Skip to main content

Role of Amide Proton Transfer (APT)-MRI of Endogenous Proteins and Peptides in Brain Tumor Imaging

  • Chapter
  • First Online:
Functional Brain Tumor Imaging

Abstract

Amide proton transfer (APT) imaging is a novel molecular MRI technique that can provide endogenous contrast related to mobile protein content in tissue. The preclinical studies and pilot clinical data have shown initial potential for APT imaging to assess brain tumors, such as differentiating between tumor and peritumoral edema, separating high- from low-grade gliomas, and distinguishing between active tumor and radiation necrosis. In this chapter, we briefly introduce the basic principle of APT imaging and overview its current applications for brain tumor assessment in animal models and in patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kelly PJ, Daumas-Duport C, Kispert DB, Kall BA, Scheithauer BW, Illig JJ. Imaging-based stereotaxic serial biopsies in untreated intracranial glial neoplasms. J Neurosurg. 1987;66(6):865–74.

    Article  PubMed  CAS  Google Scholar 

  2. Scott JN, Brasher PM, Sevick RJ, Rewcastle NB, Forsyth PA. How often are nonenhancing supratentorial gliomas malignant? A population study. Neurology. 2002;59:947–9.

    Article  PubMed  CAS  Google Scholar 

  3. Segall HD, Destian S, Nelson MD. CT and MR imaging in malignant gliomas. In: Apuzzo MLJ, editor. Malignant cerebral glioma. Park Ridge, IL: American Association of Neurological Surgeons; 1990. p. 63–78.

    Google Scholar 

  4. Knopp EA, Cha S, Johnson G, et al. Glial neoplasms: dynamic contrast-enhanced T2*-weighted MR imaging. Radiology. 1999;211(3):791–8.

    PubMed  CAS  Google Scholar 

  5. Hasebroock KM, Serkova NJ. Toxicity of MRI and CT contrast agents. Expert Opin Drug Metab Toxicol. 2009;5(4):403–16.

    Article  PubMed  CAS  Google Scholar 

  6. Ersoy H, Rybicki FJ. Biochemical safety profiles of gadolinium-based extracellular contrast agents and nephrogenic systemic fibrosis. J Magn Reson Imaging. 2007;26(5):1190–7.

    Article  PubMed  Google Scholar 

  7. Zhou J, Payen J, Wilson DA, Traystman RJ, van Zijl PCM. Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI. Nat Med. 2003;9:1085–90.

    Article  PubMed  CAS  Google Scholar 

  8. Zhou J, Lal B, Wilson DA, Laterra J, van Zijl PC. Amide proton transfer (APT) contrast for imaging of brain tumors. Magn Reson Med. 2003;50(6):1120–6.

    Article  PubMed  Google Scholar 

  9. Jia G, Abaza R, Williams JD, et al. Amide proton transfer MR imaging of prostate cancer: a preliminary study. J Magn Reson Imaging. 2011;33(3):647–54.

    Article  PubMed  Google Scholar 

  10. Jones CK, Schlosser MJ, van Zijl PC, Pomper MG, Golay X, Zhou J. Amide proton transfer imaging of human brain tumors at 3T. Magn Reson Med. 2006;56(3):585–92.

    Article  PubMed  Google Scholar 

  11. Wen Z, Hu S, Huang F, et al. MR imaging of high-grade brain tumors using endogenous protein and peptide-based contrast. Neuroimage. 2010;51(2):616–22.

    Article  PubMed  Google Scholar 

  12. Zhou J, Blakeley JO, Hua J, et al. Practical data acquisition method for human brain tumor amide proton transfer (APT) imaging. Magn Reson Med. 2008;60(4):842–9.

    Article  PubMed  Google Scholar 

  13. Sun PZ, Zhou J, Sun W, Huang J, van Zijl PCM. Detection of the ischemic penumbra using pH-weighted MRI. J Cereb Blood Flow Metab. 2007;27:1129–36.

    Article  PubMed  Google Scholar 

  14. Zhao X, Wen Z, Huang F, et al. Saturation power dependence of amide proton transfer image contrasts in human brain tumors and strokes at 3 T. Magn Reson Med. 2011;66:1033–41.

    Article  PubMed  Google Scholar 

  15. Forsen S, Hoffman RA. Study of moderately rapid chemical exchange reactions by means of nuclear magnetic double resonance. J Chem Phys. 1963;39:2892–901.

    Article  CAS  Google Scholar 

  16. Ward KM, Aletras AH, Balaban RS. A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST). J Magn Reson. 2000;143(1):79–87.

    Article  PubMed  CAS  Google Scholar 

  17. Sherry AD, Woods M. Chemical exchange saturation transfer contrast agents for magnetic resonance imaging. Annu Rev Biomed Eng. 2008;10:391–411.

    Article  PubMed  CAS  Google Scholar 

  18. Terreno E, Castelli DD, Aime S. Encoding the frequency dependence in MRI contrast media: the emerging class of CEST agents. Contrast Media Mol Imaging. 2010;5(2):78–98.

    PubMed  CAS  Google Scholar 

  19. van Zijl PCM, Yadav NN. Chemical exchange saturation transfer (CEST): what is in a name and what isn’t? Magn Reson Med. 2011;65:927–48.

    Article  PubMed  Google Scholar 

  20. Zhou J, van Zijl PC. Chemical exchange saturation transfer imaging and spectroscopy. Prog NMR Spectsc. 2006;48:109–36.

    Article  CAS  Google Scholar 

  21. Hua J, Jones CK, Blakeley J, Smith SA, van Zijl PC, Zhou J. Quantitative description of the asymmetry in magnetization transfer effects around the water resonance in the human brain. Magn Reson Med. 2007;58(4):786–93.

    Article  PubMed  Google Scholar 

  22. Goplen D, Wang J, Enger PO, et al. Protein disulfide isomerase expression is related to the invasive properties of malignant glioma. Cancer Res. 2006;66(20): 9895–902.

    Article  PubMed  CAS  Google Scholar 

  23. Niclou SP, Fack F, Rajcevic U. Glioma proteomics: status and perspectives. J Proteomics. 2010;73(10):1823–38.

    Article  PubMed  CAS  Google Scholar 

  24. Salhotra A, Lal B, Laterra J, Sun PZ, van Zijl PCM, Zhou J. Amide proton transfer imaging of 9L gliosarcoma and human glioblastoma xenografts. NMR Biomed. 2008;21:489–97.

    Article  PubMed  Google Scholar 

  25. Stupp R, Mason WP, van den Bent MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352(10):987–96.

    Article  PubMed  CAS  Google Scholar 

  26. Maier SE, Sun Y, Mulkern RV. Diffusion imaging of brain tumors. NMR Biomed. 2010;23(7):849–64.

    Article  PubMed  Google Scholar 

  27. Wippold 2nd FJ, Lammle M, Anatelli F, Lennerz J, Perry A. Neuropathology for the neuroradiologist: palisades and pseudopalisades. AJNR Am J Neuroradiol. 2006;27(10):2037–41.

    PubMed  Google Scholar 

  28. Xu Z, Marko NF, Angelov L, et al. Impact of preexisting tumor necrosis on the efficacy of stereotactic radiosurgery in the treatment of brain metastases in women with breast cancer. Cancer. 2011;118(5): 1323–33.

    Article  PubMed  Google Scholar 

  29. Kumar AJ, Leeds NE, Fuller GN, et al. Malignant gliomas: MR imaging spectrum of radiation therapy- and chemotherapy-induced necrosis of the brain after treatment. Radiology. 2000;217(2):377–84.

    PubMed  CAS  Google Scholar 

  30. Brandsma D, Stalpers L, Taal W, Sminia P, van den Bent MJ. Clinical features, mechanisms, and management of pseudoprogression in malignant gliomas. Lancet Oncol. 2008;9(5):453–61.

    Article  PubMed  Google Scholar 

  31. Yaman E, Buyukberber S, Benekli M, et al. Radiation induced early necrosis in patients with malignant gliomas receiving temozolomide. Clin Neurol Neurosurg. 2010;112(8):662–7.

    Article  PubMed  Google Scholar 

  32. Graves EE, Nelson SJ, Vigneron DB, et al. Serial proton MR spectroscopic imaging of recurrent malignant gliomas after gamma knife radiosurgery. AJNR Am J Neuroradiol. 2001;22:613–24.

    PubMed  CAS  Google Scholar 

  33. Sugahara T, Korogi Y, Tomiguchi S, et al. Posttherapeutic intraaxial brain tumor: The value of perfusion-sensitive contrast-enhanced MR imaging for differentiating tumor recurrence from nonneoplastic contrast-enhancing tissue. AJNR Am J Neuroradiol. 2000;21:901–9.

    PubMed  CAS  Google Scholar 

  34. Galban CJ, Chenevert TL, Meyer CR, et al. The parametric response map is an imaging biomarker for early cancer treatment outcome. Nat Med. 2009;15: 572–6.

    Article  PubMed  CAS  Google Scholar 

  35. Wang S, Chen Y, Lal B, et al. Evaluation of radiation necrosis and malignant glioma in rat models using diffusion tensor MR imaging. J Neurooncol. 2011;107(1):51–60. doi:10.1007/s11060-011-0719-x.

    Article  PubMed  Google Scholar 

  36. Yang I, Aghi MK. New advances that enable identification of glioblastoma recurrence. Nat Rev Clin Oncol. 2009;6:648–57.

    Article  PubMed  Google Scholar 

  37. Wang SL, Wu EX, Qiu DQ, Leung LHT, Lau HF, Khong PL. Longitudinal diffusion tensor magnetic resonance imaging study of radiation-induced white matter damage in a rat model. Cancer Res. 2009;69:1190–8.

    Article  PubMed  CAS  Google Scholar 

  38. Burger PC, Dubois PJ, Schold Jr SC, et al. Computerized tomographic and pathologic studies of the untreated, quiescent, and recurrent glioblastoma multiforme. J Neurosurg. 1983;58(2):159–69.

    Article  PubMed  CAS  Google Scholar 

  39. Howe FA, Barton SJ, Cudlip SA, et al. Metabolic profiles of human brain tumors using quantitative in vivo 1H magnetic resonance spectroscopy. Magn Reson Med. 2003;49(2):223–32.

    Article  PubMed  CAS  Google Scholar 

  40. Hobbs SK, Shi G, Homer R, Harsh G, Atlas SW, Bednarski MD. Magnetic resonance image-guided proteomics of human glioblastoma multiforme. J Magn Reson Imaging. 2003;18(5):530–6.

    Article  PubMed  Google Scholar 

  41. Zhou J, Tryggestad E, Wen Z, et al. Differentiation between glioma and radiation necrosis using molecular magnetic resonance imaging of endogenous proteins and peptides. Nat Med. 2011;17(1):130–4.

    Article  PubMed  CAS  Google Scholar 

  42. Wong J, Armour E, Kazanzides P, et al. High-resolution, small animal radiation research platform with X-ray tomographic guidance capabilities. Int J Radiant Oncol Biol Phys. 2008;71:1591–9.

    Article  Google Scholar 

  43. Macdonald DR, Cascino TL, Schold Jr SC, Cairncross JG. Response criteria for phase II studies of supratentorial malignant glioma. J Clin Oncol. 1990;8(7):1277–80.

    PubMed  CAS  Google Scholar 

  44. Jones CK, Polders D, Hua J, et al. In vivo 3D whole-brain pulsed steady state chemical exchange saturation transfer at 7T. Magn Reson Med. 2012;67(6):1579–89.

    Article  PubMed  Google Scholar 

  45. Zhu H, Jones CK, van Zijl PC, Barker PB, Zhou J. Fast 3D chemical exchange saturation transfer (CEST) imaging of the human brain. Magn Reson Med. 2010;64(3):638–44.

    Article  PubMed  Google Scholar 

  46. Keupp J, Baltes C, Harvey PR, van den Brink J. Parallel RF transmission based MRI technique for highly sensitive detection of amide proton transfer in the human brain. Paper presented at: Proceedings of the 19th annual meeting ISMRM 2011; Montreal.

    Google Scholar 

  47. Mougin OE, Coxon RC, Pitiot A, Gowland PA. Magnetization transfer phenomenon in the human brain at 7 T. Neuroimage. 2010;49(1):272–81.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported in part by grants from NIH (EB009112, EB009731, EB015032, and RR015241).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peter C. M. van Zijl Ph.D. or Jinyuan Zhou Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wang, S., Jarso, S., van Zijl, P.C.M., Zhou, J. (2014). Role of Amide Proton Transfer (APT)-MRI of Endogenous Proteins and Peptides in Brain Tumor Imaging. In: Pillai, J. (eds) Functional Brain Tumor Imaging. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5858-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-5858-7_10

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-5857-0

  • Online ISBN: 978-1-4419-5858-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics