b) Carbon isotope discrimination is not correlated with transpiration efficiency in three cool-season grain legumes (pulses). J Integr Plant Biol 49:1478–1483

    Article  CAS  Google Scholar 

  • Vadez V, Sinclair TR (2001) Leaf ureide degradation and N2 fixation tolerance to water deficit in soybean. J Exp Bot 52:153–159

    Article  CAS  PubMed  Google Scholar 

  • van Eeuwijk FA, Malosetti M, Xinyou Y et al (2005) Statistical models for genotype by environment data: from conventional ANOVA models to eco-physiological QTL models: modelling complex traits for plant improvement. Aust J Agric Res 56:883–894

    Article  Google Scholar 

  • van Oosterom EJ, Weltzien E, Yadav OP et al (2006) Grain yield components of pearl millet under optimum conditions can be used to identify germplasm with adaptation to arid zones. Field Crops Res 96:407–421

    Article  Google Scholar 

  • Vartanian N (1981) Some aspects of structural and functional modifications induced by drought in root systems. Plant Soil 63:83–92

    Article  Google Scholar 

  • Vassileva V, Simova-Stoilova L, Demirevska K et al (2009) Variety-specific response of wheat (Triticum aestivum L.) leaf mitochondria to drought stress. J Plant Res 122:445–454

    Article  CAS  PubMed  Google Scholar 

  • Venuprasad R, Shashidhar HE, Hittalmani S et al (2002) Tagging quantitative trait loci associated with grain yield and root morphological traits in rice (Oryza sativa L.) under contrasting moisture regimes. Euphytica 128:293–300

    Article  CAS  Google Scholar 

  • Venuprasad R, Lafitte HR, Atlin GN (2007) Response to direct selection for grain yield under drought stress in rice. Crop Sci 47:285–293

    Article  Google Scholar 

  • Venuprasad R, Sta Cruz MT, Amante M et al (2008) Response to two cycles of divergent selection for grain yield under drought stress in four rice breeding populations. Field Crops Res 107:232–244

    Article  Google Scholar 

  • Venuprasad R, Dalid CO, Del Valle M et al (2009) Identification and characterization of large-effect quantitative trait loci for grain yield under lowland drought stress in rice using bulk-segregant analysis. Theor Appl Genet 120:177–190

    Article  PubMed  Google Scholar 

  • Verma V, Foulkes MJ, Worland AJ et al (2004) Mapping quantitative trait loci for flag leaf senescence as a yield determinant in winter wheat under optimal and drought-stressed environments. Euphytica 135:255–263

    Article  CAS  Google Scholar 

  • Villnlobos-Kodruigez H, Shibles R (1985) Response of determinate and indeterminate tropical soybean cultivars to water stress. Field Crops Res 10:269–275

    Article  Google Scholar 

  • Volaire F (2002) Drought survival, summer dormancy and dehydrin accumulation in contrasting cultivars of Dactylis glomerata. Physiol Plant 116:42–51

    Article  CAS  PubMed  Google Scholar 

  • Volaire F (2008) Plant traits and functional types to characterise drought survival of pluri-specific perennial herbaceous swards in Mediterranean areas. Eur J Agron 29:116–124

    Article  Google Scholar 

  • Volaire F, Lelievre F (2001) Drought survival in Dactylis glomerata and Festuca arundinacea under similar rooting conditions in tubes. Plant Soil 229:225–234

    Article  CAS  Google Scholar 

  • Volaire F, Norton MR (2006) Summer dormancy in perennial temperate grasses. Ann Bot 98:927–933

    Article  PubMed  Google Scholar 

  • Volaire F, Norton MR, Norton GM et al (2005) Seasonal patterns of growth, dehydrins and water-soluble carbohydrates in genotypes of Dactylis glomerata varying in summer dormancy. Ann Bot 95:981–990

    Article  CAS  PubMed  Google Scholar 

  • Volaire F, Norton MR, Lelievre F (2009a) Summer drought survival strategies and sustainability of perennial temperate forage grasses in Mediterranean areas. Crop Sci 49:2386–2392

    Article  Google Scholar 

  • Volaire F, Seddaiu G, Ledda L et al (2009b) Water deficit and induction of summer dormancy in perennial Mediterranean grasses. Ann Bot 103:1337–1346

    Article  PubMed  Google Scholar 

  • Wang Z, Huang B (2004) Physiological recovery of Kentucky bluegrass from simultaneous drought and heat stress. Crop Sci 44:1729–1736

    Article  CAS  Google Scholar 

  • Wang XJ, Loh CS, Yeoh HH et al (2002) Drying rate and dehydrin synthesis associated with abscisic acid-induced dehydration tolerance in Spathoglottis plicata Orchidaceae protocorms. J Exp Bot 53:551–558

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Huang B, Bonos SA et al (2004) Abscisic acid accumulation in relation to drought tolerance in Kentucky bluegrass. Hortscience 39:1133–1137

    CAS  Google Scholar 

  • Wang F-Z, Wang Q-B, Kwon S-Y et al (2005a) Enhanced drought tolerance of transgenic rice plants expressing a pea manganese superoxide dismutase. J Plant Physiol 162:465–472

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Ying J, Kuzma M et al (2005b) Molecular tailoring of farnesylation for plant drought tolerance and yield protection. Plant J 43:413–424

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Jiang J, Zhao X et al (2006) A novel LEA gene from Tamarix androssowii confers drought tolerance in transgenic tobacco. Plant Sci 171:655–662

    Article  CAS  Google Scholar 

  • Wardlaw IF, Willenbrink J (2000) Mobilization of fructan reserves and changes in enzyme activities in wheat stems correlate with water stress during kernel filling. New Phytol 148:413–422

    Article  CAS  Google Scholar 

  • Watanabe N, Naruse J, Austin RB et al (1995) Variation in thylakoid proteins and photosynthesis in Syrian landraces of barley. Euphytica 82:213–220

    Article  CAS  Google Scholar 

  • Welcker C, Boussuge B, Bencivenni C et al (2007) Are source and sink strengths genetically linked in maize plants subjected to water deficit? A QTL study of the responses of leaf growth and of anthesis-silking interval to water deficit. J Exp Bot 58:339–349

    Article  CAS  PubMed  Google Scholar 

  • Winzeler M, Monteil P, Nosberger J (1989) Grain growth of tall and short spring wheat genotypes at different assimilate supplies. Crop Sci 29:1487–1491

    Article  Google Scholar 

  • Xiao B, Huang Y, Tang N et al (2007) Over-expression of a LEA gene in rice improves drought resistance under the field conditions. Theor Appl Genet 115:35–46

    Article  CAS  PubMed  Google Scholar 

  • Xiong L, Wang R-G, Mao G et al (2006) Identification of drought tolerance determinants by genetic analysis of root response to drought stress and abscisic acid. Plant Physiol 142:1065–1074

    Article  CAS  PubMed  Google Scholar 

  • Xiong Y-C, Li F-M, Zhang T et al (2007) Evolution mechanism of non-hydraulic root-to-shoot signal during the anti-drought genetic breeding of spring wheat. Environ Exp Bot 59:193–205

    Article  Google Scholar 

  • Xu Y, Crouch JH (2008) Marker-assisted selection in plant breeding: from publications to practice. Crop Sci 48:391–407

    Article  Google Scholar 

  • Xu W, Subudhi PK, Crasta OR et al (2000) Molecular mapping of QTLs conferring stay-green in grain sorghum (Sorghum bicolor L. Moench). Genome 43:461–469

    Article  CAS  PubMed  Google Scholar 

  • Yadav OP, Bhatnagar SK (2001) Evaluation of indices for identification of pearl millet cultivars adapted to stress and non-stress conditions. Field Crops Res 70:201–208

    Article  Google Scholar 

  • Yan J, Wang J, Tissue D et al (2003) Photosynthesis and seed production under water-deficit conditions in transgenic tobacco plants that overexpress an Arabidopsis ascorbate peroxidase gene. Crop Sci 43:1477–1483

    Article  CAS  Google Scholar 

  • Yan J, He C, Wang J et al (2004) Overexpression of the Arabidopsis 14-3-3 protein GF14 in cotton leads to a “stay-green” phenotype and improves stress tolerance under moderate drought conditions. Plant Cell Physiol 45:1007–1014

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Zhang J (2006) Grain filling of cereals under soil drying. New Phytol 169:223–236

    Article  CAS  PubMed  Google Scholar 

  • Yang WJ, Nadolskaorczyk A, Wood KV et al (1995) Near-isogenic lines of maize differing for glycinebetaine. Plant Physiol 107:621–630

    Article  CAS  PubMed  Google Scholar 

  • Yang JC, Zhang JH, Wang ZQ et al (2001) Activities of starch hydrolytic enzymes and sucrose-phosphate synthase in the stems of rice subjected to water stress during grain filling. J Exp Bot 52:2169–2179

    CAS  PubMed  Google Scholar 

  • Yang JC, Zhang JH, Wang ZQ et al (2003) Involvement of abscisic acid and cytokinins in the senescence and remobilization of carbon reserves in wheat subjected to water stress during grain filling. Plant Cell Environ 26:1621–1631

    Article  CAS  Google Scholar 

  • Yang JC, Zhang JH, Ye YX et al (2004) Involvement of abscisic acid and ethylene in the responses of rice grains to water stress during filling. Plant Cell Environ 27:1055–1064

    Article  CAS  Google Scholar 

  • Yang J, Zhang J, Liu K et al (2007) Abscisic Acid and Ethylene Interact in Rice Spikelets in Response to Water Stress During Meiosis J Plant Growth Regul 26:318–328

    Article  CAS  Google Scholar 

  • Yu LX, Ray JD, O’Toole JC et al (1995) Use of wax-petrolatum layers for screening rice root penetration. Crop Sci 35:684–687

    Article  Google Scholar 

  • Yue B, Xiong L, Xue W et al (2005) Genetic analysis for drought resistance of rice at reproductive stage in field with different types of soil. Theor Appl Genet 111:1127–1136

    Article  PubMed  Google Scholar 

  • Zahran HH (1999) Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol Mol Biol Rev 63:968–989

    CAS  PubMed  Google Scholar 

  • Zaidi PH, Srinivasan G, Cordova HS et al (2004) Gains from improvement for mid-season drought tolerance in tropical maize (Zea mays L.). Field Crops Res 89:135–152

    Article  Google Scholar 

  • Zhang J, Zheng HG, Aarti A et al (2001) Locating genomic regions associated with components of drought resistance in rice: comparative mapping within and across species. Theor Appl Genet 103:19–29

    Article  CAS  Google Scholar 

  • Zhang J-Y, Broeckling CD, Sumner LW et al (2007) Heterologous expression of two Medicago truncatula putative ERF transcription factor genes, WXP1 and WXP2, in Arabidopsis led to increased leaf wax accumulation and improved drought tolerance, but differential response in freezing tolerance. Plant Mol Biol 64:265–278

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Dell Be, Conocono E et al (2009) Water deficits in wheat: fructan exohydrolase (1-FEH) mRNA expression and relationship to soluble carbohydrate concentrations in two varieties. New Phytol 181:843–850

    Article  CAS  Google Scholar 

  • Zheng H, Babu RC, Safiullah P et al (2000) Quantitative trait loci for root-penetration ability and root thickness in rice: comparison of genetic backgrounds. Genome 43:53–61

    Article  CAS  PubMed  Google Scholar 

  • Zhu H, Briceño G, Dovel R et al (1999) Molecular breeding for grain yield in barley: an evaluation of QTL effects in a spring barley cross. Theor Appl Genet 98:772–779

    Article  Google Scholar 

  • Zilberstein M, Blum A, Eyal Z (1985) Chemical desiccation of wheat plants as a simulator of postanthesis speckled leaf blotch stress. Phytopathology 75:226–230

    Article  Google Scholar 

  • Zou GH, Mei HW, Liu HY et al (2006) Grain yield responses to moisture regimes in a rice population: association among traits and genetic markers. Theor Appl Genet 112:106–113

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abraham Blum .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Blum, A. (2011). Drought Resistance and Its Improvement. In: Plant Breeding for Water-Limited Environments. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7491-4_3

Download citation

Publish with us

Policies and ethics