Skip to main content

Atrial Natriuretic Peptide in Postoperative Acute Renal Failure

  • Conference paper
Intensive Care Medicine
  • 2150 Accesses

Abstract

Acute renal dysfunction is a common postoperative complication following cardiac or major vascular surgery [14]. Ten to twenty percent of patients with acute renal dysfunction after cardiovascular surgery may develop dialysis-dependent acute renal failure, with a reported mortality of 30–60 % [14]. Dialysis-dependent acute renal failure has been considered an independent risk factor for early mortality in such patients [5, 6]. The pathogenesis of postoperative acute renal failure is believed to be predominantly a consequence of renal hypoperfusion and ischemia, particularly of the renal medulla [7, 8]. The renal medullary concentrating mechanism, requiring large amounts of oxygen, in combination with the relatively low medullary blood flow, renders the renal medulla hypoxic, with low tissue PO2 levels, already under normal conditions [7]. The renal medulla, particularly the outer portion, is, therefore, sensitive to acute renal ischemia. Perioperative acute renal failure may also be related to factors including nephrotoxin exposure (heme pigments, inflammatory cytokines), embolism, and aortic cross-clamping. In spite of recent advances, outcomes from cardiovascular surgery-related acute renal failure have not changed substantially in the last decades and novel treatment strategies for prevention/treatment of perioperative acute renal dysfunction are, therefore, urgently needed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Andersson LG, Ekroth R, Bratteby LE, et al (1993) Acute renal failure after coronary surgery — a study of incidence and risk factors in 2009 consecutive patients. J Thorac Cardiovasc Surg 41: 237–241

    Article  CAS  Google Scholar 

  2. Mangano CM, Diamondstone LS, Ramsay JG, et al (1998) Renal dysfunction after myocardial revascularization: risk factors, adverse outcomes, and hospital resource utilization. The Multicenter Study of Perioperative Ischemia Research Group. Ann Intern Med 128: 194–203

    CAS  PubMed  Google Scholar 

  3. Godet G, Pleron MH, Vicaut E, et al (1997) Risk factors for acute postoperative renal failure in thoracic or thoracoabdominal aortic surgery: a prospective study. Anesth Analg 85: 1227–1232

    Article  CAS  PubMed  Google Scholar 

  4. Conlon PJ, Stafford-Smith M, White WD, et al (1999) Acute renal failure following cardiac surgery. Nephrol Dial Transplant 14: 1158–1162

    Article  CAS  PubMed  Google Scholar 

  5. Chertow GM, Levy EM, Hammermeister KE, et al (1998) Independent association between acute renal failure and mortality following cardiac surgery. Am J Med 104: 343–348

    Article  CAS  PubMed  Google Scholar 

  6. Metnitz PG, Krenn CG, Steltzer H, et al (2002) Effect of acute renal failure requiring renal replacement therapy on outcome in critically ill patients. Crit Care Med 30: 2051–2058

    Article  PubMed  Google Scholar 

  7. Brezis M, Rosen S (1995) Hypoxia of the renal medulla—its implications for disease. N Engl J Med 332: 647–655

    Article  CAS  PubMed  Google Scholar 

  8. Block CA, Manning HL (2002) Prevention of acute renal failure in the critically ill. Am J Respir Crit Care Med 165: 320–324

    PubMed  Google Scholar 

  9. Kisch B (1956) Electron microscopy of the atrium of the heart. I. Guinea pig. Exp Med Surg 14: 99–112

    CAS  PubMed  Google Scholar 

  10. Jamieson JD, Palade GE (1964) Specific granules in atrial muscle cells. J Cell Biol 23: 151–172

    Article  CAS  PubMed  Google Scholar 

  11. de Bold AJ, Borenstein HB, Veress AT, Sonnenberg H (1981) A rapid and potent natriuretic response to intravenous injection of atrial myocardial extract in rats. Life Sci 28: 89–94

    Article  PubMed  Google Scholar 

  12. Flynn TG, de Bold ML, de Bold AJ (1983) The amino acid sequence of an atrial peptide with potent diuretic and natriuretic properties. Biochem Biophys Res Commun 117: 859–865

    Article  CAS  PubMed  Google Scholar 

  13. Kangawa K, Matsuo H (1984) Purification and complete amino acid sequence of alpha-human atrial natriuretic polypeptide (alpha-hANP). Biochem Biophys Res Commun 118: 131–139

    Article  CAS  PubMed  Google Scholar 

  14. Brenner BM, Ballermann BJ, Gunning ME, Zeidel ML (1990) Diverse biological actions of atrial natriuretic peptide. Physiol Rev 70: 665–699

    CAS  PubMed  Google Scholar 

  15. Weidmann P, Hasler L, Gnadinger MP, et al (1986) Blood levels and renal effects of atrial natriuretic peptide in normal man. J Clin Invest 77: 734–742

    Article  CAS  PubMed  Google Scholar 

  16. Biollaz j, Nussberger J, Porchet M, et al (1986) Four-hour infusions of synthetic atrial natriuretic peptide in normal volunteers. Hypertension 8: 1196–105

    Google Scholar 

  17. Bidiville J, Waeber G, Porchet M, et al (1988) Hemodynamic, renal and endocrine effects of 4-hour infusions of human atrial natriuretic peptide in normal volunteers. Fundam Clin Pharmacol 2: 413–429

    Article  CAS  PubMed  Google Scholar 

  18. Janssen WM, de Zeeuw D, van der Hem GK, de Iong PE (1989) Atrial natriuretic peptideinduced decreases in renal blood flow in man: implications for the natriuretic mechanism. Clin Sci (Lond) 77: 55–60

    CAS  Google Scholar 

  19. Valsson F, Ricksten SE, Redner T, Zall S, William-Olsson EB, Lundin S (1994) Effects of atrial natriuretic peptide on renal function after cardiac surgery and in cyclosporine-treated heart transplant recipients. J Cardiothorac Vase Anesth 8: 425–430

    Article  CAS  Google Scholar 

  20. Bergman A, Odar-Cederlof I, Theodorsson E, Westman L (1994) Renal effects of human atrial natriuretic peptide in patients after major vascular surgery. Acta Anaesthesiol Scand 38: 667–671

    Article  CAS  PubMed  Google Scholar 

  21. Sward K, Valsson F, Sellgren J, Ricksten SE (2005) Differential effects of human atrial natriuretic peptide and furosemide on glomerular filtration rate and renal oxygen consumption in humans. Intensive Care Med 31: 79–85

    Article  PubMed  Google Scholar 

  22. Marin-Grez M, Fleming JT, Steinhausen M (1986) Atrial natriuretic peptide causes pre-glomerular vasodilatation and post-glomerular vasoconstriction in rat kidney. Nature 324: 473–476

    Article  CAS  PubMed  Google Scholar 

  23. Lassen NA, Munck O, Thaysen JH (1961) Oxygen consumption and sodium reabsorption in the kidney. Acta Physiol Scand 51: 371–384

    Article  CAS  PubMed  Google Scholar 

  24. Redfors B, Sward K, Sellgren J, Ricksten SE (2009) Effects of mannitol alone and mannitol plus furosemide on renal oxygen consumption, blood flow and glomerular filtration after cardiac surgery. Intensive Care Med 35: 115–122

    Article  CAS  PubMed  Google Scholar 

  25. Bragadottir G, Redfors B, Nygren A, Sellgren J, Ricksten SE (2009) Low-dose vasopressin increases glomerular filtration rate, but impairs renal oxygenation in post-cardiac surgery patients. Acta Anaesthesiol Scand 53: 1052–1059

    Article  CAS  PubMed  Google Scholar 

  26. Zeidel ML, Seifter JL, Lear S, Brenner BM, Silva P (1986) Atrial peptides inhibit oxygen consumption in kidney medullary collecting duct cells. Am J Physiol 251: F379–383

    CAS  PubMed  Google Scholar 

  27. Gadano A, Moreau R, Vachiery F, et al (1997) Natriuretic response to the combination of atrial natriuretic peptide and terlipressin in patients with cirrhosis and refractory ascites. J Hepatol 26: 1229–1234

    Article  CAS  PubMed  Google Scholar 

  28. Valsson F, Ricksten SE, Redner T, Lundin S (1996) Effects of atrial natriuretic peptide on acute renal impairment in patients with heart failure after cardiac surgery. Intensive Care Med 22: 230–236

    Article  CAS  PubMed  Google Scholar 

  29. Sward K, Valson F, Ricksten SE (2001) Long-term infusion of atrial natriuretic peptide (ANP) improves renal blood flow and glomerular filtration rate in clinical acute renal failure. Acta Anaesthesiol Scand 45: 536–542

    Article  CAS  PubMed  Google Scholar 

  30. Ichai C, Soubielle J, Carles M, Giunti C, Grimaud D (2000) Comparison of the renal effects of low to high doses of dopamine and dobutamine in critically ill patients: a single-blind randomized study. Crit Care Med 28: 921–928

    Article  CAS  PubMed  Google Scholar 

  31. Allgren RL, Marbury TC, Rahman SN, et al (1997) Anaritide in acute tubular necrosis. Auriculin Anaritide Acute Renal Failure Study Group. N Engl J Med 336: 828–834

    Article  CAS  PubMed  Google Scholar 

  32. Lewis J, Salem MM, Chertow GM (2000) Atrial natriuretic factor in oliguric acute renal failure. Anaritide Acute Renal Failure Study Group. Am J Kidney Dis 36: 767–774

    Article  CAS  PubMed  Google Scholar 

  33. Conger JD, Schultz MF, Miller F, et al (1994) Responses to hemorrhagic arterial pressure reduction in different ischemic renal failure models. Kidney Int 46: 318–323

    Article  CAS  PubMed  Google Scholar 

  34. Sward K, Valsson F, Odencrants P, Samuelsson O, Ricksten SE (2004) Recombinant human atrial natriuretic peptide in ischemic acute renal failure: a randomized placebo-controlled trial. Crit Care Med 32: 1310–1315

    Article  PubMed  Google Scholar 

  35. Hansen JM, Fogh-Andersen N, Christensen NJ, Strandgaard S (1997) Cyclosporine-induced hypertension and decline in renal function in healthy volunteers. J Hypertens 15: 319–326

    Article  CAS  PubMed  Google Scholar 

  36. Akamatsu N, Sugawara Y, Tamura S, et al (2005) Prevention of renal impairment by continuous infusion of human atrial natriuretic peptide aftr liver transplantation. Transplantation 80: 1093–1098

    Article  CAS  PubMed  Google Scholar 

  37. Kurnik BR, Allgren RL, Genter FC, Solomon RJ, Bates ER, Weisberg LS (1998) Prospective study of atrial natriuretic peptide for the prevention of radiocontrast-induced nephropathy. Am J Kidney Dis 31: 674–680

    Article  CAS  PubMed  Google Scholar 

  38. Morikawa S, Sone T, Tsuboi H, et al (2009) Renal protective effects and the prevention of contrast-induced nephropathy by atrial natriuretic peptide. J Am Coll Cardiol 53: 1040–1046

    Article  CAS  PubMed  Google Scholar 

  39. Nigwekar SU, Hix JK (2009) The role of natriuretic peptide administration in cardiovascular surgery-associated renal dysfunction: a systematic review and meta-analysis of randomized controlled trials. J Cardiothorac Vasc Anesth 23: 151–160

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science + Business Media Inc.

About this paper

Cite this paper

Ricksten, SE., Swärd, K. (2010). Atrial Natriuretic Peptide in Postoperative Acute Renal Failure. In: Vincent, JL. (eds) Intensive Care Medicine. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5562-3_32

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-5562-3_32

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-5561-6

  • Online ISBN: 978-1-4419-5562-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics