Skip to main content

Nucleation Catalysis

  • Chapter
  • First Online:
Principles of Solidification

Abstract

Melting and solidification are reciprocal examples of first-order phase transformations, i.e., transformations exhibiting discontinuities in the first-order thermodynamic properties of the ‘parent’ and ‘daughter’ phases, such as the volume, entropy, and enthalpy. First-order phase changes can resist initiation—even from a highly supercooled or supersaturated metastable parent phase—as energetic barriers develop that inhibit the formation of viable embryos of the daughter phase, which once formed, can grow spontaneously. Stable nuclei require ordering of numerous atoms or molecules, composition change, creation of large interfacial area per unit volume, and elastic straining, all of which require the accumulation of ‘excess’ free energy. The additional free energy needed to accomplish nucleation is provided by thermodynamic fluctuations that momentarily allow a miniscule region of the metastable parent phase to depart significantly from its average order, composition, and free energy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Various models of interphase transition zones are described in Section 8.2.4, and the reader should also see the Gibbsian model of a sharp interface, portrayed in Fig. 8.5, and that for a diffuse interface in Fig. 8.7.

  2. 2.

    A negative interfacial energy, if it ever occurred, would have the bizarre effect of potentially promoting endless spontaneous area increase—a phenomenon, fortunately, never encountered in phase transformations.

  3. 3.

    Again, the reader is cautioned that classical nucleation theory makes no distinction between the phase comprising the nuclear volume and the bulk crystalline solid. That approximation of classical nucleation theory, as discussed in Section 12.3.1, works reasonably well even into the nanoscopic regime of nuclear clusters.

  4. 4.

    The simplified exponential form of the Maxwell-Boltzmann probability distribution used in Eq. (12.14) to calculate the probabilty of a successful fluctuation remains valid as long as \({\varDelta{G}^{\star}\gg{k_B}{T}\approx0.09}\) ev, at \({T=1,000}\) K, which is true as shown by the examples applied above to Eq. (12.15).

  5. 5.

    Clearly, over a large range of supercooling the three interfacial energies, \(\gamma_{s\ell}\), \(\gamma_{\ell \alpha}\), and \(\gamma_{s\alpha}\), shown as surface tension vectors in Fig. 12.5, can change individually, which would alter the equilibrium value of ψ .

  6. 6.

    Calculation of the nuclear strain energy density, E ε , in the free energy expressions, Eqs. (12.40) and (12.42), by applying linear elasticity requires stipulation of the shape of the nuclear volume, as well as knowing the elastic stiffnesses of both the crystalline nucleus and the substrate. Such data are difficult to obtain.

  7. 7.

    The verb ‘fragment’, used here is not meant to imply merely the mechanical breakage, or disruption, of the advancing dendrites, but also includes an array of thermo-chemical processes including dissolution, coarsening, and local re-melting of already solidified crystallites.

References

  1. V.K. LaMer, Ind. Eng. Chem., 44 (1952) 1270.

    Article  CAS  Google Scholar 

  2. K.C. Russell, J. Chem. Phys., 50 (1969) 1809.

    Article  CAS  Google Scholar 

  3. J.L. Katz, J. Stat. Phys., 2 (1970) 137.

    Article  Google Scholar 

  4. M. Volmer, Z. Elektrochem., 35 (1929) 555.

    CAS  Google Scholar 

  5. M. Volmer and A. Weber, Z. Phys. Chem., 119, (1925) 277.

    Google Scholar 

  6. M. Volmer and H. Flood, Z. Phys. Chem., 170A (1934) 273.

    Google Scholar 

  7. L. Farkas, Z. Phys. Chem., 125, (1927) 239.

    Google Scholar 

  8. R. Becker and W. Döring, Ann. Phys., 24 (1935) 719.

    Article  CAS  Google Scholar 

  9. J.B. Zeldovich, Acta Physicochim., 18 (1943) 1.

    CAS  Google Scholar 

  10. J. Frenkel, Kinetic Theory of Liquids, Dover Publications, Inc., New York, NY, 1955, p. 176.

    Google Scholar 

  11. D. Turnbull, J. Chem. Phys., 20 (1952) 411.

    Article  CAS  Google Scholar 

  12. D. Turnbull, J. Phys. Chem. 18 (1950) 198.

    Article  CAS  Google Scholar 

  13. D. Turnbull and J.C. Fisher, J. Phys. Chem. 17 (1949) 71.

    Article  CAS  Google Scholar 

  14. K.F. Kelton and A.L. Greer, Nucleation in Condensed Matter, 15, Pergamon Materials Series, Elsevier BV, Holland, 2010.

    Google Scholar 

  15. G.S. Heffelfinger et al., Mol. Simul., 2 (1989) 393.

    Article  Google Scholar 

  16. A. Schmidt and V. Smirnov, TopCatal., 32 (2005) 71.

    CAS  Google Scholar 

  17. M.K. Harbola, Proc. Natl. Acad. Sci. USA, 89 (1992) 1036.

    Article  CAS  Google Scholar 

  18. D. Turnbull, J. Chem. Phys., 18 (1950) 198.

    Article  CAS  Google Scholar 

  19. M.E. Glicksman and W.J. Childs, Acta Metall., 10 (1962) 925.

    Article  CAS  Google Scholar 

  20. J.H. Perepezko and W.S. Tong, Phil. Trans. R. Soc. Lond. A, 361 (2003) 447.

    Article  CAS  Google Scholar 

  21. W. Yourgrau, A. van der Merwe and G. Raw, Treatise on Irreversible and Statistical Thermophysics, Dover Publications, New York, NY, 1982.

    Google Scholar 

  22. E.H. Kennard, Kinetic Theory of Gases, McGraw-Hill Book Company, New York, NY, 1938.

    Google Scholar 

  23. M.C. Flemings et al., AFS Trans., 70 (1962) 1029.

    Google Scholar 

  24. C. Vivès, Metall. Trans. B, 27 (1996) 445.

    Article  Google Scholar 

  25. M. Easton and D. St. John, Metall. Mater. Trans. A, 30 (2007) 1625.

    Article  Google Scholar 

  26. J.P. Perepezko, ‘Nucleation kinetics and grain refinement’, ASM Handbook, 15, American Society for Materials, Int., Materials Park, OH, 2008, p. 276.

    Google Scholar 

  27. C. Limmaneevichitr and W. Eidhed, Mater. Sci. Eng. A, 349 (2003) 197.

    Article  Google Scholar 

  28. E.B. Webb III, G.S. Grest, and D.R. Heine, Phys. Rev. Lett., 91 (2003) 236103.

    Article  Google Scholar 

  29. N.H. Fletcher, J. Chem Phys., 29 (1958) 572.

    Article  CAS  Google Scholar 

  30. N.H. Fletcher, J. Chem Phys., 31 (1958) 1136.

    Article  Google Scholar 

  31. N.H. Fletcher, J. Chem Phys., 38 (1958) 237.

    Article  Google Scholar 

  32. T.B. Blake and J.M. Haynes, J. Coll. Inter. Sci., 30 (1969) 421.

    Article  CAS  Google Scholar 

  33. J.C. Fisher, J.H. Holloman and D. Turnbull, J. Appl. Phys., 19 (1948) 775.

    Article  CAS  Google Scholar 

  34. G. Ghosh and G.B. Olsen, Acta Metall. Mater., 42 (1994) 3361.

    Article  CAS  Google Scholar 

  35. P. Sajkiewicz, J. Polym. Sci. B, 41 (2003) 68.

    Article  CAS  Google Scholar 

  36. W. Oldfield, Trans. ASM, 59 (1966) 945.

    CAS  Google Scholar 

  37. W.T. Kim, D.L. Zhang and B. Cantor, Metall. Trans. A, 22A (1991) 2487.

    CAS  Google Scholar 

  38. W.T. Kim and B. Cantor, J. Mater. Sci., 26 (1991) 2868.

    Article  CAS  Google Scholar 

  39. W.T. Kim and B. Cantor, Acta Metall., 40 (1992) 3339.

    Article  CAS  Google Scholar 

  40. W.T. Kim and B. Cantor, Acta Metall., 42 (1994) 3045.

    Article  CAS  Google Scholar 

  41. T.E. Quested and A.L. Greer, Acta Mater., 53 (2005) 2683.

    Article  CAS  Google Scholar 

  42. J. Szekely, Fluid Flow Phenomena in Metals Processing, Academic Press Ltd., New York, NY, 1979, 305.

    Chapter  Google Scholar 

  43. M.E. Glicksman, C.J. Paradies, G.T. Kim and R.N. Smith, ‘The effects of varying melt flow velocity on the grain fragmentation in a mushy zone’, Light Metals 1993, S.K. Das, Ed., The Minerals, Metals & Materials Society, Warrendale, PA, 1993, p. 779.

    Google Scholar 

  44. M.E. Glicksman, R.N. Smith, C.J. Paradies and P. Rao, ‘Grain refinement of castings via melt-flow interaction with the mushy zone’, Near-Net Shape Casting in the Minimills, I.V. Samarasekera, Ed., The University of British Columbia, Vancouver, BC, 1995, p. 217.

    Google Scholar 

  45. C.J. Paradies, M.E. Glicksman and R.N. Smith, Metall. Mater. Trans. A, 28A (1997) 875.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Eden Glicksman .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Glicksman, M.E. (2012). Nucleation Catalysis. In: Principles of Solidification. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7344-3_12

Download citation

Publish with us

Policies and ethics