Skip to main content

Advertisement

Log in

Evaluation of radiation necrosis and malignant glioma in rat models using diffusion tensor MR imaging

  • Laboratory Investigation - Human/Animal Tissue
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Standard MRI cannot distinguish between radiation necrosis and tumor progression; however, this distinction is critical in the assessment of tumor response to therapy. In this study, one delayed radiation necrosis model (dose, 40 Gy; radiation field, 10 × 10 mm2; n = 13) and two orthotopic glioma models in rats (9L gliosarcoma, n =8; human glioma xenografts, n = 5) were compared using multiple diffusion tensor imaging (DTI) indices. A visible isotropic apparent diffusion coefficient (ADC) pattern was observed in the lesion due to radiation necrosis, which consisted of a hypointense central zone and a hyperintense peripheral zone. There were significantly lower ADC, parallel diffusivity, and perpendicular diffusivity in the necrotic central zone than in the peripheral zone (all P < 0.001). When radiation-induced necrosis was compared with viable tumor, radiation necrosis had significantly lower ADC than 9L gliosarcoma and human glioma xenografts (both P < 0.01) in the central zone, and significantly lower fractional anisotropy than 9L gliosarcoma (P = 0.005) and human glioma xenografts (P = 0.012) in the peripheral zone. Histological analysis revealed parenchymal coagulative necrosis in the central zone, and damaged vessels and reactive astrogliosis in the peripheral zone. These data suggest that qualitative and quantitative analysis of the DTI maps can provide useful information by which to distinguish between radiation necrosis and viable glioma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wen PY, Kesari S (2008) Malignant gliomas in adults. N Engl J Med 359:492–507

    Article  PubMed  CAS  Google Scholar 

  2. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJB, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996

    Article  PubMed  CAS  Google Scholar 

  3. Mullins ME, Barest GD, Schaefer PW, Hochberg FH, Gonzalez RG, Lev MH (2005) Radiation necrosis versus glioma recurrence: conventional MR imaging clues to diagnosis. AJNR Am J Neuroradiol 26:1967–1972

    PubMed  Google Scholar 

  4. Butowski NA, Sneed PK, Chang S (2006) Diagnosis and treatment of recurrent high-grade astrocytoma. J Clin Oncol 24:1273–1280

    Article  PubMed  CAS  Google Scholar 

  5. Jain R, Narang J, Sundgren PM, Hearshen D, Saksena S, Rock JP, Gutierrez J, Mikkelsen T (2010) Treatment induced necrosis versus recurrent/progressing brain tumor: going beyond the boundaries of conventional morphologic imaging. J Neuro Oncol 100:17–29

    Article  Google Scholar 

  6. Rogers LR, Gutierrez J, Scarpace L, Schultz L, Ryu S, Lord B, Movsas B, Honsowetz J, Jain R (2011) Morphologic magnetic resonance imaging features of therapy-induced cerebral necrosis. J Neuro Oncol 101:25–32

    Article  CAS  Google Scholar 

  7. Graves EE, Nelson SJ, Vigneron DB, Verhey L, McDermott M, Larson D, Chang S, Prados MD, Dillon WP (2001) Serial proton MR spectroscopic imaging of recurrent malignant gliomas after gamma knife radiosurgery. AJNR Am J Neuroradiol 22:613–624

    PubMed  CAS  Google Scholar 

  8. Barajas RF, Chang JS, Sneed PK, Segal MR, McDermott MW, Cha S (2009) Distinguishing recurrent intra-axial metastatic tumor from radiation necrosis following gamma knife radiosurgery using dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. AJNR Am J Neuroradiol 30:367–372

    Article  PubMed  CAS  Google Scholar 

  9. Mitsuya K, Nakasu Y, Horiguchi S, Harada H, Nishimura T, Bando E, Okawa H, Furukawa Y, Hirai T, Endo M (2010) Perfusion weighted magnetic resonance imaging to distinguish the recurrence of metastatic brain tumors from radiation necrosis after stereotactic radiosurgery. J Neuro Oncol 99:81–88

    Article  Google Scholar 

  10. Zhou J, Tryggestad E, Wen Z, Lal B, Zhou T, Grossman R, Wang S, Yan K, Fu DX, Ford E, Tyler B, Blakeley J, Laterra J, van Zijl PC (2011) Differentiation between glioma and radiation necrosis using molecular magnetic resonance imaging of endogenous proteins and peptides. Nat Med 17:130–134

    Article  PubMed  CAS  Google Scholar 

  11. Arbab AS, Janic B, Jafari-Khouzani K, Iskander AS, Kumar S, Varma NR, Knight RA, Soltanian-Zadeh H, Brown SL, Frank JA (2010) Differentiation of glioma and radiation injury in rats using in vitro produce magnetically labeled cytotoxic T-cells and MRI. PLoS One 5:e9365

    Article  PubMed  Google Scholar 

  12. Sinha S, Bastin ME, Whittle IR, Wardlaw JM (2002) Diffusion tensor MR imaging of high-grade cerebral gliomas. AJNR Am J Neuroradiol 23:520–527

    PubMed  Google Scholar 

  13. Mori S, Frederiksen K, van Zijl PC, Stieltjes B, Kraut MA, Solaiyappan M, Pomper MG (2002) Brain white matter anatomy of tumor patients evaluated with diffusion tensor imaging. Annu Neurol 51:377–380

    Article  Google Scholar 

  14. Huang H, Zhang J, Wakana S, Zhang W, Ren T, Richards LJ, Yarowsky P, Donohue P, Graham E, van Zijl PCM, Mori S (2006) White and gray matter development in human fetal, newborn and pediatric brains. Neuroimage 33:27–38

    Article  PubMed  Google Scholar 

  15. Wang SL, Wu EX, Qiu DQ, Leung LHT, Lau HF, Khong PL (2009) Longitudinal diffusion tensor magnetic resonance imaging study of radiation-induced white matter damage in a rat model. Cancer Res 69:1190–1198

    Article  PubMed  CAS  Google Scholar 

  16. Chan KC, Khong PL, Cheung MM, Wang SL, Cai KX, Wu EX (2009) MRI of late microstructural and metabolic alterations in radiation-induced brain injuries. J Magn Reson Imaging 29:1013–1020

    Article  PubMed  Google Scholar 

  17. Zhang J, van Zijl PCM, Laterra J, Salhotra A, Lal B, Mori S, Zhou J (2007) Unique patterns of diffusion directionality in rat brain tumors revealed by high-resolution diffusion tensor MRI. Magn Reson Med 58:454–462

    Article  PubMed  Google Scholar 

  18. Kim S, Pickup S, Hsu O, Poptani H (2008) Diffusion tensor MRI in rat models of invasion and well-demarcated brain tumors. NMR Biomed 21:208–216

    Article  PubMed  Google Scholar 

  19. Asanuma T, Doblas S, Tesiram YA, Saunders D, Cranford R, Pearson J, Abbott A, Smith N, Towner RA (2008) Diffusion tensor imaging and fiber tractography of C6 rat glioma. J Magn Reson Imaging 28:566–573

    Article  PubMed  Google Scholar 

  20. Lope-Piedrafita S, Garcia-Martin ML, Galons J-P, Gillies RJ, Trouard TP (2008) Longitudinal diffusion tensor imaging in a rat brain glioma model. NMR Biomed 21:799–808

    Article  PubMed  Google Scholar 

  21. Sarkaria JN, Carlson BL, Schroeder MA, Grogan P, Brown PD, Giannini C, Ballman KV, Kitange GJ, Guha A, Pandita A, James CD (2006) Use of an orthotopic xenograft model for assessing the effect of epidermal growth factor receptor amplification on glioblastoma radiation response. Clin Cancer Res 12:2264–2271

    Article  PubMed  CAS  Google Scholar 

  22. Salhotra A, Lal B, Laterra J, Sun PZ, van Zijl PCM, Zhou J (2008) Amide proton transfer imaging of 9L gliosarcoma and human glioblastoma xenografts. NMR Biomed 21:489–497

    Article  PubMed  Google Scholar 

  23. Wong J, Armour E, Kazanzides P, Iordachita U, Tryggestad E, Deng H, Matinfar M, Kennedy C, Liu Z, Chan T, Gray O, Verhaegen F, McNutt T, Ford E, DeWeese TL (2008) High-resolution, small animal radiation research platform with X-ray tomographic guidance capabilities. Int J Rad Oncol Biol Phys 71:1591–1599

    Article  Google Scholar 

  24. Kennedy AS, Archambeau JO, Archambeau M-H, Holshouser B, Thompson J, Moyers M, Hinshaw D, Slater JM (1995) Magnetic resonance imaging as a monitor of changes in the irradiated rat brain. An aid in determining the time course of events in a histologic study. Invest Radiol 30:214–220

    Article  PubMed  CAS  Google Scholar 

  25. Jiang H, van Zijl PC, Kim J, Pearlson GD, Mori S (2006) DtiStudio: resource program for diffusion tensor computation and fiber bundle tracking. Comput Methods Programs Biomed 81:106–116

    Article  PubMed  Google Scholar 

  26. Burger PC, Dubois PJ, Schold SCJ, Smith KRJ, Odom GL, Crafts DC, Giangaspero F (1983) Computerized tomographic and pathologic studies of the untreated, quiescent, and recurrent glioblastoma multiforme. J Neurosurg 58:159–169

    Article  PubMed  CAS  Google Scholar 

  27. Beppu T, Inoue T, Shibata T, Kurose AHA, Ogasawara K, Ogawa A, Nakamura S, Kabasawa H (2003) Measurement of fractional anisotropy using diffusion tensor MRI in supratentorial astrocytic tumors. J Neuro Oncol 63:109–116

    Article  Google Scholar 

  28. Beppu T, Inoue T, Shibata Y, Yamada N, Kurose A, Ogasawara K, Ogawa A, Kabasawa H (2005) Fractional anisotropy value by diffusion tensor magnetic resonance imaging as a predictor of cell density and proliferation activity of glioblastomas. Surg Neurol 63:56–61

    Article  PubMed  Google Scholar 

  29. Kinoshita M, Hashimoto N, Goto T, Kagawa N, Kishima H, Izumoto S, Tanaka H, Fujita N, Yoshimine T (2008) Fractional anisotropy and tumor cell density of the tumor core show positive correlation in diffusion tensor magnetic resonance imaging of malignant brain tumors. Neuroimage 43:29–35

    Article  PubMed  CAS  Google Scholar 

  30. Yang I, Aghi MK (2009) New advances that enable identification of glioblastoma recurrence. Nat Rev Clin Oncol 6:648–657

    Article  PubMed  Google Scholar 

  31. Sundgren PC, Fan X, Weybright P, Welsh RC, Carlos RC, Petrou M, McKeever PE, Chenevert TL (2006) Differentiation of recurrent brain tumor versus radiation injury using diffusion tensor imaging in patients with new contrast-enhancing lesions. J Magn Reson Imaging 24:1131–1142

    Article  CAS  Google Scholar 

  32. Wang SL, Wu EX, Tam CN, Lau HF, Cheung PT, Khong PL (2008) Characterization of white matter injury in a hypoxic-ischemic neonatal rat model by diffusion tensor MRI. Stroke 39:2348–2353

    Article  PubMed  Google Scholar 

  33. Hein PA, Eskey CJ, Dunn JF, Hug EB (2004) Diffusion-weighted imaging in the follow-up of treated high-grade gliomas: tumor recurrence versus radiation injury. AJNR Am J Neuroradiol 25:201–209

    PubMed  Google Scholar 

  34. Asao C, Korogi Y, Kitajima M, Hirai T, Baba Y, Makino K, Kochi M, Morishita S, Yamashita Y (2005) Diffusion-weighted imaging of radiation-induced brain injury for differentiation from tumor recurrence. AJNR Am J Neuroradiol 26:1455–1460

    PubMed  Google Scholar 

  35. Kashimura H, Inoue T, Beppu T, Ogasawara K, Ogawa A (2007) Diffusion tensor imaging for differentiation of recurrent brain tumor and radiation necrosis after radiotherapy–three case reports. Clin Neurol Neurosurg 109:106–110

    Article  PubMed  Google Scholar 

  36. Chenevert TL, McKeever PE, Ross BD (1997) Monitoring early response of experimental brain tumors to therapy using diffusion magnetic resonance imaging. Clin Cancer Res 3:1457–1466

    PubMed  CAS  Google Scholar 

  37. Inoue T, Ogasawara K, Beppu T, Ogawa A, Kabasawa H (2005) Diffusion tensor imaging for preoperative evaluation of tumor grade in gliomas. Clin Neurol Neurosurg 107:174–180

    Article  PubMed  Google Scholar 

  38. Wang YX, King AD, Zhou H, Leung SF, Abrigo J, Chan YL, Hu CW, Yeung DK, Ahuja AT (2010) Evolution of radiation-induced brain injury: MR imaging-based study. Radiology 254:210–218

    Article  PubMed  Google Scholar 

  39. Poonawalla AH, Zhou XJ (2004) Analytical error propagation in diffusion anisotropy calculations. J Magn Reson Imaging 19:489–498

    Article  PubMed  Google Scholar 

  40. Ni H, Kavcic V, Zhu T, Ekholm S, Zhong J (2006) Effects of number of diffusion gradient directions on derived diffusion tensor imaging indices in human brain. AJNR Am J Neuroradiol 27:1776–1781

    PubMed  CAS  Google Scholar 

  41. Gulani V, Weber T, Neuberger T (2005) Improved time efficiency and accuracy in diffusion tensor microimaging with multiple-echo acquisition. J Magn Reson 177:329–335

    Article  PubMed  CAS  Google Scholar 

  42. Nana R, Zhao T, Hu X (2008) Single-shot multiecho parallel echo-planar imaging (EPI) for diffusion tensor imaging (DTI) with improved signal-to-noise ratio (SNR) and reduced distortion. Magn Reson Med 60:1512–1517

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Hangyi Jiang for helpful discussion and Ms. Mary McAllister for editorial assistance. This work was supported in part by grants from NIH (EB009112 and EB009731) and the Dana Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinyuan Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, S., Chen, Y., Lal, B. et al. Evaluation of radiation necrosis and malignant glioma in rat models using diffusion tensor MR imaging. J Neurooncol 107, 51–60 (2012). https://doi.org/10.1007/s11060-011-0719-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-011-0719-x

Keywords

Navigation