Skip to main content

Monogenic Disorders Within the Energy Balance Pathway

  • Chapter
  • First Online:
Obesity Before Birth

Part of the book series: Endocrine Updates ((ENDO,volume 30))

  • 1308 Accesses

Abstract

The hypothalamus plays a major role in the long-term regulation of body weight in humans. Within the hypothalamus, the leptin–melanocortin system is critical for energy balance, as animal and human studies have shown that disruption of this pathway, which senses peripheral energy stores and signals satiety, leads to the most severe forms of human obesity. The monogenic causes of obesity identified so far in this pathway are very heterogeneous and account for less than 5% of severe obesity. The genetic basis of the remaining 95% of obesity is likely to be even more heterogeneous and polygenic. The melanocortin 4-receptor (MC4R) is the most specialized molecule for body weight maintenance within this system as the clinical phenotype of MC4R deficiency is limited to obesity. Indeed, heterozygous MC4R mutations are the most common cause of monogenic obesity. In addition, novel mechanisms are emerging as important for pathogenicity of obesity, such as abnormal hypothalamic development, alterations in neuronal plasticity, and dysfunction of the primary cilium. This chapter focuses on obesity caused by mutations in genes that have a physiologic role in the hypothalamic leptin–melanocortin system of energy balance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ogden CL, Flegal KM, Carroll MD, Johnson CL. Prevalence and trends in overweight among US children and adolescents, 1999–2000. JAMA. Oct 9 2002;288(14):1728–32.

    Article  PubMed  Google Scholar 

  2. Flegal KM, Carroll MD, Ogden CL, Curtin LR. Prevalence and trends in obesity among US adults, 1999–2008. JAMA. Jan 20 2010;303(3):235–41.

    Article  PubMed  CAS  Google Scholar 

  3. Vasan RS, Pencina MJ, Cobain M, Freiberg MS, D’Agostino RB. Estimated risks for developing obesity in the Framingham Heart Study. Ann Intern Med. Oct 4 2005;143(7):473–80.

    Article  PubMed  Google Scholar 

  4. Ogden CL, Carroll MD, Curtin LR, Lamb MM, Flegal KM. Prevalence of high body mass index in US children and adolescents, 2007–2008. JAMA. Jan 20 2010;303(3):242–9.

    Article  PubMed  CAS  Google Scholar 

  5. Franks PW, Hanson RL, Knowler WC, Sievers ML, Bennett PH, Looker HC. Childhood obesity, other cardiovascular risk factors, and premature death. N Engl J Med. Feb 11 2010;362(6):485–93.

    Article  PubMed  CAS  Google Scholar 

  6. Hill JO. Genetic and environmental contributions to obesity. Am J Clin Nutr. Nov 1998;68(5):991–2.

    PubMed  CAS  Google Scholar 

  7. Swarbrick MM, Vaisse C. Emerging trends in the search for genetic variants predisposing to human obesity. Curr Opin Clin Nutr Metab Care. Jul 2003;6(4):369–75.

    PubMed  Google Scholar 

  8. Maes HH, Neale MC, Eaves LJ. Genetic and environmental factors in relative body weight and human adiposity. Behav Genet. Jul 1997;27(4):325–51.

    Article  PubMed  CAS  Google Scholar 

  9. Frayling TM, Timpson NJ, Weedon MN, et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science. May 11 2007;316(5826):889–94.

    Article  PubMed  CAS  Google Scholar 

  10. Loos RJ, Lindgren CM, Li S, et al. Common variants near MC4R are associated with fat mass, weight and risk of obesity. Nat Genet. Jun 2008;40(6):768–75.

    Article  PubMed  CAS  Google Scholar 

  11. Ranadive SA, Vaisse C. Lessons from extreme human obesity: monogenic disorders. Endocrinol Metab Clin North Am. Sep 2008;37(3):733–51.

    Article  PubMed  CAS  Google Scholar 

  12. Coll AP, Farooqi IS, O’Rahilly S. The hormonal control of food intake. Cell. Apr 20 2007;129(2):251–62.

    Article  PubMed  CAS  Google Scholar 

  13. Gantz I, Miwa H, Konda Y, et al. Molecular cloning, expression, and gene localization of a fourth melanocortin receptor. J Biol Chem. Jul 15 1993;268(20):15174–9.

    PubMed  CAS  Google Scholar 

  14. Mountjoy KG, Robbins LS, Mortrud MT, Cone RD. The cloning of a family of genes that encode the melanocortin receptors. Science. Aug 28 1992;257(5074):1248–51.

    Article  PubMed  CAS  Google Scholar 

  15. Mountjoy KG, Mortrud MT, Low MJ, Simerly RB, Cone RD. Localization of the melanocortin-4 receptor (MC4-R) in neuroendocrine and autonomic control circuits in the brain. Mol Endocrinol. Oct 1994;8(10):1298–308.

    Article  PubMed  CAS  Google Scholar 

  16. Schwartz MW, Woods SC, Porte D Jr., Seeley RJ, Baskin DG. Central nervous system control of food intake. Nature. Apr 6 2000;404(6778):661–71.

    PubMed  CAS  Google Scholar 

  17. Farooqi IS, Keogh JM, Yeo GS, Lank EJ, Cheetham T, O’Rahilly S. Clinical spectrum of obesity and mutations in the melanocortin 4 receptor gene. N Engl J Med. Mar 20 2003;348(12):1085–95.

    Article  PubMed  CAS  Google Scholar 

  18. Calton MA, Ersoy BA, Zhang S, et al. Association of functionally significant Melanocortin-4 but not Melanocortin-3 receptor mutations with severe adult obesity in a large North-American case control study. Hum Mol Genet. Dec 17 2008;18:1140–1147.

    Article  PubMed  Google Scholar 

  19. Lubrano-Berthelier C, Dubern B, Lacorte JM, et al. Melanocortin 4 receptor mutations in a large cohort of severely obese adults: prevalence, functional classification, genotype-phenotype relationship, and lack of association with binge eating. J Clin Endocrinol Metab. May 2006;91(5):1811–8.

    Article  PubMed  CAS  Google Scholar 

  20. Hainerova I, Larsen LH, Holst B, et al. Melanocortin 4 receptor mutations in obese Czech children: studies of prevalence, phenotype development, weight reduction response, and functional analysis. J Clin Endocrinol Metab. Sep 2007;92(9):3689–96.

    Article  PubMed  CAS  Google Scholar 

  21. Lubrano-Berthelier C, Le Stunff C, Bougneres P, Vaisse C. A homozygous null mutation delineates the role of the melanocortin-4 receptor in humans. J Clin Endocrinol Metab. May 2004;89(5):2028–32.

    Article  PubMed  CAS  Google Scholar 

  22. Dubern B, Bisbis S, Talbaoui H, et al. Homozygous null mutation of the melanocortin-4 receptor and severe early-onset obesity. J Pediatr. Jun 2007;150(6):613–7.

    Article  PubMed  CAS  Google Scholar 

  23. Kobayashi H, Ogawa Y, Shintani M, et al. A Novel homozygous missense mutation of melanocortin-4 receptor (MC4R) in a Japanese woman with severe obesity. Diabetes. Jan 2002;51(1):243–6.

    Article  PubMed  CAS  Google Scholar 

  24. Vaisse C, Clement K, Guy-Grand B, Froguel P. A frameshift mutation in human MC4R is associated with a dominant form of obesity. Nat Genet. Oct 1998;20(2):113–4.

    Article  PubMed  CAS  Google Scholar 

  25. Lubrano-Berthelier C, Cavazos M, Le Stunff C, et al. The human MC4R promoter: characterization and role in obesity. Diabetes. Dec 2003;52(12):2996–3000.

    Article  PubMed  CAS  Google Scholar 

  26. Mergen M, Mergen H, Ozata M, Oner R, Oner C. A novel melanocortin 4 receptor (MC4R) gene mutation associated with morbid obesity. J Clin Endocrinol Metab. Jul 2001;86(7):3448.

    Article  PubMed  CAS  Google Scholar 

  27. Greenfield JR, Miller JW, Keogh JM, et al. Modulation of blood pressure by central melanocortinergic pathways. N Engl J Med. Jan 1 2009;360(1):44–52.

    Article  PubMed  CAS  Google Scholar 

  28. Sayk F, Heutling D, Dodt C, et al. Sympathetic function in human carriers of Melanocortin-4 receptor gene mutations. J Clin Endocrinol Metab. Feb 10 2010;95(4):1998–2002.

    Article  PubMed  CAS  Google Scholar 

  29. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature. Dec 1 1994;372(6505):425–32.

    Article  PubMed  CAS  Google Scholar 

  30. Halaas JL, Gajiwala KS, Maffei M, et al. Weight-reducing effects of the plasma protein encoded by the obese gene. Science. Jul 28 1995;269(5223):543–6.

    Article  PubMed  CAS  Google Scholar 

  31. Pelleymounter MA, Cullen MJ, Baker MB, et al. Effects of the obese gene product on body weight regulation in ob/ob mice. Science. Jul 28 1995;269(5223):540–3.

    Article  PubMed  CAS  Google Scholar 

  32. Campfield LA, Smith FJ, Guisez Y, Devos R, Burn P. Recombinant mouse OB protein: evidence for a peripheral signal linking adiposity and central neural networks. Science. Jul 28 1995;269(5223):546–9.

    Article  PubMed  CAS  Google Scholar 

  33. Tartaglia LA, Dembski M, Weng X, et al. Identification and expression cloning of a leptin receptor. OB-R Cell. Dec 29 1995;83(7):1263–71.

    Article  CAS  Google Scholar 

  34. Montague CT, Farooqi IS, Whitehead JP, et al. Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature. Jun 26 1997;387(6636):903–8.

    Article  PubMed  CAS  Google Scholar 

  35. Strobel A, Issad T, Camoin L, Ozata M, Strosberg AD. A leptin missense mutation associated with hypogonadism and morbid obesity. Nat Genet. Mar 1998;18(3):213–5.

    Article  PubMed  CAS  Google Scholar 

  36. Gibson WT, Farooqi IS, Moreau M, et al. Congenital leptin deficiency due to homozygosity for the Delta133G mutation: report of another case and evaluation of response to four years of leptin therapy. J Clin Endocrinol Metab. Oct 2004;89(10):4821–6.

    Article  PubMed  CAS  Google Scholar 

  37. Farooqi IS, Matarese G, Lord GM, et al. Beneficial effects of leptin on obesity, T cell hyporesponsiveness, and neuroendocrine/metabolic dysfunction of human congenital leptin deficiency. J Clin Invest. Oct 2002;110(8):1093–103.

    PubMed  CAS  Google Scholar 

  38. Mazen I, El-Gammal M, Abdel-Hamid M, Amr K. A novel homozygous missense mutation of the leptin gene (N103K) in an obese Egyptian patient. Mol Genet Metab. Aug 2009;97(4):305–8.

    Article  PubMed  CAS  Google Scholar 

  39. Fischer-Posovszky P, von Schnurbein J, Moepps B, et al. A new missense mutation in the leptin gene causes mild obesity and hypogonadism without affecting T cell responsiveness. J Clin Endocrinol Metab. April 9 2010;95(6):2836–40.

    Google Scholar 

  40. Farooqi IS, O’Rahilly S. Monogenic human obesity syndromes. Recent Prog Horm Res. 2004;59:409–24.

    Article  PubMed  CAS  Google Scholar 

  41. Farooqi IS, Keogh JM, Kamath S, et al. Partial leptin deficiency and human adiposity. Nature. Nov 1 2001;414(6859):34–5.

    Article  PubMed  CAS  Google Scholar 

  42. Chua SC Jr., Chung WK, Wu-Peng XS, et al. Phenotypes of mouse diabetes and rat fatty due to mutations in the OB (leptin) receptor. Science. Feb 16 1996;271(5251):994–6.

    Article  PubMed  CAS  Google Scholar 

  43. Chen H, Charlat O, Tartaglia LA, et al. Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db mice. Cell. Feb 9 1996;84(3):491–5.

    Article  PubMed  CAS  Google Scholar 

  44. Clement K, Vaisse C, Lahlou N, et al. A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. Nature. Mar 26 1998;392(6674):398–401.

    Article  PubMed  CAS  Google Scholar 

  45. Farooqi IS, Wangensteen T, Collins S, et al. Clinical and molecular genetic spectrum of congenital deficiency of the leptin receptor. N Engl J Med. Jan 18 2007;356(3):237–47.

    Article  PubMed  CAS  Google Scholar 

  46. Owerbach D, Rutter WJ, Roberts JL, et al. The proopiocortin (adrenocorticotropin/beta-lipoprotein) gene is located on chromosome 2 in humans. Somatic Cell Genet. May 1981;7(3):359–69.

    Article  PubMed  CAS  Google Scholar 

  47. Farooqi S, O’Rahilly S. Genetics of obesity in humans. Endocr Rev. Dec 2006;27(7):710–8.

    PubMed  CAS  Google Scholar 

  48. Coll AP, Challis BG, Lopez M, Piper S, Yeo GS, O’Rahilly S. Proopiomelanocortin-deficient mice are hypersensitive to the adverse metabolic effects of glucocorticoids. Diabetes. Aug 2005;54(8):2269–76.

    Article  PubMed  CAS  Google Scholar 

  49. Krude H, Biebermann H, Luck W, Horn R, Brabant G, Gruters A. Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans. Nat Genet. Jun 1998;19(2):155–7.

    Article  PubMed  CAS  Google Scholar 

  50. Krude H, Biebermann H, Schnabel D, et al. Obesity due to proopiomelanocortin deficiency: three new cases and treatment trials with thyroid hormone and ACTH4-10. J Clin Endocrinol Metab. Oct 2003;88(10):4633–40.

    Article  PubMed  CAS  Google Scholar 

  51. Farooqi IS, Drop S, Clements A, et al. Heterozygosity for a POMC-null mutation and increased obesity risk in humans. Diabetes. Sep 2006;55(9):2549–53.

    Article  PubMed  CAS  Google Scholar 

  52. Clement K, Dubern B, Mencarelli M, et al. Unexpected endocrine features and normal pigmentation in a young adult patient carrying a novel homozygous mutation in the POMC gene. J Clin Endocrinol Metab. Dec 2008;93(12):4955–62.

    Article  PubMed  CAS  Google Scholar 

  53. Nillni EA. Regulation of prohormone convertases in hypothalamic neurons: implications for prothyrotropin-releasing hormone and proopiomelanocortin. Endocrinology. Sep 2007;148(9):4191–200.

    Article  PubMed  CAS  Google Scholar 

  54. Jackson RS, Creemers JW, Ohagi S, et al. Obesity and impaired prohormone processing associated with mutations in the human prohormone convertase 1 gene. Nat Genet. Jul 1997;16(3):303–6.

    Article  PubMed  CAS  Google Scholar 

  55. O’Rahilly S, Gray H, Humphreys PJ, et al. Brief report: impaired processing of prohormones associated with abnormalities of glucose homeostasis and adrenal function. N Engl J Med. Nov 23 1995;333(21):1386–90.

    Article  PubMed  Google Scholar 

  56. Jackson RS, Creemers JW, Farooqi IS, et al. Small-intestinal dysfunction accompanies the complex endocrinopathy of human proprotein convertase 1 deficiency. J Clin Invest. Nov 2003;112(10):1550–60.

    PubMed  CAS  Google Scholar 

  57. Farooqi IS, Volders K, Stanhope R, et al. Hyperphagia and early-onset obesity due to a novel homozygous missense mutation in prohormone convertase 1/3. J Clin Endocrinol Metab. Sep 2007;92(9):3369–73.

    Article  PubMed  CAS  Google Scholar 

  58. Michaud JL, Boucher F, Melnyk A, et al. Sim1 haploinsufficiency causes hyperphagia, obesity and reduction of the paraventricular nucleus of the hypothalamus. Hum Mol Genet. Jul 1 2001;10(14):1465–73.

    Article  PubMed  CAS  Google Scholar 

  59. Michaud JL, Rosenquist T, May NR, Fan CM. Development of neuroendocrine lineages requires the bHLH-PAS transcription factor SIM1. Genes Dev. Oct 15 1998;12(20):3264–75.

    Article  PubMed  CAS  Google Scholar 

  60. Holder JL Jr., Butte NF, Zinn AR. Profound obesity associated with a balanced translocation that disrupts the SIM1 gene. Hum Mol Genet. Jan 1 2000;9(1):101–8.

    Article  PubMed  CAS  Google Scholar 

  61. Villa A, Urioste M, Bofarull JM, Martinez-Frias ML. De novo interstitial deletion q16.2q21 on chromosome 6. Am J Med Genet. Jan 30 1995;55(3):379–83.

    Article  PubMed  CAS  Google Scholar 

  62. Gilhuis HJ, van Ravenswaaij CM, Hamel BJ, Gabreels FJ. Interstitial 6q deletion with a Prader-Willi-like phenotype: a new case and review of the literature. Eur J Paediatr Neurol. 2000;4(1):39–43.

    Article  PubMed  CAS  Google Scholar 

  63. Faivre L, Cormier-Daire V, Lapierre JM, et al. Deletion of the SIM1 gene (6q16.2) in a patient with a Prader-Willi-like phenotype. J Med Genet. Aug 2002;39(8):594–6.

    Article  PubMed  CAS  Google Scholar 

  64. Meyre D, Lecoeur C, Delplanque J, et al. A genome-wide scan for childhood obesity-associated traits in French families shows significant linkage on chromosome 6q22.31–q23.2. Diabetes. Mar 2004;53(3):803–11.

    Article  PubMed  CAS  Google Scholar 

  65. Wang JC, Turner L, Lomax B, Eydoux PA. 5-Mb microdeletion at 6q16.1–q16.3 with SIM gene deletion and obesity. Am J Med Genet A. Nov 15 2008;146A(22):2975–8.

    Article  PubMed  Google Scholar 

  66. Turleau C, Demay G, Cabanis MO, Lenoir G, de Grouchy J. 6q1 monosomy: a distinctive syndrome. Clin Genet. Jul 1988;34(1):38–42.

    Article  PubMed  CAS  Google Scholar 

  67. Varela MC, Simoes-Sato AY, Kim CA, Bertola DR, De Castro CI, Koiffmann CP. A new case of interstitial 6q16.2 deletion in a patient with Prader-Willi-like phenotype and investigation of SIM1 gene deletion in 87 patients with syndromic obesity. Eur J Med Genet. Jul–Aug 2006;49(4):298–305.

    Article  PubMed  Google Scholar 

  68. Klein OD, Cotter PD, Moore MW, et al. Interstitial deletions of chromosome 6q: genotype-phenotype correlation utilizing array CGH. Clin Genet. Mar 2007;71(3):260–6.

    Article  PubMed  CAS  Google Scholar 

  69. Stein CK, Stred SE, Thomson LL, Smith FC, Hoo JJ. Interstitial 6q deletion and Prader-Willi-like phenotype. Clin Genet. Jun 1996;49(6):306–10.

    Article  PubMed  CAS  Google Scholar 

  70. Le Caignec C, Swillen A, Van Asche E, Fryns JP, Vermeesch JR. Interstitial 6q deletion: clinical and array CGH characterisation of a new patient. Eur J Med Genet. Jul–Sep 2005;48(3):339–45.

    Article  PubMed  Google Scholar 

  71. Tapia-Arancibia L, Rage F, Givalois L, Arancibia S. Physiology of BDNF: focus on hypothalamic function. Front Neuroendocrinol. Jul 2004;25(2):77–107.

    Article  PubMed  CAS  Google Scholar 

  72. Huang EJ, Reichardt LF. Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci. 2001;24:677–736.

    Article  PubMed  CAS  Google Scholar 

  73. Huang EJ, Reichardt LF. Trk receptors: roles in neuronal signal transduction. Annu Rev Biochem. 2003;72:609–42.

    Article  PubMed  CAS  Google Scholar 

  74. Kernie SG, Liebl DJ, Parada LF. BDNF regulates eating behavior and locomotor activity in mice. EMBO J. Mar 15 2000;19(6):1290–300.

    Article  PubMed  CAS  Google Scholar 

  75. Pelleymounter MA, Cullen MJ, Wellman CL. Characteristics of BDNF-induced weight loss. Exp Neurol. Feb 1995;131(2):229–38.

    Article  PubMed  CAS  Google Scholar 

  76. Rios M, Fan G, Fekete C, et al. Conditional deletion of brain-derived neurotrophic factor in the postnatal brain leads to obesity and hyperactivity. Mol Endocrinol. Oct 2001;15(10):1748–57.

    Article  PubMed  CAS  Google Scholar 

  77. Xu B, Goulding EH, Zang K, et al. Brain-derived neurotrophic factor regulates energy balance downstream of melanocortin-4 receptor. Nat Neurosci. Jul 2003;6(7):736–42.

    Article  PubMed  CAS  Google Scholar 

  78. Gray J, Yeo GS, Cox JJ, et al. Hyperphagia, severe obesity, impaired cognitive function, and hyperactivity associated with functional loss of one copy of the brain-derived neurotrophic factor (BDNF) gene. Diabetes. Dec 2006;55(12):3366–71.

    Article  PubMed  CAS  Google Scholar 

  79. Han JC, Liu QR, Jones M, et al. Brain-derived neurotrophic factor and obesity in the WAGR syndrome. N Engl J Med. Aug 28 2008;359(9):918–27.

    Article  PubMed  CAS  Google Scholar 

  80. Biebermann H, Castaneda TR, van Landeghem F, et al. A role for beta-melanocyte-stimulating hormone in human body-weight regulation. Cell Metab. Feb 2006;3(2):141–6.

    Article  PubMed  CAS  Google Scholar 

  81. Klein R, Smeyne RJ, Wurst W, et al. Targeted disruption of the trkB neurotrophin receptor gene results in nervous system lesions and neonatal death. Cell. Oct 8 1993;75(1):113–22.

    PubMed  CAS  Google Scholar 

  82. Lyons WE, Mamounas LA, Ricaurte GA, et al. Brain-derived neurotrophic factor-deficient mice develop aggressiveness and hyperphagia in conjunction with brain serotonergic abnormalities. Proc Natl Acad Sci USA. Dec 21 1999;96(26):15239–44.

    Article  PubMed  CAS  Google Scholar 

  83. Yeo GS, Connie Hung CC, Rochford J, et al. A de novo mutation affecting human TrkB associated with severe obesity and developmental delay. Nat Neurosci. Nov 2004;7(11):1187–9.

    Article  PubMed  CAS  Google Scholar 

  84. Gray J, Yeo G, Hung C, et al. Functional characterization of human NTRK2 mutations identified in patients with severe early-onset obesity. Int J Obes (Lond). Feb 2007;31(2):359–64.

    Article  CAS  Google Scholar 

  85. Heymsfield SB, Greenberg AS, Fujioka K, et al. Recombinant leptin for weight loss in obese and lean adults: a randomized, controlled, dose-escalation trial. JAMA. Oct 27 1999;282(16):1568–75.

    Article  PubMed  CAS  Google Scholar 

  86. Fan ZC, Tao YX. Functional characterization and pharmacological rescue of melanocortin-4 receptor mutations identified from obese patients. J Cell Mol Med. Sep 2009;13(9B):3268–82.

    Article  PubMed  Google Scholar 

  87. Schmidt H, Pozza SB, Bonfig W, Schwarz HP, Dokoupil K. Successful early dietary intervention avoids obesity in patients with Prader-Willi syndrome: a ten-year follow-up. J Pediatr Endocrinol Metab. Jul 2008;21(7):651–5.

    Article  PubMed  CAS  Google Scholar 

  88. Reinehr T, Hebebrand J, Friedel S, et al. Lifestyle intervention in obese children with variations in the melanocortin 4 receptor gene. Obesity (Silver Spring). Feb 2009;17(2):382–9.

    Article  CAS  Google Scholar 

  89. Pories WJ. Bariatric surgery: risks and rewards. J Clin Endocrinol Metab. Nov 2008;93 11 Suppl 1:S89–96.

    Article  PubMed  CAS  Google Scholar 

  90. Daskalakis M, Till H, Kiess W, Weiner RA. Roux-en-Y gastric bypass in an adolescent patient with Bardet-Biedl syndrome, a monogenic obesity disorder. Obes Surg. Jan 2010;20(1):121–5.

    Article  PubMed  Google Scholar 

  91. Rottembourg D, O’Gorman CS, Urbach S, et al. Outcome after bariatric surgery in two adolescents with hypothalamic obesity following treatment of craniopharyngioma. J Pediatr Endocrinol Metab. Sep 2009;22(9):867–72.

    Article  PubMed  Google Scholar 

  92. Inge TH, Pfluger P, Zeller M, et al. Gastric bypass surgery for treatment of hypothalamic obesity after craniopharyngioma therapy. Nat Clin Pract Endocrinol Metab. Aug 2007;3(8):606–9.

    Article  PubMed  Google Scholar 

  93. Muller HL, Gebhardt U, Wessel V, et al. First experiences with laparoscopic adjustable gastric banding (LAGB) in the treatment of patients with childhood craniopharyngioma and morbid obesity. Klin Padiatr. Nov–Dec 2007;219(6):323–5.

    Article  PubMed  CAS  Google Scholar 

  94. Potoczna N, Branson R, Kral JG, et al. Gene variants and binge eating as predictors of comorbidity and outcome of treatment in severe obesity. J Gastrointest Surg. Dec 2004;8(8):971–81, Discussion 981–972.

    Article  PubMed  Google Scholar 

  95. List JF, Habener JF. Defective melanocortin 4 receptors in hyperphagia and morbid obesity. N Engl J Med. Mar 20 2003;348(12):1160–3.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Vaisse .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Aslan, I.R., Ranadive, S.A., Vaisse, C. (2011). Monogenic Disorders Within the Energy Balance Pathway. In: Lustig, R. (eds) Obesity Before Birth. Endocrine Updates, vol 30. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-7034-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7034-3_3

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-7033-6

  • Online ISBN: 978-1-4419-7034-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics