Skip to main content
Log in

Effects of mannitol alone and mannitol plus furosemide on renal oxygen consumption, blood flow and glomerular filtration after cardiac surgery

  • Original
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Objective

Imbalance of the renal medullary oxygen supply/demand relationship can cause hypoxic medullary damage and ischaemic acute renal failure (ARF). The use of mannitol for prophylaxis/treatment of clinical ischaemic ARF is controversial and the effect of mannitol on renal oxygenation in man has not yet been investigated. We evaluated the effects of mannitol on renal oxygen consumption (RVO2), renal blood flow (RBF) and glomerular filtration rate (GFR) in postoperative patients.

Design

Prospective interventional study.

Setting

University hospital cardiothoracic ICU.

Patients

Ten uncomplicated mechanically ventilated and sedated postcardiac surgery patients with preoperatively normal renal function.

Interventions

Mannitol infusion (225 mg/kg + 75 mg/kg/h) and combined mannitol and furosemide infusion (0.25 mg/kg + 0.25 mg/kg/h).

Measurements and results

Systemic haemodynamics were evaluated by a pulmonary artery catheter. RBF and GFR were measured by the renal vein thermodilution technique and by renal extraction of 51Cr–EDTA, respectively. Mannitol increased urine flow (60%), GFR (20%) and filtration fraction (FF) (20%) with no change in RBF. This was accompanied by an increase in renal sodium reabsorption (18%), RVO2 (19%) and renal oxygen extraction (21%). When combined with mannitol, furosemide normalised sodium reabsorption, RVO2, renal oxygen extraction with no change in RBF, while GFR and FF were still elevated compared to control.

Conclusions

In patients with normal renal function, mannitol increases GFR, which increases tubular sodium load, sodium reabsorption and RVO2 after cardiac surgery. The lack of effect on RBF, indicates that mannitol impairs the renal oxygen supply/demand relationship. Furosemide normalised renal oxygenation when combined with mannitol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Mangano CM, Diamondstone LS, Ramsay JG, Aggarwal A, Herskowitz A, Mangano DT (1998) Renal dysfunction after myocardial revascularization: risk factors, adverse outcomes, and hospital resource utilization. The Multicenter Study of Perioperative Ischemia Research Group. Ann Intern Med 128:194–203

    PubMed  CAS  Google Scholar 

  2. Block CA, Manning HL (2002) Prevention of acute renal failure in the critically ill. Am J Respir Crit Care Med 165:320–324

    PubMed  Google Scholar 

  3. Brezis M, Rosen S (1995) Hypoxia of the renal medulla—its implications for disease. N Engl J Med 332:647–655

    Article  PubMed  CAS  Google Scholar 

  4. Kiil F, Aukland K, Refsum HE (1961) Renal sodium transport and oxygen consumption. Am J Physiol 201:511–516

    PubMed  CAS  Google Scholar 

  5. Sward K, Valsson F, Sellgren J, Ricksten SE (2005) Differential effects of human atrial natriuretic peptide and furosemide on glomerular filtration rate and renal oxygen consumption in humans. Intensive Care Med 31:79–85

    Article  PubMed  Google Scholar 

  6. Better OS, Rubinstein I, Winaver JM, Knochel JP (1997) Mannitol therapy revisited (1940–1997). Kidney Int 52:886–894

    Article  PubMed  CAS  Google Scholar 

  7. van Valenberg PL, Hoitsma AJ, Tiggeler RG, Berden JH, van Lier HJ, Koene RA (1987) Mannitol as an indispensable constituent of an intraoperative hydration protocol for the prevention of acute renal failure after renal cadaveric transplantation. Transplantation 44:784–788

    Article  PubMed  Google Scholar 

  8. Valdes ME, Landau SE, Shah DM, Newell JC, Scovill WA, Stratton H, Rhodes GR, Powers SR Jr (1979) Increased glomerular filtration rate following mannitol administration in man. J Surg Res 26:473–477

    Article  PubMed  CAS  Google Scholar 

  9. Fry AC, Farrington K (2006) Management of acute renal failure. Postgrad Med J 82:106–116

    Article  PubMed  CAS  Google Scholar 

  10. Lameire NH, De Vriese AS, Vanholder R (2003) Prevention and nondialytic treatment of acute renal failure. Curr Opin Crit Care 9:481–490

    Article  PubMed  Google Scholar 

  11. Bellomo R, Bonventre J, Macias W, Pinsky M (2005) Management of early acute renal failure: focus on post-injury prevention. Curr Opin Crit Care 11:542–547

    Article  PubMed  Google Scholar 

  12. Goldwasser P, Fotino S (1984) Acute renal failure following massive mannitol infusion. Appropriate response of tubuloglomerular feedback? Arch Intern Med 144:2214–2216

    Article  PubMed  CAS  Google Scholar 

  13. Tidgren B, Brodin U (1988) Plasma renin activity and oxygen content along the renal veins in hypertensive patients. Clin Physiol 8:407–416

    Article  PubMed  CAS  Google Scholar 

  14. Sward K, Valsson F, Sellgren J, Ricksten SE (2004) Bedside estimation of absolute renal blood flow and glomerular filtration rate in the intensive care unit. A validation of two independent methods. Intensive Care Med 30:1776–1782

    Article  PubMed  Google Scholar 

  15. Andersson LG, Bratteby LE, Ekroth R, Wesslen O, Hallhagen S (1994) Calculation of renal extraction during high diuresis and low renal plasma flow conditions. Clin Physiol 14:79–85

    Article  PubMed  CAS  Google Scholar 

  16. Bland JM, Altman DG (1995) Calculating correlation coefficients with repeated observations: Part 1—correlation within subjects. BMJ 310:446

    PubMed  CAS  Google Scholar 

  17. Buerkert J, Martin D, Prasad J, Trigg D (1981) Role of deep nephrons and the terminal collecting duct in a mannitol-induced diuresis. Am J Physiol 240:F411–F422

    PubMed  CAS  Google Scholar 

  18. Velasquez MT, Notargiacomo AV, Cohn JN (1973) Comparative effects of saline and mannitol on renal cortical blood flow and volume in the dog. Am J Physiol 224:322–327

    PubMed  CAS  Google Scholar 

  19. Braun WE, Lilienfield LS (1963) Renal hemodynamic effects of hypertonic mannitol infusions. Proc Soc Exp Biol Med 114:1–6

    PubMed  CAS  Google Scholar 

  20. Selkurt E (1945) Changes in renal clearance following complete ischemia of kidney. Am J Physiol 144:395–403

    CAS  Google Scholar 

  21. Morris CR, Alexander EA, Bruns FJ, Levinsky NG (1972) Restoration and maintenance of glomerular filtration by mannitol during hypoperfusion of the kidney. J Clin Invest 51:1555–1564

    Article  PubMed  CAS  Google Scholar 

  22. Johnston PA, Bernard DB, Perrin NS, Levinsky NG (1981) Prostaglandins mediate the vasodilatory effect of mannitol in the hypoperfused rat kidney. J Clin Invest 68:127–133

    Article  PubMed  CAS  Google Scholar 

  23. Yamasaki Y, Nishiuchi T, Kojima A, Saito H, Saito S (1988) Effects of an oral water load and intravenous administration of isotonic glucose, hypertonic saline, mannitol and furosemide on the release of atrial natriuretic peptide in men. Acta Endocrinol (Copenh) 119:269–276

    CAS  Google Scholar 

  24. Castaneda-Zuniga WR, Janata V, Beranek I, Amplatz K (1978) Renal blood flow changes following mannitol infusion. Rev Interam Radiol 3:21–26

    PubMed  CAS  Google Scholar 

  25. Kurnik BR, Weisberg LS, Cuttler IM, Kurnik PB (1990) Effects of atrial natriuretic peptide versus mannitol on renal blood flow during radiocontrast infusion in chronic renal failure. J Lab Clin Med 116:27–36

    PubMed  CAS  Google Scholar 

  26. Seely JF, Dirks JH (1969) Micropuncture study of hypertonic mannitol diuresis in the proximal and distal tubule of the dog kidney. J Clin Invest 48:2330–2340

    Article  PubMed  CAS  Google Scholar 

  27. Blantz RC (1974) Effect of mannitol on glomerular ultrafiltration in the hydropenic rat. J Clin Invest 54:1135–1143

    Article  PubMed  CAS  Google Scholar 

  28. Goldberg M, McCurdy DK, Ramirez MA (1965) Differences between saline and mannitol diuresis in hydropenic man. J Clin Invest 44:182–192

    Article  PubMed  CAS  Google Scholar 

  29. Behnia R, Koushanpour E, Brunner EA (1996) Effects of hyperosmotic mannitol infusion on hemodynamics of dog kidney. Anesth Analg 82:902–908

    Article  PubMed  CAS  Google Scholar 

  30. Flores J, DiBona DR, Beck CH, Leaf A (1972) The role of cell swelling in ischemic renal damage and the protective effect of hypertonic solute. J Clin Invest 51:118–126

    Article  PubMed  CAS  Google Scholar 

  31. Mason J, Joeris B, Welsch J, Kriz W (1989) Vascular congestion in ischemic renal failure: the role of cell swelling. Miner Electrolyte Metab 15:114–124

    PubMed  Google Scholar 

  32. Burke TJ, Cronin RE, Duchin KL, Peterson LN, Schrier RW (1980) Ischemia and tubule obstruction during acute renal failure in dogs: mannitol in protection. Am J Physiol 238:F305–F314

    PubMed  CAS  Google Scholar 

  33. Zager RA, Mahan J, Merola AJ (1985) Effects of mannitol on the postischemic kidney. Biochemical, functional, and morphologic assessments. Lab Invest 53:433–442

    PubMed  CAS  Google Scholar 

  34. Lindstrom KE, Ronnstedt L, Jaremko G, Haraldsson B (1999) Physiological and morphological effects of perfusing isolated rat kidneys with hyperosmolal mannitol solutions. Acta Physiol Scand 166:231–238

    Article  PubMed  CAS  Google Scholar 

  35. Jorres A, Kordonouri O, Schiessler A, Hess S, Farke S, Gahl GM, Muller C, Djurup R (1994) Urinary excretion of thromboxane and markers for renal injury in patients undergoing cardiopulmonary bypass. Artif Organs 18:565–569

    Article  PubMed  CAS  Google Scholar 

  36. Chen JS, Lee HS, Jin JS, Chen A, Lin SH, Ka SM, Lin YF (2004) Attenuation of mouse mesangial cell contractility by high glucose and mannitol: involvement of protein kinase C and focal adhesion kinase. J Biomed Sci 11:142–151

    Article  PubMed  CAS  Google Scholar 

  37. Carcoana OV, Mathew JP, Davis E, Byrne DW, Hayslett JP, Hines RL, Garwood S (2003) Mannitol and dopamine in patients undergoing cardiopulmonary bypass: a randomized clinical trial. Anesth Analg 97:1222–1229

    Article  PubMed  CAS  Google Scholar 

  38. Heyman SN, Brezis M, Epstein FH, Spokes K, Silva P, Rosen S (1991) Early renal medullary hypoxic injury from radiocontrast and indomethacin. Kidney Int 40:632–642

    Article  PubMed  CAS  Google Scholar 

  39. Brezis M, Agmon Y, Epstein FH (1994) Determinants of intrarenal oxygenation I. Effects of diuretics. Am J Physiol 267:F1059–F1062

    PubMed  CAS  Google Scholar 

  40. Zager RA, Foerder C, Bredl C (1991) The influence of mannitol on myoglobinuric acute renal failure: functional, biochemical, and morphological assessments. J Am Soc Nephrol 2:848–855

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The technical assistance of Marita Ahlqvist and the assistance of the nursing staff of the Cardiothoracic Intensive Care Unit and Surgical Theatre of the Sahlgrenska University Hospital, are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven-Erik Ricksten.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Redfors, B., Swärd, K., Sellgren, J. et al. Effects of mannitol alone and mannitol plus furosemide on renal oxygen consumption, blood flow and glomerular filtration after cardiac surgery. Intensive Care Med 35, 115–122 (2009). https://doi.org/10.1007/s00134-008-1206-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-008-1206-5

Keywords

Navigation