Skip to main content

Well-Differentiated Thyroid Follicular Carcinoma

  • Chapter
  • First Online:
Molecular Pathology of Endocrine Diseases

Part of the book series: Molecular Pathology Library ((MPLB,volume 3))

  • 923 Accesses

Abstract

Tumors that arise from follicular epithelial cells of the human thyroid gland are common in clinical practice and can be detected in up to 50% of adults by ultrasonography.1–3 Fortunately, less than 20% of palpable thyroid tumors are carcinomas, and these make up only about 1% of all cancers.4 Approximately 80% of thyroid cancers are papillary carcinomas that have an excellent prognosis with an overall patient survival of 90-95%.5 Another 15% of thyroid carcinomas are follicular and Hürthle cell carcinomas that have a good prognosis with an overall patient survival of 75-80%.4,612 Papillary, follicular, and Hürthle cell carcinomas are thought to arise from the same type of precursor thyroid follicular epithelial cell, although each has unique morphologic and clinical features. Well-differentiated thyroid carcinomas have the potential to progress to aggressive clinical disease that may be rapidly lethal, particularly in older patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tan GH, Gharib H. Thyroid incidentalomas: management approaches to nonpalpable nodules discovered incidentally on thyroid imaging. Ann Intern Med. 1997;126:226–231.

    PubMed  CAS  Google Scholar 

  2. Ezzat S. Sarti DA, Cain DR. Braunstein GD Thyroid incidenta­lomas Prevalence by palpation and ultrasonography Arch Intern Med. 1994;154:1838–1840.

    CAS  Google Scholar 

  3. Bruneton JN, Balu-Maestro C, Marcy PY, Melia P, Mourou MY. Very high frequency (13 MHz) ultrasonographic examination of the normal neck: detection of normal lymph nodes and thyroid nodules. J Ultrasound Med. 1994;13:87–90.

    PubMed  CAS  Google Scholar 

  4. Hundahl SA, Fleming ID, Fremgen AM, Menck HR. A National Cancer Data Base report on 53, 856 cases of thyroid carcinoma treated in the U.S., 1985-1995 [see comments]. Cancer. 1998;83:2638–2648.

    Article  PubMed  CAS  Google Scholar 

  5. DeLellis R, Lloyd R, Heitz P, Eng C, eds. Pathology and Genetics of Tumours of Endocrine Organs. Lyon: IARC; 2004.

    Google Scholar 

  6. D’Avanzo A, Ituarte P, Treseler P, et al. Prognostic scoring systems in patients with follicular thyroid cancer: a comparison of different staging systems in predicting the patient outcome. Thyroid. 2004;14:453–458.

    Article  PubMed  Google Scholar 

  7. Harness JK, Thompson NW, McLeod MK, Eckhauser FE, Lloyd RV. Follicular carcinoma of the thyroid gland: trends and treatment. Surgery. 1984;96:972–980.

    PubMed  CAS  Google Scholar 

  8. Lang W, Choritz H, Hundeshagen H. Risk factors in follicular thyroid carcinomas. A retrospective follow-up study covering a 14-year period with emphasis on morphological findings. Am J Surg Pathol. 1986;10:246–255.

    Article  PubMed  CAS  Google Scholar 

  9. DeGroot LJ, Kaplan EL, Shukla MS, Salti G, Straus FH. Morbidity and mortality in follicular thyroid cancer. J Clin Endocrinol Metab. 1995;80:2946–2953.

    Article  PubMed  CAS  Google Scholar 

  10. Brennan MD, Bergstralh EJ, van Heerden JA, McConahey WM. Follicular thyroid cancer treated at the Mayo Clinic, 1946 through 1970: initial manifestations, pathologic findings, therapy, and outcome. Mayo Clin Proc. 1991;66:11–22.

    PubMed  CAS  Google Scholar 

  11. Grebe SK, Hay ID. Follicular thyroid cancer. Endocrinol Metab Clin North Am. 1995;24:761–801.

    PubMed  CAS  Google Scholar 

  12. Evans HL. Follicular neoplasms of the thyroid. A study of 44 cases followed for a minimum of 10 years, with emphasis on differential diagnosis. Cancer. 1984;54:535–540.

    Article  PubMed  CAS  Google Scholar 

  13. Albores-Saavedra J, Henson DE, Glazer E, Schwartz AM. Changing patterns in the incidence and survival of thyroid cancer with follicular phenotype - papillary, follicular, and anaplastic: a morphological and epidemiological study. Endocr Pathol. 2007;18:1–7.

    Article  PubMed  Google Scholar 

  14. Hodgson NC, Button J, Solorzano CC. Thyroid cancer: is the incidence still increasing? Ann Surg Oncol. 2004;11: 1093–1097.

    Article  PubMed  Google Scholar 

  15. Davies L, Welch HG. Increasing incidence of thyroid cancer in the United States, 1973-2002. JAMA. 2006;295:2164–2167.

    Article  PubMed  CAS  Google Scholar 

  16. Czene K, Lichtenstein P, Hemminki K. Environmental and heritable causes of cancer among 9.6 million individuals in the Swedish Family-Cancer Database. Int J Cancer. 2002;99:260–266.

    Article  PubMed  CAS  Google Scholar 

  17. Goldgar DE, Easton DF, Cannon-Albright LA, Skolnick MH. Systematic population-based assessment of cancer risk in first-degree relatives of cancer probands. J Natl Cancer Inst. 1994;86:1600–1608.

    Article  PubMed  CAS  Google Scholar 

  18. Lloyd RV, Erickson LA, Casey MB, et al. Observer variation in the diagnosis of follicular variant of papillary thyroid carcinoma. Am J Surg Pathol. 2004;28:1336–1340.

    Article  PubMed  Google Scholar 

  19. Hirokawa M, Carney JA, Goellner JR, et al. Observer variation of encapsulated follicular lesions of the thyroid gland. Am J Surg Pathol. 2002;26:1508–1514.

    Article  PubMed  Google Scholar 

  20. Baloch ZW, Livolsi VA. Follicular-patterned lesions of the thyroid: the bane of the pathologist. Am J Clin Pathol. 2002;117:143–150.

    Article  PubMed  Google Scholar 

  21. LiVolsi VA, Asa SL. The demise of follicular carcinoma of the thyroid gland. Thyroid. 1994;4:233–236.

    Article  PubMed  CAS  Google Scholar 

  22. Farahati J, Geling M, Mader U, et al. Changing trends of incidence and prognosis of thyroid carcinoma in lower Franconia, Germany, from 1981-1995. Thyroid. 2004;14:141–147.

    Article  PubMed  Google Scholar 

  23. Williams ED, Doniach I, Bjarnason O, Michie W. Thyroid cancer in an iodide rich area: a histopathological study. Cancer. 1977;39:215–222.

    Article  PubMed  CAS  Google Scholar 

  24. Stojadinovic A, Hoos A, Ghossein RA, et al. Hürthle cell carcinoma: a 60-year experience. Ann Surg Oncol. 2002;9:197–203.

    PubMed  Google Scholar 

  25. Har-El G, Hadar T, Segal K, Levy R, Sidi J. Hürthle cell carcinoma of the thyroid gland. A tumor of moderate malignancy. Cancer. 1986;57:1613–1617.

    Article  PubMed  CAS  Google Scholar 

  26. Grossman RF, Clark OH. Hürthle cell carcinoma. Cancer Control. 1997;4:13–17.

    PubMed  Google Scholar 

  27. Kushchayeva Y, Duh QY, Kebebew E, D’Avanzo A, Clark OH. Comparison of clinical characteristics at diagnosis and during follow-up in 118 patients with Hürthle cell or follicular thyroid cancer. Am J Surg. 2008;195:457–462.

    Article  PubMed  Google Scholar 

  28. Shaha AR, Loree TR, Shah JP. Prognostic factors and risk group analysis in follicular carcinoma of the thyroid. Surgery. 1995;118:1131-1136. discussion 1136–1138.

    Article  PubMed  CAS  Google Scholar 

  29. Evans HL, Vassilopoulou-Sellin R. Follicular and Hürthle cell carcinomas of the thyroid: a comparative study. Am J Surg Pathol. 1998;22:1512–1520.

    Article  PubMed  CAS  Google Scholar 

  30. Nikiforova MN, Lynch RA, Biddinger PW, et al. RAS point mutations and PAX8-PPAR gamma rearrangement in thyroid tumors: evidence for distinct molecular pathways in thyroid follicular carcinoma. J Clin Endocrinol Metab. 2003;88:2318–2326.

    Article  PubMed  CAS  Google Scholar 

  31. French CA, Alexander EK, Cibas ES, et al. Genetic and biological subgroups of low-stage follicular thyroid cancer. Am J Pathol. 2003;162:1053–1060.

    PubMed  CAS  Google Scholar 

  32. Tung WS, Shevlin DW, Kaleem Z, Tribune DJ, Wells SA Jr, Goodfellow PJ. Allelotype of follicular thyroid carcinomas reveals genetic instability consistent with frequent nondisjunctional chromosomal loss. Genes Chromosomes Cancer. 1997;19:43–51.

    Article  PubMed  CAS  Google Scholar 

  33. Semple RK, Meirhaeghe A, Vidal-Puig AJ, et al. A dominant negative human peroxisome proliferator-activated receptor (PPAR){alpha} is a constitutive transcriptional corepressor and inhibits signaling through all PPAR isoforms. Endocrinology. 2005;146:1871–1882.

    Article  PubMed  CAS  Google Scholar 

  34. Farrand K, Delahunt B, Wang XL, et al. High resolution loss of heterozygosity mapping of 17p13 in thyroid cancer: Hürthle cell carcinomas exhibit a small 411-kilobase common region of allelic imbalance, probably containing a novel tumor suppressor gene. J Clin Endocrinol Metab. 2002;87:4715–4721.

    Article  PubMed  CAS  Google Scholar 

  35. Cheung CC, Ezzat S, Ramyar L, Freeman JL, Asa SL. Molecular basis off Hürthle cell papillary thyroid carcinoma. J Clin Endocrinol Metab. 2000;85:878–882.

    Article  PubMed  CAS  Google Scholar 

  36. Chiappetta G, Toti P, Cetta F, et al. The RET/PTC oncogene is frequently activated in oncocytic thyroid tumors (Hürthle cell adenomas and carcinomas), but not in oncocytic hyperplastic lesions. J Clin Endocrinol Metab. 2002;87:364–369.

    Article  PubMed  CAS  Google Scholar 

  37. Belchetz G, Cheung CC, Freeman J, Rosen IB, Witterick IJ, Asa SL. Hürthle cell tumors: using molecular techniques to define a novel classification system. Arch Otolaryngol Head Neck Surg. 2002;128:237–240.

    PubMed  Google Scholar 

  38. Fischer S, Asa SL. Application of immunohistochemistry to thyroid neoplasms. Arch Pathol Lab Med. 2008;132:359–372.

    PubMed  Google Scholar 

  39. Papotti M, Rodriguez J, De Pompa R, Bartolazzi A, Rosai J. Galectin-3 and HBME-1 expression in well-differentiated thyroid tumors with follicular architecture of uncertain malignant potential. Mod Pathol. 2005;18:541–546.

    Article  PubMed  CAS  Google Scholar 

  40. Weber KB, Shroyer KR, Heinz DE, Nawaz S, Said MS, Haugen BR. The use of a combination of galectin-3 and thyroid peroxidase for the diagnosis and prognosis of thyroid cancer. Am J Clin Pathol. 2004;122:524–531.

    Article  PubMed  Google Scholar 

  41. Oestreicher-Kedem Y, Halpern M, Roizman P, et al. Diagnostic value of galectin-3 as a marker for malignancy in follicular patterned thyroid lesions. Head Neck. 2004;26:960–966.

    Article  PubMed  Google Scholar 

  42. Prasad ML, Pellegata NS, Huang Y, Nagaraja HN, de la Chapelle A, Kloos RT. Galectin-3, fibronectin-1, CITED-1, HBME1 and cytokeratin-19 immunohistochemistry is useful for the differential diagnosis of thyroid tumors. Mod Pathol. 2005;18:48–57.

    Article  PubMed  CAS  Google Scholar 

  43. Saggiorato E, Aversa S, Deandreis D, et al. Galectin-3: presurgical marker of thyroid follicular epithelial cell-derived carcinomas. J Endocrinol Invest. 2004;27:311–317.

    PubMed  CAS  Google Scholar 

  44. Bartolazzi A, Orlandi F, Saggiorato E, et al. Galectin-3-expression analysis in the surgical selection of follicular thyroid nodules with indeterminate fine-needle aspiration cytology: a prospective multicentre study. Lancet Oncol. 2008;9:543–549.

    Article  PubMed  CAS  Google Scholar 

  45. Cvejic DS, Savin SB, Petrovic IM, Paunovic IR, Tatic SB, Havelka MJ. Galectin-3 expression in papillary thyroid carcinoma: relation to histomorphologic growth pattern, lymph node metastasis, extrathyroid invasion, and tumor size. Head Neck. 2005;27:1049–1055.

    Article  PubMed  Google Scholar 

  46. Fernandez PL, Merino MJ, Gomez M, et al. Galectin-3 and laminin expression in neoplastic and non-neoplastic thyroid tissue. J Pathol. 1997;181:80–86.

    Article  PubMed  CAS  Google Scholar 

  47. Herrmann ME, LiVolsi VA, Pasha TL, Roberts SA, Wojcik EM, Baloch ZW. Immunohistochemical expression of galectin-3 in benign and malignant thyroid lesions. Arch Pathol Lab Med. 2002;126:710–713.

    PubMed  CAS  Google Scholar 

  48. Kovacs RB, Foldes J, Winkler G, Bodo M, Sapi Z. The investigation of galectin-3 in diseases of the thyroid gland. Eur J Endocrinol. 2003;149:449–453.

    Article  PubMed  CAS  Google Scholar 

  49. Gasbarri A, Martegani MP, Del Prete F, Lucante T, Natali PG, Bartolazzi A. Galectin-3 and CD44v6 isoforms in the preoperative evaluation of thyroid nodules. J Clin Oncol. 1999;17:3494–3502.

    PubMed  CAS  Google Scholar 

  50. Chiariotti L, Berlingieri MT, Battaglia C, et al. Expression of galectin-1 in normal human thyroid gland and in differentiated and poorly differentiated thyroid tumors. Int J Cancer. 1995;64:171–175.

    Article  PubMed  CAS  Google Scholar 

  51. Inohara H, Honjo Y, Yoshii T, et al. Expression of galectin-3 in fine-needle aspirates as a diagnostic marker differentiating benign from malignant thyroid neoplasms. Cancer. 1999;85:2475–2484.

    Article  PubMed  CAS  Google Scholar 

  52. Orlandi F, Saggiorato E, Pivano G, et al. Galectin-3 is a presurgical marker of human thyroid carcinoma. Cancer Res. 1998;58:3015–3020.

    PubMed  CAS  Google Scholar 

  53. Xu XC. el-Naggar AK, Lotan R. Differential expression of galectin-1 and galectin-3 in thyroid tumors. Potential diagnostic implications. Am J Pathol. 1995;147:815–822.

    PubMed  CAS  Google Scholar 

  54. de Matos PS, Ferreira AP, de Oliveira Facuri F, Assumpcao LV, Metze K, Ward LS. Usefulness of HBME-1, cytokeratin 19 and galectin-3 immunostaining in the diagnosis of thyroid malignancy. Histopathology. 2005;47:391–401.

    Article  PubMed  Google Scholar 

  55. Miettinen M, Karkkainen P. Differential reactivity of HBME-1 and CD15 antibodies in benign and malignant thyroid tumours. Preferential reactivity with malignant tumours. Virchows Arch. 1996;429:213–219.

    Article  PubMed  CAS  Google Scholar 

  56. Rezk S, Khan A. Role of immunohistochemistry in the diagnosis and progression of follicular epithelium-derived thyroid carcinoma. Appl Immunohistochem Mol Morphol. 2005;13:256–264.

    Article  PubMed  Google Scholar 

  57. Saggiorato E, De Pompa R, Volante M, et al. Characterization of thyroid ‘follicular neoplasms’ in fine-needle aspiration cytological specimens using a panel of immunohistochemical markers: a proposal for clinical application. Endocr Relat Cancer. 2005;12:305–317.

    Article  PubMed  CAS  Google Scholar 

  58. Choi YL, Kim MK, Suh JW, et al. Immunoexpression of HBME-1, high molecular weight cytokeratin, cytokeratin 19, thyroid transcription factor-1, and E-cadherin in thyroid carcinomas. J Korean Med Sci. 2005;20:853–859.

    Article  PubMed  CAS  Google Scholar 

  59. Cheung CC, Ezzat S, Freeman JL, Rosen IB, Asa SL. Immunohistochemical diagnosis of papillary thyroid carcinoma. Mod Pathol. 2001;14:338–342.

    Article  PubMed  CAS  Google Scholar 

  60. Mase T, Funahashi H, Koshikawa T, et al. HBME-1 immunostaining in thyroid tumors especially in follicular neoplasm. Endocr J. 2003;50:173–177.

    Article  PubMed  Google Scholar 

  61. Cerilli LA, Mills SE, Rumpel CA, Dudley TH, Moskaluk CA. Interpretation of RET immunostaining in follicular lesions of the thyroid. Am J Clin Pathol. 2002;118:186–193.

    Article  PubMed  Google Scholar 

  62. Nasser SM, Pitman MB, Pilch BZ, Faquin WC. Fine-needle aspiration biopsy of papillary thyroid carcinoma: diagnostic utility of cytokeratin 19 immunostaining. Cancer. 2000;90:307–311.

    Article  PubMed  CAS  Google Scholar 

  63. Lam KY, Lui MC, Lo CY. Cytokeratin expression profiles in thyroid carcinomas. Eur J Surg Oncol. 2001;27:631–635.

    Article  PubMed  CAS  Google Scholar 

  64. Khurana KK, Truong LD, LiVolsi VA, Baloch ZW. Cytokeratin 19 immunolocalization in cell block preparation of thyroid aspirates. An adjunct to fine-needle aspiration diagnosis of papillary thyroid carcinoma. Arch Pathol Lab Med. 2003;127:579–583.

    PubMed  Google Scholar 

  65. Baloch ZW, Abraham S, Roberts S, LiVolsi VA. Differential expression of cytokeratins in follicular variant of papillary carcinoma: an immunohistochemical study and its diagnostic utility. Hum Pathol. 1999;30:1166–1171.

    Article  PubMed  CAS  Google Scholar 

  66. Sahoo S, Hoda SA, Rosai J, DeLellis RA. Cytokeratin 19 immunoreactivity in the diagnosis of papillary thyroid carinoma: a note of caution. Am J Clin Pathol. 2001;116:696–702.

    Article  PubMed  CAS  Google Scholar 

  67. Beesley MF, McLaren KM. Cytokeratin 19 and galectin-3 immunohistochemistry in the differential diagnosis of solitary thyroid nodules. Histopathology. 2002;41:236–243.

    Article  PubMed  CAS  Google Scholar 

  68. Raphael SJ, McKeown-Eyssen G, Asa SL. High-molecular-weight cytokeratin and cytokeratin-19 in the diagnosis of thyroid tumors. Mod Pathol. 1994;7:295–300.

    PubMed  CAS  Google Scholar 

  69. Fonseca E, Nesland JM, Hoie J, Sobrinho-Simoes M. Pattern of expression of intermediate cytokeratin filaments in the thyroid gland: an immunohistochemical study of simple and stratified epithelial-type cytokeratins. Virchows Arch. 1997;430:239–245.

    Article  PubMed  CAS  Google Scholar 

  70. Kjellman P, Wallin G, Hoog A, Auer G, Larsson C, Zedenius J. MIB-1 index in thyroid tumors: a predictor of the clinical course in papillary thyroid carcinoma. Thyroid. 2003;13:371–380.

    Article  PubMed  Google Scholar 

  71. Rickert D, Mittermayer C, Lindenfelser R, Biesterfeld S. MIB-1 immunohistometry of follicular adenoma and follicular carcinoma of the thyroid gland. Anal Quant Cytol Histol. 2000;22:229–234.

    PubMed  CAS  Google Scholar 

  72. Erickson LA, Jin L, Wollan PC, Thompson GB, van Heerden J, Lloyd RV. Expression of p27kip1 and Ki-67 in benign and malignant thyroid tumors. Mod Pathol. 1998;11:169–174.

    PubMed  CAS  Google Scholar 

  73. Erickson LA, Jin L, Goellner JR, et al. Pathologic features, proliferative activity, and cyclin D1 expression in Hürthle cell neoplasms of the thyroid. Mod Pathol. 2000;13:186–192.

    Article  PubMed  CAS  Google Scholar 

  74. Zeng L, Geng Y, Tretiakova M, Yu X, Sicinski P, Kroll T. Peroxisome proliferator-activated receptor-delta induces cell proliferation by a novel cyclin E1-dependent mechanism and is upregulated in thyroid tumors. Cancer Res. 2008;68(16):6578–6586.

    Article  PubMed  CAS  Google Scholar 

  75. Kashima K, Yokoyama S, Daa T, Nakayama I, Nickerson PA, Noguchi S. Cytoplasmic biotin-like activity interferes with immunohistochemical analysis of thyroid lesions: a comparison of antigen retrieval methods. Mod Pathol. 1997;10:515–519.

    PubMed  CAS  Google Scholar 

  76. Srivastava A, Tischler AS, Delellis RA. Endogenous biotin staining as an artifact of antigen retrieval with automated immunostaining. Endocr Pathol. 2004;15:175–178.

    Article  PubMed  Google Scholar 

  77. Volante M, Bozzalla-Cassione F, DePompa R, et al. Galectin-3 and HBME-1 expression in oncocytic cell tumors of the thyroid. Virchows Arch. 2004;445:183–188.

    Article  PubMed  CAS  Google Scholar 

  78. Murray MJ, Cunningham JM, Parada LF, Dautry F, Lebowitz P, Weinberg RA. The HL-60 transforming sequence: a ras oncogene coexisting with altered myc genes in hematopoietic tumors. Cell. 1983;33:749–757.

    Article  PubMed  CAS  Google Scholar 

  79. Karnoub AE, Weinberg RA. Ras oncogenes: split personalities. Nat Rev Mol Cell Biol. 2008;9:517–531.

    Article  PubMed  CAS  Google Scholar 

  80. Bos JL. ras oncogenes in human cancer: a review. Cancer Res. 1989;49:4682–4689.

    PubMed  CAS  Google Scholar 

  81. Shi YF, Zou MJ, Schmidt H, et al. High rates of ras codon 61 mutation in thyroid tumors in an iodide-deficient area. Cancer Res. 1991;51:2690–2693.

    PubMed  CAS  Google Scholar 

  82. Wright PA, Lemoine NR, Mayall ES, et al. Papillary and follicular thyroid carcinomas show a different pattern of ras oncogene mutation. Br J Cancer. 1989;60:576–577.

    Article  PubMed  CAS  Google Scholar 

  83. Wright PA, Williams ED, Lemoine NR, Wynford-Thomas D. Radiation-associated and ‘spontaneous’ human thyroid carcinomas show a different pattern of ras oncogene mutation. Oncogene. 1991;6:471–473.

    PubMed  CAS  Google Scholar 

  84. Lemoine NR, Mayall ES, Wyllie FS, et al. Activated ras oncogenes in human thyroid cancers. Cancer Res. 1988;48:4459–4463.

    PubMed  CAS  Google Scholar 

  85. Manenti G, Pilotti S, Re FC, Della Porta G, Pierotti MA. Selective activation of ras oncogenes in follicular and undifferentiated thyroid carcinomas. Eur J Cancer. 1994;30A:987–993.

    Article  PubMed  CAS  Google Scholar 

  86. Lemoine NR, Mayall ES, Wyllie FS, et al. High frequency of ras oncogene activation in all stages of human thyroid tumorigenesis. Oncogene. 1989;4:159–164.

    PubMed  CAS  Google Scholar 

  87. Fukushima T, Suzuki S, Mashiko M, et al. BRAF mutations in papillary carcinomas of the thyroid. Oncogene. 2003;22:6455–6457.

    Article  PubMed  CAS  Google Scholar 

  88. Namba H, Rubin SA, Fagin JA. Point mutations of ras oncogenes are an early event in thyroid tumorigenesis. Mol Endocrinol. 1990;4:1474–1479.

    Article  PubMed  CAS  Google Scholar 

  89. Soares P, Trovisco V, Rocha AS, et al. BRAF mutations and RET/PTC rearrangements are alternative events in the etiopathogenesis of PTC. Oncogene. 2003;22:4578–4580.

    Article  PubMed  CAS  Google Scholar 

  90. Zhu Z, Gandhi M, Nikiforova MN, Fischer AH, Nikiforov YE. Molecular profile and clinical-pathologic features of the follicular variant of papillary thyroid carcinoma. An unusually high prevalence of ras mutations. Am J Clin Pathol. 2003;120:71–77.

    Article  PubMed  CAS  Google Scholar 

  91. Banito A, Pinto AE, Espadinha C, Marques AR, Leite V. Aneuploidy and RAS mutations are mutually exclusive events in the development of well-differentiated thyroid follicular tumours. Clin Endocrinol (Oxf). 2007;67:706–711.

    Article  CAS  Google Scholar 

  92. Oyama T, Suzuki T, Hara F, et al. N-ras mutation of thyroid tumor with special reference to the follicular type. Pathol Int. 1995;45:45–50.

    Article  PubMed  CAS  Google Scholar 

  93. Vasko V, Ferrand M, Di Cristofaro J, Carayon P, Henry JF, de Micco C. Specific pattern of RAS oncogene mutations in folli­cular thyroid tumors. J Clin Endocrinol Metab. 2003;88:2745–2752.

    Article  PubMed  CAS  Google Scholar 

  94. Garcia-Rostan G, Zhao H, Camp RL, et al. ras mutations are associated with aggressive tumor phenotypes and poor prognosis in thyroid cancer. J Clin Oncol. 2003;21:3226–3235.

    Article  PubMed  CAS  Google Scholar 

  95. Hara H, Fulton N, Yashiro T, Ito K, DeGroot LJ, Kaplan EL. N-ras mutation: an independent prognostic factor for aggressiveness of papillary thyroid carcinoma. Surgery. 1994;116:1010–1016.

    PubMed  CAS  Google Scholar 

  96. Basolo F, Pisaturo F, Pollina LE, et al. N-ras mutation in poorly differentiated thyroid carcinomas: correlation with bone metastases and inverse correlation to thyroglobulin expression. Thyroid. 2000;10:19–23.

    Article  PubMed  CAS  Google Scholar 

  97. Santelli G, de Franciscis V, Chiappetta G, et al. Thyroid specific expression of the Ki-ras oncogene in transgenic mice. Adv Exp Med Biol. 1993;348:59–62.

    PubMed  CAS  Google Scholar 

  98. Aguirre AJ, Bardeesy N, Sinha M, et al. Activated Kras and Ink4a/Arf deficiency cooperate to produce metastatic pancreatic ductal adenocarcinoma. Genes Dev. 2003;17:3112–3126.

    Article  PubMed  CAS  Google Scholar 

  99. Rochefort P, Caillou B, Michiels FM, et al. Thyroid pathologies in transgenic mice expressing a human activated Ras gene driven by a thyroglobulin promoter. Oncogene. 1996;12:111–118.

    PubMed  CAS  Google Scholar 

  100. Santoro M, Melillo RM, Grieco M, Berlingieri MT, Vecchio G, Fusco A. The TRK and RET tyrosine kinase oncogenes cooperate with ras in the neoplastic transformation of a rat thyroid epithelial cell line. Cell Growth Differ. 1993;4:77–84.

    PubMed  CAS  Google Scholar 

  101. Fusco A, Berlingieri MT, Di Fiore PP, Portella G, Grieco M, Vecchio G. One- and two-step transformations of rat thyroid epithelial cells by retroviral oncogenes. Mol Cell Biol. 1987;7:3365–3370.

    PubMed  CAS  Google Scholar 

  102. Gire V, Marshall CJ, Wynford-Thomas D. Activation of mitogen-activated protein kinase is necessary but not sufficient for proliferation of human thyroid epithelial cells induced by mutant Ras. Oncogene. 1999;18:4819–4832.

    Article  PubMed  CAS  Google Scholar 

  103. Gire V, Wynford-Thomas D. RAS oncogene activation induces proliferation in normal human thyroid epithelial cells without loss of differentiation. Oncogene. 2000;19:737–744.

    Article  PubMed  CAS  Google Scholar 

  104. Fagin JA. Minireview: branded from the start-distinct oncogenic initiating events may determine tumor fate in the thyroid. Mol Endocrinol. 2002;16:903–911.

    Article  PubMed  CAS  Google Scholar 

  105. Kroll TG, Sarraf P, Pecciarini L, et al. PAX8-PPARg1 fusion oncogene in human thyroid carcinoma. Science. 2000;289:1357–1360.

    Article  PubMed  CAS  Google Scholar 

  106. Nikiforova MN, Biddinger PW, Caudill CM, Kroll TG, Nikiforov YE. PAX8-PPARgamma rearrangement in thyroid tumors: RT-PCR and immunohistochemical analyses. Am J Surg Pathol. 2002;26:1016–1023.

    Article  PubMed  Google Scholar 

  107. Marques AR, Espadinha C, Catarino AL, et al. Expression of PAX8-PPARgamma1 rearrangements in both follicular thyroid carcinomas and adenomas. J Clin Endocrinol Metab. 2002;87:3947–3952.

    Article  PubMed  CAS  Google Scholar 

  108. Lacroix L, Mian C, Barrier T, et al. PAX8 and peroxisome proliferator-activated receptor gamma 1 gene expression status in benign and malignant thyroid tissues. Eur J Endocrinol. 2004;151:367–374.

    Article  PubMed  CAS  Google Scholar 

  109. Giordano TJ, Au AY, Kuick R, et al. Delineation, functional validation, and bioinformatic evaluation of gene expression in thyroid follicular carcinomas with the PAX8-PPARG translocation. Clin Cancer Res. 2006;12:1983–1993.

    Article  PubMed  CAS  Google Scholar 

  110. Dwight T, Thoppe SR, Foukakis T, et al. Involvement of the PAX8/peroxisome proliferator-activated receptor gamma rearrangement in follicular thyroid tumors. J Clin Endocrinol Metab. 2003;88:4440–4445.

    Article  PubMed  CAS  Google Scholar 

  111. Cheung L, Messina M, Gill A, et al. Detection of the PAX8-PPAR gamma fusion oncogene in both follicular thyroid carcinomas and adenomas. J Clin Endocrinol Metab. 2003;88:354–357.

    Article  PubMed  CAS  Google Scholar 

  112. Jenkins RB, Hay ID, Herath JF, et al. Frequent occurrence of cytogenetic abnormalities in sporadic nonmedullary thyroid carcinoma. Cancer. 1990;66:1213–1220.

    Article  PubMed  CAS  Google Scholar 

  113. Roque L, Castedo S, Clode A, Soares J. Deletion of 3p25→pter in a primary follicular thyroid carcinoma and its metastasis. Genes Chromosomes Cancer. 1993;8:199–203.

    Article  PubMed  CAS  Google Scholar 

  114. Bondeson L, Bengtsson A, Bondeson AG, et al. Chromosome studies in thyroid neoplasia. Cancer. 1989;64:680–685.

    Article  PubMed  CAS  Google Scholar 

  115. Roque L, Castedo S, Gomes P, Soares P, Clode A, Soares J. Cytogenetic findings in 18 follicular thyroid adenomas. Cancer Genet Cytogenet. 1993;67:1–6.

    Article  PubMed  CAS  Google Scholar 

  116. Teyssier JR, Liautaud-Roger F, Ferre D, Patey M, Dufer J. Chromosomal changes in thyroid tumors. Relation with DNA content, karyotypic features, and clinical data. Cancer Genet Cytogenet. 1990;50:249–263.

    Article  PubMed  CAS  Google Scholar 

  117. Sozzi G, Miozzo M, Cariani TC, et al. A t(2;3)(q12-13;p24-25) in follicular thyroid adenomas. Cancer Genet Cytogenet. 1992;64:38–41.

    Article  PubMed  CAS  Google Scholar 

  118. Lui WO, Kytola S, Anfalk L, Larsson C, Farnebo LO. Balanced translocation (3;7)(p25;q34): another mechanism of tumorigenesis in follicular thyroid carcinoma? Cancer Genet Cytogenet. 2000;119:109–112.

    Article  PubMed  CAS  Google Scholar 

  119. Lui W, Zeng L, Rehrmann V, et al. CREB3L2-PPARg fusion mutation identifies a thyroid signaling pathway regulated by intra-membrane proteolysis. Cancer Res. 2008;68(17):7156–7164.

    Article  PubMed  CAS  Google Scholar 

  120. Lacroix L, Lazar V, Michiels S, et al. Follicular thyroid tumors with the PAX8-PPARgamma1 rearrangement display characteristic genetic alterations. Am J Pathol. 2005;167:223–231.

    PubMed  CAS  Google Scholar 

  121. Castro P, Rebocho AP, Soares RJ, et al. PAX8-PPARgamma rearrangement is frequently detected in the follicular variant of papillary thyroid carcinoma. J Clin Endocrinol Metab. 2006;91:213–220.

    Article  PubMed  CAS  Google Scholar 

  122. Lui WO, Foukakis T, Liden J, et al. Expression profiling reveals a distinct transcription signature in follicular thyroid carcinomas with a PAX8-PPAR(gamma) fusion oncogene. Oncogene. 2005;24:1467–1476.

    Article  PubMed  CAS  Google Scholar 

  123. French C, Fletcher J, Cibas E, Caulfield C, Allard P, Kroll T. Molecular detection of PPARg rearrangements and thyroid carcinoma in pre-operative fine needle aspiration biopsies. Endocr Pathol. 2008;19(3):166–174.

    Article  PubMed  Google Scholar 

  124. Mansouri A, Chowdhury K, Gruss P. Follicular cells of the thyroid gland require Pax8 gene function. Nat Genet. 1998;19:87–90.

    Article  PubMed  CAS  Google Scholar 

  125. Maulbecker CC, Gruss P. The oncogenic potential of Pax genes. EMBO J. 1993;12:2361–2367.

    PubMed  CAS  Google Scholar 

  126. Cazzaniga G, Daniotti M, Tosi S, et al. The paired box domain gene PAX5 is fused to ETV6/TEL in an acute lymphoblastic leukemia case. Cancer Res. 2001;61:4666–4670.

    PubMed  CAS  Google Scholar 

  127. Iida S, Rao PH, Nallasivam P, et al. The t(9;14)(p13;q32) chromosomal translocation associated with lymphoplasmacytoid lymphoma involves the PAX-5 gene. Blood. 1996;88:4110–4117.

    PubMed  CAS  Google Scholar 

  128. Mullighan CG, Goorha S, Radtke I, et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature. 2007;446:758–764.

    Article  PubMed  CAS  Google Scholar 

  129. Galili N, Davis RJ, Fredericks WJ, et al. Fusion of a fork head domain gene to PAX3 in the solid tumour alveolar rhabdomyo­sarcoma. Nat Genet. 1993;5:230–235.

    Article  PubMed  CAS  Google Scholar 

  130. Barr FG, Galili N, Holick J, Biegel JA, Rovera G, Emanuel BS. Rearrangement of the PAX3 paired box gene in the paediatric solid tumour alveolar rhabdomyosarcoma. Nat Genet. 1993;3:113–117.

    Article  PubMed  CAS  Google Scholar 

  131. Shapiro DN, Sublett JE, Li B, Downing JR, Naeve CW. Fusion of PAX3 to a member of the forkhead family of transcription factors in human alveolar rhabdomyosarcoma. Cancer Res. 1993;53:5108–5112.

    PubMed  CAS  Google Scholar 

  132. Storlazzi CT, Mertens F, Nascimento A, et al. Fusion of the FUS and BBF2H7 genes in low grade fibromyxoid sarcoma. Hum Mol Genet. 2003;12:2349–2358.

    Article  PubMed  CAS  Google Scholar 

  133. Williams DW, Wynford-Thomas D. Human thyroid epithelial cells. Methods Mol Biol. 1997;75:163–172.

    PubMed  CAS  Google Scholar 

  134. Martelli ML, Iuliano R, Le Pera I, et al. Inhibitory effects of peroxisome proliferator-activated receptor gamma on thyroid carcinoma cell growth. J Clin Endocrinol Metab. 2002;87:4728–4735.

    Article  PubMed  CAS  Google Scholar 

  135. Powell J, Wang X, Allard B, et al. The PAX8/PPARg fusion oncoprotein transforms immortalized human thyrocytes through a mechanism probably involving wild-type PPARg inhibition. Oncogene. 2004;23:3634–3641.

    Article  CAS  Google Scholar 

  136. Klopper JP, Hays WR, Sharma V, Baumbusch MA, Hershman JM, Haugen BR. Retinoid X receptor-gamma and peroxisome proliferator-activated receptor-gamma expression predicts thyroid carcinoma cell response to retinoid and thiazolidinedione treatment. Mol Cancer Ther. 2004;3:1011–1020.

    PubMed  CAS  Google Scholar 

  137. Park JW, Zarnegar R, Kanauchi H, et al. Troglitazone, the peroxisome proliferator-activated receptor-gamma agonist, induces antiproliferation and redifferentiation in human thyroid cancer cell lines. Thyroid. 2005;15:222–231.

    Article  PubMed  CAS  Google Scholar 

  138. Aiello A, Pandini G, Frasca F, et al. Peroxisomal proliferator-activated receptor-gamma agonists induce partial reversion of epithelial-mesenchymal transition in anaplastic thyroid cancer cells. Endocrinology. 2006;147:4463–4475.

    Article  PubMed  CAS  Google Scholar 

  139. Hayashi N, Nakamori S, Hiraoka N, et al. Antitumor effects of peroxisome proliferator activate receptor gamma ligands on anaplastic thyroid carcinoma. Int J Oncol. 2004;24:89–95.

    PubMed  CAS  Google Scholar 

  140. Kato Y, Ying H, Zhao L, et al. PPARgamma insufficiency promotes follicular thyroid carcinogenesis via activation of the nuclear factor-kappaB signaling pathway. Oncogene. 2006;25:2736–2747.

    Article  PubMed  CAS  Google Scholar 

  141. Ohta K, Endo T, Haraguchi K, Hershman JM, Onaya T. Ligands for peroxisome proliferator-activated receptor gamma inhibit growth and induce apoptosis of human papillary thyroid carcinoma cells. J Clin Endocrinol Metab. 2001;86:2170–2177.

    Article  PubMed  CAS  Google Scholar 

  142. Copland JA, Marlow LA, Kurakata S, et al. Novel high-affinity PPARgamma agonist alone and in combination with paclitaxel inhibits human anaplastic thyroid carcinoma tumor growth via p21WAF1/CIP1. Oncogene. 2006;25:2304–2317.

    Article  PubMed  CAS  Google Scholar 

  143. Chen Y, Wang SM, Wu JC, Huang SH. Effects of PPARgamma agonists on cell survival and focal adhesions in a Chinese thyroid carcinoma cell line. J Cell Biochem. 2006;98:1021–1035.

    Article  PubMed  CAS  Google Scholar 

  144. Frohlich E, Machicao F, Wahl R. Action of thiazolidinediones on differentiation, proliferation and apoptosis of normal and transformed thyrocytes in culture. Endocr Relat Cancer. 2005;12:291–303.

    Article  PubMed  CAS  Google Scholar 

  145. Aldred MA, Morrison C, Gimm O, et al. Peroxisome proliferator-activated receptor gamma is frequently downregulated in a diversity of sporadic nonmedullary thyroid carcinomas. Oncogene. 2003;22:3412–3416.

    Article  PubMed  CAS  Google Scholar 

  146. Sarraf P, Mueller E, Smith WM, et al. Loss-of-function mutations in PPAR gamma associated with human colon cancer. Mol Cell. 1999;3:799–804.

    Article  PubMed  CAS  Google Scholar 

  147. Ying H, Suzuki H, Furumoto H, et al. Alterations in genomic profiles during tumor progression in a mouse model of follicular thyroid carcinoma. Carcinogenesis. 2003;24:1467–1479.

    Article  PubMed  CAS  Google Scholar 

  148. Ying H, Suzuki H, Zhao L, Willingham MC, Meltzer P, Cheng SY. Mutant thyroid hormone receptor beta represses the expression and transcriptional activity of peroxisome proliferator-activated receptor gamma during thyroid carcinogenesis. Cancer Res. 2003;63:5274–5280.

    PubMed  CAS  Google Scholar 

  149. Au AY, McBride C, Wilhelm KG Jr, et al. PAX8-peroxisome proliferator-activated receptor gamma (PPARgamma) disrupts normal PAX8 or PPARgamma transcriptional function and stimulates follicular thyroid cell growth. Endocrinology. 2006;147:367–376.

    Article  PubMed  CAS  Google Scholar 

  150. Baek SJ, Wilson LC, Hsi LC, Eling TE. Troglitazone, a peroxisome proliferator-activated receptor gamma (PPAR gamma) ligand, selectively induces the early growth response-1 gene independently of PPAR gamma. A novel mechanism for its anti-tumorigenic activity. J Biol Chem. 2003;278:5845–5853.

    Article  PubMed  CAS  Google Scholar 

  151. Palakurthi SS, Aktas H, Grubissich LM, Mortensen RM, Halperin JA. Anticancer effects of thiazolidinediones are independent of peroxisome proliferator-activated receptor gamma and mediated by inhibition of translation initiation. Cancer Res. 2001;61:6213–6218.

    PubMed  CAS  Google Scholar 

  152. Shi Y, Hon M, Evans RM. The peroxisome proliferator-activated receptor delta, an integrator of transcriptional repression and nuclear receptor signaling. Proc Natl Acad Sci USA. 2002;99:2613–2618.

    Article  PubMed  CAS  Google Scholar 

  153. Foukakis T, Au AY, Wallin G, et al. The Ras effector NORE1A is suppressed in follicular thyroid carcinomas with a PAX8-PPARgamma fusion. J Clin Endocrinol Metab. 2006;91:1143–1149.

    Article  PubMed  CAS  Google Scholar 

  154. Garcia-Rostan G, Costa AM, Pereira-Castro I, et al. Mutation of the PIK3CA gene in anaplastic thyroid cancer. Cancer Res. 2005;65:10199–10207.

    Article  PubMed  CAS  Google Scholar 

  155. Wang Y, Hou P, Yu H, et al. High prevalence and mutual exclu­sivity of genetic alterations in the phosphatidylinositol-3-kinase/akt pathway in thyroid tumors. J Clin Endocrinol Metab. 2007;92:2387–2390.

    Article  PubMed  CAS  Google Scholar 

  156. Hou P, Liu D, Shan Y, et al. Genetic alterations and their relationship in the phosphatidylinositol 3-kinase/Akt pathway in thyroid cancer. Clin Cancer Res. 2007;13:1161–1170.

    Article  PubMed  CAS  Google Scholar 

  157. Wu G, Mambo E, Guo Z, et al. Uncommon mutation, but common amplifications, of the PIK3CA gene in thyroid tumors. J Clin Endocrinol Metab. 2005;90:4688–4693.

    Article  PubMed  CAS  Google Scholar 

  158. Santarpia L, El-Naggar AK, Cote GJ, Myers JN, Sherman SI. Phosphatidylinositol 3-kinase/akt and ras/raf-mitogen-activated protein kinase pathway mutations in anaplastic thyroid cancer. J Clin Endocrinol Metab. 2008;93:278–284.

    Article  PubMed  CAS  Google Scholar 

  159. Broderick DK, Di C, Parrett TJ, et al. Mutations of PIK3CA in anaplastic oligodendrogliomas, high-grade astrocytomas, and medulloblastomas. Cancer Res. 2004;64:5048–5050.

    Article  PubMed  CAS  Google Scholar 

  160. Campbell IG, Russell SE, Choong DY, et al. Mutation of the PIK3CA gene in ovarian and breast cancer. Cancer Res. 2004;64:7678–7681.

    Article  PubMed  CAS  Google Scholar 

  161. Saal LH, Holm K, Maurer M, et al. PIK3CA mutations correlate with hormone receptors, node metastasis, and ERBB2, and are mutually exclusive with PTEN loss in human breast carcinoma. Cancer Res. 2005;65:2554–2559.

    Article  PubMed  CAS  Google Scholar 

  162. Samuels Y, Wang Z, Bardelli A, et al. High frequency of mutations of the PIK3CA gene in human cancers. Science. 2004;304:554.

    Article  PubMed  CAS  Google Scholar 

  163. Kang S, Bader AG, Vogt PK. Phosphatidylinositol 3-kinase mutations identified in human cancer are oncogenic. Proc Natl Acad Sci USA. 2005;102:802–807.

    Article  PubMed  CAS  Google Scholar 

  164. Bader AG, Kang S, Vogt PK. Cancer-specific mutations in PIK3CA are oncogenic in vivo. Proc Natl Acad Sci USA. 2006;103:1475–1479.

    Article  PubMed  CAS  Google Scholar 

  165. Eng C. Role of PTEN, a lipid phosphatase upstream effector of protein kinase B, in epithelial thyroid carcinogenesis. Ann N Y Acad Sci. 2002;968:213–221.

    Article  PubMed  CAS  Google Scholar 

  166. Liaw D, Marsh DJ, Li J, et al. Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. Nat Genet. 1997;16:64–67.

    Article  PubMed  CAS  Google Scholar 

  167. Di Cristofano A, Pesce B, Cordon-Cardo C, Pandolfi PP. Pten is essential for embryonic development and tumour suppression. Nat Genet. 1998;19:348–355.

    Article  PubMed  Google Scholar 

  168. Podsypanina K, Ellenson LH, Nemes A, et al. Mutation of Pten/Mmac1 in mice causes neoplasia in multiple organ systems. Proc Natl Acad Sci USA. 1999;96:1563–1568.

    Article  PubMed  CAS  Google Scholar 

  169. Dahia PL, Marsh DJ, Zheng Z, et al. Somatic deletions and mutations in the Cowden disease gene, PTEN, in sporadic thyroid tumors. Cancer Res. 1997;57:4710–4713.

    PubMed  CAS  Google Scholar 

  170. Halachmi N, Halachmi S, Evron E, et al. Somatic mutations of the PTEN tumor suppressor gene in sporadic follicular thyroid tumors. Genes Chromosomes Cancer. 1998;23:239–243.

    Article  PubMed  CAS  Google Scholar 

  171. Yeh JJ, Marsh DJ, Zedenius J, et al. Fine-structure deletion mapping of 10q22-24 identifies regions of loss of heterozy­gosity and suggests that sporadic follicular thyroid adenomas and follicular thyroid carcinomas develop along distinct neoplastic pathways. Genes Chromosomes Cancer. 1999;26:322–328.

    Article  PubMed  CAS  Google Scholar 

  172. Frisk T, Foukakis T, Dwight T, et al. Silencing of the PTEN tumor-suppressor gene in anaplastic thyroid cancer. Genes Chromosomes Cancer. 2002;35:74–80.

    Article  PubMed  CAS  Google Scholar 

  173. Gimm O, Perren A, Weng LP, et al. Differential nuclear and cytoplasmic expression of PTEN in normal thyroid tissue, and benign and malignant epithelial thyroid tumors. Am J Pathol. 2000;156:1693–1700.

    PubMed  CAS  Google Scholar 

  174. Bruni P, Boccia A, Baldassarre G, et al. PTEN expression is reduced in a subset of sporadic thyroid carcinomas: evidence that PTEN-growth suppressing activity in thyroid cancer cells mediated by p27kip1. Oncogene. 2000;19:3146–3155.

    Article  PubMed  CAS  Google Scholar 

  175. Kimura ET, Nikiforova MN, Zhu Z, Knauf JA, Nikiforov YE, Fagin JA. High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res. 2003;63:1454–1457.

    PubMed  CAS  Google Scholar 

  176. Santoro M, Carlomagno F, Hay ID, et al. Ret oncogene activation in human thyroid neoplasms is restricted to the papillary cancer subtype. J Clin Invest. 1992;89:1517–1522.

    Article  PubMed  CAS  Google Scholar 

  177. Fusco A, Grieco M, Santoro M, et al. A new oncogene in human thyroid papillary carcinomas and their lymph- nodal metastases. Nature. 1987;328:170–172.

    Article  PubMed  CAS  Google Scholar 

  178. Grieco M, Santoro M, Berlingieri MT, et al. PTC is a novel rearranged form of the ret proto-oncogene and is frequently detected in vivo in human thyroid papillary carcinomas. Cell. 1990;60:557–563.

    Article  PubMed  CAS  Google Scholar 

  179. Maxwell EL, Palme CE, Freeman J. Hürthle cell tumors: applying molecular markers to define a new management algorithm. Arch Otolaryngol Head Neck Surg. 2006;132:54–58.

    Article  PubMed  Google Scholar 

  180. Carcangiu ML, Bianchi S, Savino D, Voynick IM, Rosai J. Follicular Hürthle cell tumors of the thyroid gland. Cancer. 1991;68:1944–1953.

    Article  PubMed  CAS  Google Scholar 

  181. Berho M, Suster S. The oncocytic variant of papillary carcinoma of the thyroid: a clinicopathologic study of 15 cases. Hum Pathol. 1997;28:47–53.

    Article  PubMed  CAS  Google Scholar 

  182. Herrera MF, Hay ID, Wu PS, et al. Hürthle cell (oxyphilic) papillary thyroid carcinoma: a variant with more aggressive biologic behavior. World J Surg. 1992;16:669-674. discussion 774–775.

    Article  PubMed  CAS  Google Scholar 

  183. Rodrigues-Serpa A, Catarino A, Soares J. Loss of heterozygosity in follicular and papillary thyroid carcinomas. Cancer Genet Cytogenet. 2003;141:26–31.

    Article  PubMed  CAS  Google Scholar 

  184. Roque L, Clode A, Belge G, et al. Follicular thyroid carcinoma: chromosome analysis of 19 cases. Genes Chromosomes Cancer. 1998;21:250–255.

    Article  PubMed  CAS  Google Scholar 

  185. Roque L, Rodrigues R, Pinto A, Moura-Nunes V, Soares J. Chromosome imbalances in thyroid follicular neoplasms: a comparison between follicular adenomas and carcinomas. Genes Chromosomes Cancer. 2003;36:292–302.

    Article  PubMed  CAS  Google Scholar 

  186. Kitamura Y, Shimizu K, Ito K, Tanaka S, Emi M. Allelotyping of follicular thyroid carcinoma: frequent allelic losses in chromosome arms 7q, 11p, and 22q. J Clin Endocrinol Metab. 2001;86:4268–4272.

    Article  PubMed  CAS  Google Scholar 

  187. Ward LS, Brenta G, Medvedovic M, Fagin JA. Studies of allelic loss in thyroid tumors reveal major differences in chromosomal instability between papillary and follicular carcinomas. J Clin Endocrinol Metab. 1998;83:525–530.

    Article  PubMed  CAS  Google Scholar 

  188. Segev DL, Saji M, Phillips GS, et al. Polymerase chain reaction-based microsatellite polymorphism analysis of follicular and Hürthle cell neoplasms of the thyroid. J Clin Endocrinol Metab. 1998;83:2036–2042.

    Article  PubMed  CAS  Google Scholar 

  189. Hunt JL, Yim JH, Tometsko M, Finkelstein SD, Swalsky P, Carty SE. Loss of heterozygosity of the VHL gene identifies malignancy and predicts death in follicular thyroid tumors. Surgery. 2003;134:1043-1047. discussion 1047–1048.

    Article  PubMed  Google Scholar 

  190. Herrmann MA, Hay ID, Bartelt DH Jr, et al. Cytogenetic and molecular genetic studies of follicular and papillary thyroid cancers. J Clin Invest. 1991;88:1596–1604.

    Article  PubMed  CAS  Google Scholar 

  191. Zhang JS, Nelson M, McIver B, et al. Differential loss of heterozygosity at 7q31.2 in follicular and papillary thyroid tumors. Oncogene. 1998;17:789–793.

    Article  PubMed  CAS  Google Scholar 

  192. Trovato M, Fraggetta F, Villari D, et al. Loss of heterozygosity of the long arm of chromosome 7 in follicular and anaplastic thyroid cancer, but not in papillary thyroid cancer. J Clin Endocrinol Metab. 1999;84:3235–3240.

    Article  PubMed  CAS  Google Scholar 

  193. Frisk T, Kytola S, Wallin G, Zedenius J, Larsson C. Low frequency of numerical chromosomal aberrations in follicular thyroid tumors detected by comparative genomic hybridization. Genes Chromosomes Cancer. 1999;25:349–353.

    Article  PubMed  CAS  Google Scholar 

  194. Kitamura Y, Shimizu K, Tanaka S, Ito K, Emi M. Allelotyping of anaplastic thyroid carcinoma: frequent allelic losses on 1q, 9p, 11, 17, 19p, and 22q. Genes Chromosomes Cancer. 2000;27:244–251.

    Article  PubMed  CAS  Google Scholar 

  195. Zedenius J, Wallin G, Svensson A, et al. Deletions of the long arm of chromosome 10 in progression of follicular thyroid tumors. Hum Genet. 1996;97:299–303.

    Article  PubMed  CAS  Google Scholar 

  196. Zedenius J, Wallin G, Svensson A, et al. Allelotyping of follicular thyroid tumors. Hum Genet. 1995;96:27–32.

    Article  PubMed  CAS  Google Scholar 

  197. Nord B, Larsson C, Wong FK, Wallin G, Teh BT, Zedenius J. Sporadic follicular thyroid tumors show loss of a 200-kb region in 11q13 without evidence for mutations in the MEN1 gene. Genes Chromosomes Cancer. 1999;26:35–39.

    Article  PubMed  CAS  Google Scholar 

  198. Matsuo K, Tang SH, Fagin JA. Allelotype of human thyroid tumors: loss of chromosome 11q13 sequences in follicular neoplasms. Mol Endocrinol. 1991;5:1873–1879.

    Article  PubMed  CAS  Google Scholar 

  199. Grebe SK, McIver B, Hay ID, et al. Frequent loss of heterozygosity on chromosomes 3p and 17p without VHL or p53 mutations suggests involvement of unidentified tumor suppressor genes in follicular thyroid carcinoma. J Clin Endocrinol Metab. 1997;82:3684–3691.

    Article  PubMed  CAS  Google Scholar 

  200. Hemmer S, Wasenius VM, Knuutila S, Franssila K, Joensuu H. DNA copy number changes in thyroid carcinoma. Am J Pathol. 1999;154:1539–1547.

    PubMed  CAS  Google Scholar 

  201. Hemmer S, Wasenius VM, Knuutila S, Joensuu H, Franssila K. Comparison of benign and malignant follicular thyroid tumours by comparative genomic hybridization. Br J Cancer. 1998;78:1012–1017.

    Article  PubMed  CAS  Google Scholar 

  202. Hunt JL, Livolsi VA, Baloch ZW, et al. A novel microdissection and genotyping of follicular-derived thyroid tumors to predict aggressiveness. Hum Pathol. 2003;34:375–380.

    Article  PubMed  CAS  Google Scholar 

  203. Hunt JL, Yim JH, Carty SE. Fractional allelic loss of tumor suppressor genes identifies malignancy and predicts clinical outcome in follicular thyroid tumors. Thyroid. 2006;16:643–649.

    Article  PubMed  CAS  Google Scholar 

  204. Ruan Y, Ooi HS, Choo SW, et al. Fusion transcripts and transcribed retrotransposed loci discovered through comprehensive transcriptome analysis using Paired-End diTags (PETs). Genome Res. 2007;17:828–838.

    Article  PubMed  CAS  Google Scholar 

  205. Greenman C, Stephens P, Smith R, et al. Patterns of somatic mutation in human cancer genomes. Nature. 2007;446:153–158.

    Article  PubMed  CAS  Google Scholar 

  206. Davies H, Hunter C, Smith R, et al. Somatic mutations of the protein kinase gene family in human lung cancer. Cancer Res. 2005;65:7591–7595.

    PubMed  CAS  Google Scholar 

  207. Sjoblom T, Jones S, Wood LD, et al. The consensus coding sequences of human breast and colorectal cancers. Science. 2006;314:268–274.

    Article  PubMed  CAS  Google Scholar 

  208. Wood LD, Parsons DW, Jones S, et al. The genomic landscapes of human breast and colorectal cancers. Science. 2007;318:1108–1113.

    Article  PubMed  CAS  Google Scholar 

  209. Barden CB, Shister KW, Zhu B, et al. Classification of follicular thyroid tumors by molecular signature: results of gene profiling. Clin Cancer Res. 2003;9:1792–1800.

    PubMed  CAS  Google Scholar 

  210. Chevillard S, Ugolin N, Vielh P, et al. Gene expression profiling of differentiated thyroid neoplasms: diagnostic and clinical implications. Clin Cancer Res. 2004;10:6586–6597.

    Article  PubMed  CAS  Google Scholar 

  211. Finley DJ, Zhu B, Barden CB, Fahey TJ 3rd. Discrimination of benign and malignant thyroid nodules by molecular profiling. Ann Surg. 2004;240:425-436. discussion 436–437.

    Article  PubMed  Google Scholar 

  212. Fryknas M, Wickenberg-Bolin U, Goransson H, et al. Molecular markers for discrimination of benign and malignant follicular thyroid tumors. Tumour Biol. 2006;27:211–220.

    Article  PubMed  CAS  Google Scholar 

  213. Weber F, Shen L, Aldred MA, et al. Genetic classification of benign and malignant thyroid follicular neoplasia based on a three-gene combination. J Clin Endocrinol Metab. 2005;90:2512–2521.

    Article  PubMed  CAS  Google Scholar 

  214. Aldred MA, Huang Y, Liyanarachchi S, et al. Papillary and follicular thyroid carcinomas show distinctly different microarray expression profiles and can be distinguished by a minimum of five genes. J Clin Oncol. 2004;22:3531–3539.

    Article  PubMed  CAS  Google Scholar 

  215. Huang Y, Prasad M, Lemon WJ, et al. Gene expression in papillary thyroid carcinoma reveals highly consistent profiles. Proc Natl Acad Sci USA. 2001;98:15044–15049.

    Article  PubMed  CAS  Google Scholar 

  216. Takano T, Miyauchi A, Yoshida H, Kuma K, Amino N. High-throughput differential screening of mRNAs by serial analysis of gene expression: decreased expression of trefoil factor 3 mRNA in thyroid follicular carcinomas. Br J Cancer. 2004;90:1600–1605.

    Article  PubMed  CAS  Google Scholar 

  217. Cerutti JM, Delcelo R, Amadei MJ, et al. A preoperative diagnostic test that distinguishes benign from malignant thyroid carcinoma based on gene expression. J Clin Invest. 2004;113:1234–1242.

    PubMed  CAS  Google Scholar 

  218. Netea-Maier RT, Hunsucker SW, Hoevenaars BM, et al. Discovery and validation of protein abundance differences between folli­cular thyroid neoplasms. Cancer Res. 2008;68:1572–1580.

    Article  PubMed  CAS  Google Scholar 

  219. Baris O, Mirebeau-Prunier D, Savagner F, et al. Gene profiling reveals specific oncogenic mechanisms and signaling pathways in oncocytic and papillary thyroid carcinoma. Oncogene. 2005;24:4155–4161.

    PubMed  CAS  Google Scholar 

  220. Lacroix L, Ripoche H, Lazar V, et al. Molecular signatures of thyroid follicular tumors presenting the PAX8-PPARG1 rearrangement. Thyroid. 2003;13:699.

    Google Scholar 

  221. Giordano TJ, Kuick R, Thomas DG, et al. Molecular classification of papillary thyroid carcinoma: distinct BRAF, RAS, and RET/PTC mutation-specific gene expression profiles discovered by DNA microarray analysis. Oncogene. 2005;24:6646–6656.

    Article  PubMed  CAS  Google Scholar 

  222. Schetter AJ, Leung SY, Sohn JJ, et al. MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA. 2008;299:425–436.

    Article  PubMed  CAS  Google Scholar 

  223. Esquela-Kerscher A, Slack FJ. Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer. 2006;6:259–269.

    Article  PubMed  CAS  Google Scholar 

  224. Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer. 2006;6:857–866.

    Article  PubMed  CAS  Google Scholar 

  225. Lu J, Getz G, Miska EA, et al. MicroRNA expression profiles classify human cancers. Nature. 2005;435:834–838.

    Article  PubMed  CAS  Google Scholar 

  226. Volinia S, Calin GA, Liu CG, et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA. 2006;103:2257–2261.

    Article  PubMed  CAS  Google Scholar 

  227. Ambros V. The functions of animal microRNAs. Nature. 2004;431:350–355.

    Article  PubMed  CAS  Google Scholar 

  228. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–297.

    Article  PubMed  CAS  Google Scholar 

  229. Nikiforova MN, Tseng GC, Steward D, Diorio D, Nikiforov YE. MicroRNA expression profiling of thyroid tumors: biological significance and diagnostic utility. J Clin Endocrinol Metab. 2008;93:1600–1608.

    Article  PubMed  CAS  Google Scholar 

  230. He H, Jazdzewski K, Li W, et al. The role of microRNA genes in papillary thyroid carcinoma. Proc Natl Acad Sci USA. 2005;102:19075–19080.

    Article  PubMed  CAS  Google Scholar 

  231. Pallante P, Visone R, Ferracin M, et al. MicroRNA deregulation in human thyroid papillary carcinomas. Endocr Relat Cancer. 2006;13:497–508.

    Article  PubMed  CAS  Google Scholar 

  232. Visone R, Russo L, Pallante P, et al. MicroRNAs (miR)-221 and miR-222, both overexpressed in human thyroid papillary carci­nomas, regulate p27Kip1 protein levels and cell cycle. Endocr Relat Cancer. 2007;14:791–798.

    Article  PubMed  CAS  Google Scholar 

  233. Cahill S, Smyth P, Denning K, et al. Effect of BRAFV600E mutation on transcription and post-transcriptional regulation in a papillary thyroid carcinoma model. Mol Cancer. 2007;6:21.

    Article  PubMed  CAS  Google Scholar 

  234. Cahill S, Smyth P, Finn SP, et al. Effect of ret/PTC 1 rearrangement on transcription and post-transcriptional regulation in a papillary thyroid carcinoma model. Mol Cancer. 2006;5:70.

    Article  PubMed  CAS  Google Scholar 

  235. Weber F, Teresi RE, Broelsch CE, Frilling A, Eng C. A limited set of human MicroRNA is deregulated in follicular thyroid carcinoma. J Clin Endocrinol Metab. 2006;91:3584–3591.

    Article  PubMed  CAS  Google Scholar 

  236. Malchoff CD, Malchoff DM. The genetics of hereditary nonmedullary thyroid carcinoma. J Clin Endocrinol Metab. 2002;87:2455–2459.

    Article  PubMed  CAS  Google Scholar 

  237. Hemminki K, Eng C, Chen B. Familial risks for nonmedullary thyroid cancer. J Clin Endocrinol Metab. 2005;90:5747–5753.

    Article  PubMed  CAS  Google Scholar 

  238. Canzian F, Amati P, Harach HR, et al. A gene predisposing to familial thyroid tumors with cell oxyphilia maps to chromosome 19p13.2. Am J Hum Genet. 1998;63:1743–1748.

    Article  PubMed  CAS  Google Scholar 

  239. Harach HR, Lesueur F, Amati P, et al. Histology of familial thyroid tumours linked to a gene mapping to chromosome 19p13.2. J Pathol. 1999;189:387–393.

    Article  PubMed  CAS  Google Scholar 

  240. Maximo V, Botelho T, Capela J, et al. Somatic and germline mutation in GRIM-19, a dual function gene involved in mitochondrial metabolism and cell death, is linked to mitochondrion-rich (Hürthle cell) tumours of the thyroid. Br J Cancer. 2005;92:1892–1898.

    Article  PubMed  CAS  Google Scholar 

  241. Coghlan DW, Morley AA, Matthews JP, Bishop JF. The incidence and prognostic significance of mutations in codon 13 of the N-ras gene in acute myeloid leukemia. Leukemia. 1994;8:1682–1687.

    PubMed  CAS  Google Scholar 

  242. Neubauer A, Dodge RK, George SL, et al. Prognostic importance of mutations in the ras proto-oncogenes in de novo acute myeloid leukemia. Blood. 1994;83:1603–1611.

    PubMed  CAS  Google Scholar 

  243. Radich JP, Kopecky KJ, Willman CL, et al. N-ras mutations in adult de novo acute myelogenous leukemia: prevalence and clinical significance. Blood. 1990;76:801–807.

    PubMed  CAS  Google Scholar 

  244. Stirewalt DL, Kopecky KJ, Meshinchi S, et al. FLT3, RAS, and TP53 mutations in elderly patients with acute myeloid leukemia. Blood. 2001;97:3589–3595.

    Article  PubMed  CAS  Google Scholar 

  245. Jansen JH, Mahfoudi A, Rambaud S, Lavau C, Wahli W, Dejean A. Multimeric complexes of the PML-retinoic acid receptor alpha fusion protein in acute promyelocytic leukemia cells and interference with retinoid and peroxisome-proliferator signaling pathways. Proc Natl Acad Sci USA. 1995;92:7401–7405.

    Article  PubMed  CAS  Google Scholar 

  246. Okuda T, Cai Z, Yang S, et al. Expression of a knocked-in AML1-ETO leukemia gene inhibits the establishment of normal definitive hematopoiesis and directly generates dysplastic hematopoietic progenitors. Blood. 1998;91:3134–3143.

    PubMed  CAS  Google Scholar 

  247. Nakao M, Yokota S, Iwai T, et al. Internal tandem duplication of the flt3 gene found in acute myeloid leukemia. Leukemia. 1996;10:1911–1918.

    PubMed  CAS  Google Scholar 

  248. Gilliland DG, Griffin JD. Role of FLT3 in leukemia. Curr Opin Hematol. 2002;9:274–281.

    Article  PubMed  Google Scholar 

  249. Ross DM, Hughes TP. Current and emerging tests for the laboratory monitoring of chronic myeloid leukaemia and related disorders. Pathology. 2008;40:231–246.

    Article  PubMed  CAS  Google Scholar 

  250. Gilliland DG, Tallman MS. Focus on acute leukemias. Cancer Cell. 2002;1:417–420.

    Article  PubMed  CAS  Google Scholar 

  251. Mrozek K, Bloomfield CD. Clinical significance of the most common chromosome translocations in adult acute myeloid leukemia. J Natl Cancer Inst Monogr. 2008;(39):52–57.

    Google Scholar 

  252. Cheung CC, Carydis B, Ezzat S, Bedard YC, Asa SL. Analysis of ret/PTC gene rearrangements refines the fine needle aspiration diagnosis of thyroid cancer. J Clin Endocrinol Metab. 2001;86:2187–2190.

    Article  PubMed  CAS  Google Scholar 

  253. Chung KW, Yang SK, Lee GK, et al. Detection of BRAFV600E mutation on fine needle aspiration specimens of thyroid nodule refines cyto-pathology diagnosis, especially in BRAF600E mutation-prevalent area. Clin Endocrinol (Oxf). 2006;65:660–666.

    Article  CAS  Google Scholar 

  254. Cohen Y, Rosenbaum E, Clark DP, et al. Mutational analysis of BRAF in fine needle aspiration biopsies of the thyroid: a potential application for the preoperative assessment of thyroid nodules. Clin Cancer Res. 2004;10:2761–2765.

    Article  PubMed  CAS  Google Scholar 

  255. Jin L, Sebo TJ, Nakamura N, et al. BRAF mutation analysis in fine needle aspiration (FNA) cytology of the thyroid. Diagn Mol Pathol. 2006;15:136–143.

    Article  PubMed  CAS  Google Scholar 

  256. Pizzolanti G, Russo L, Richiusa P, et al. Fine-needle aspiration molecular analysis for the diagnosis of papillary thyroid carcinoma through BRAF V600E mutation and RET/PTC rearrangement. Thyroid. 2007;17:1109–1115.

    Article  PubMed  CAS  Google Scholar 

  257. Rowe LR, Bentz BG, Bentz JS. Utility of BRAF V600E mutation detection in cytologically indeterminate thyroid nodules. Cytojournal. 2006;3:10.

    Article  PubMed  Google Scholar 

  258. Salvatore G, Giannini R, Faviana P, et al. Analysis of BRAF point mutation and RET/PTC rearrangement refines the fine-needle aspiration diagnosis of papillary thyroid carcinoma. J Clin Endocrinol Metab. 2004;89:5175–5180.

    Article  PubMed  CAS  Google Scholar 

  259. Sapio MR, Posca D, Raggioli A, et al. Detection of RET/PTC, TRK and BRAF mutations in preoperative diagnosis of thyroid nodules with indeterminate cytological findings. Clin Endocrinol (Oxf). 2007;66:678–683.

    Article  CAS  Google Scholar 

  260. Xing M, Tufano RP, Tufaro AP, et al. Detection of BRAF mutation on fine needle aspiration biopsy specimens: a new diagnostic tool for papillary thyroid cancer. J Clin Endocrinol Metab. 2004;89:2867–2872.

    Article  PubMed  CAS  Google Scholar 

  261. Foukakis T, Gusnanto A, Au AY, et al. A PCR-based expression signature of malignancy in follicular thyroid tumors. Endocr Relat Cancer. 2007;14:381–391.

    Article  PubMed  CAS  Google Scholar 

  262. Denning KM, Smyth PC, Cahill SF, et al. A molecular expression signature distinguishing follicular lesions in thyroid carcinoma using preamplification RT-PCR in archival samples. Mod Pathol. 2007;20:1095–1102.

    Article  PubMed  CAS  Google Scholar 

  263. Tallman MS, Andersen JW, Schiffer CA, et al. All-trans retinoic acid in acute promyelocytic leukemia: long-term outcome and prognostic factor analysis from the North American Intergroup protocol. Blood. 2002;100:4298–4302.

    Article  PubMed  CAS  Google Scholar 

  264. Weisberg E, Boulton C, Kelly LM, et al. Inhibition of mutant FLT3 receptors in leukemia cells by the small molecule tyrosine kinase inhibitor PKC412. Cancer Cell. 2002;1:433–443.

    Article  PubMed  CAS  Google Scholar 

  265. Kelly LM, Yu JC, Boulton CL, et al. CT53518, a novel selective FLT3 antagonist for the treatment of acute myelogenous leukemia (AML). Cancer Cell. 2002;1:421–432.

    Article  PubMed  CAS  Google Scholar 

  266. Druker BJ, Sawyers CL, Kantarjian H, et al. Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl J Med. 2001;344:1038–1042.

    Article  PubMed  CAS  Google Scholar 

  267. Druker BJ, Talpaz M, Resta DJ, et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med. 2001;344:1031–1037.

    Article  PubMed  CAS  Google Scholar 

  268. Carlomagno F, Vitagliano D, Guida T, et al. ZD6474, an orally available inhibitor of KDR tyrosine kinase activity, efficiently blocks oncogenic RET kinases. Cancer Res. 2002;62:7284–7290.

    PubMed  CAS  Google Scholar 

  269. Carlomagno F, Vitagliano D, Guida T, et al. The kinase inhibitor PP1 blocks tumorigenesis induced by RET oncogenes. Cancer Res. 2002;62:1077–1082.

    PubMed  CAS  Google Scholar 

  270. Carlomagno F, Vitagliano D, Guida T, et al. Efficient inhibition of RET/papillary thyroid carcinoma oncogenic kinases by 4-amino-5-(4-chloro-phenyl)-7-(t-butyl)pyrazolo[3, 4-d]pyrimidine (PP2). J Clin Endocrinol Metab. 2003;88:1897–1902.

    Article  PubMed  CAS  Google Scholar 

  271. Yin Y, Yuan H, Wang C, et al. 3-phosphoinositide-dependent protein kinase-1 activates the peroxisome proliferator-activated receptor-gamma and promotes adipocyte differentiation. Mol Endocrinol. 2006;20:268–278.

    Article  PubMed  CAS  Google Scholar 

  272. Lubitz CC, Ugras SK, Kazam JJ, et al. Microarray analysis of thyroid nodule fine-needle aspirates accurately classifies benign and malignant lesions. J Mol Diagn. 2006;8:490–498.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kroll, T.G. (2010). Well-Differentiated Thyroid Follicular Carcinoma. In: Hunt, J. (eds) Molecular Pathology of Endocrine Diseases. Molecular Pathology Library, vol 3. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-1707-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1707-2_9

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-1706-5

  • Online ISBN: 978-1-4419-1707-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics