Skip to main content

Computational Epitope Mapping

  • Chapter
  • First Online:
Infectious Disease Informatics

Abstract

Despite its unequivocal benefits to humankind, vaccine design and development has always been an inherently laborious and a largely empirical process; the unfortunate lack of a rational basis for vaccinology has hitherto stymied the commercial exploitation of vaccine discovery and also the deployment of vaccination as the principal, global instrument of public health provision. Immunoinformatics offers a plethora of programs and techniques that have the potential to simplify greatly the process of discovering vaccines. These techniques can assist in the identification of immunogenic epitopes that might be overlooked by conventional experimentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Areschoug T, Gordon S (2008) Pattern recognition receptors and their role in innate immunity: focus on microbial protein ligands. Contrib Microbiol 15:45–60

    Article  CAS  PubMed  Google Scholar 

  • Arnold PY, La Gruta NL, Miller T, Vignali KM et al (2002) The majority of immunogenic epitopes generate CD4 + T cells that are dependent on MHC class II-bound peptide-flanking residues. J Immunol 169:739–749

    CAS  PubMed  Google Scholar 

  • Bhasin M, Raghava GPS (2003) Prediction of promiscuous and high-affinity mutated MHC binders. Hybridomics 22:229–234

    Article  CAS  Google Scholar 

  • Bhasin M, Raghava GPS (2004) Prediction of CTL epitopes using QM, SVM and ANN techniques. Vaccine 22:3195–3201

    Article  CAS  PubMed  Google Scholar 

  • Bhasin M, Raghava GPS (2006) A hybrid approach for predicting promiscuous MHC Class I restricted T-cell epitopes. J Biosci 32:31–42

    Article  Google Scholar 

  • Bhasin M, Raghava GPS (2006) A hybrid approach for predicting promiscuous MHC Class I restricted T-cell epitopes. J Biosci 32:31–42

    Article  Google Scholar 

  • Blythe MJ, Flower DR (2005) Benchmarking B-cell epitope prediction: underperformance of existing methods. Protein Sci 14:246–248

    Article  CAS  PubMed  Google Scholar 

  • Burden FR, Winkler DA (2005) Predictive Bayesian neural network models of MHC Class II peptide binding. J Mol Graph Model 23:481–489

    Article  CAS  PubMed  Google Scholar 

  • Buus S et al (2003) Sensitive quantitative predictions of peptide- MHC binding by a ‘Query by Committee’ artificial neural network approach. Tissue Antigens 62:378–384

    Article  CAS  PubMed  Google Scholar 

  • Chang HT, Liu CH, Pai TW (2008) Estimation and extraction of B-cell linear epitopes predicted by mathematical morphology approaches. J Mol Recognit 21:431–441

    Article  CAS  PubMed  Google Scholar 

  • Davies MN, Flower DR (2007) Harnessing bioinformatics to discover new vaccines. Drug Discov Today 12:389–395

    Article  CAS  PubMed  Google Scholar 

  • Deavin AJ, Auton TR, Greaney PJ (1996) Statistical comparison of established T-cell epitope predictors against a large database of human and murine antigens. Mol Immunol 33:145–155

    Article  CAS  PubMed  Google Scholar 

  • de Diego JL, Gerold G, Zychlinsky A (2007) Sensing, presenting, and regulating PAMPs. Ernst Schering Found Symp Proc 3:83–95

    Article  PubMed  Google Scholar 

  • De Groot AS (2006) Immunomics: discovering new targets for vaccines and therapeutics. Drug Discov Today 11:203–209

    Article  PubMed  Google Scholar 

  • De Groot AS, Berzofsky JA (2004) From genome to vaccine – new immunoinformatics tools for vaccine design. Methods 34:425–428

    Article  PubMed  Google Scholar 

  • Donnes P, Elofsson A (2002) Prediction of MHC Class I binding peptides using SVMHC. BMC Bioinform 3:25–38

    Article  Google Scholar 

  • Dönnes P, Kohlbacher O (2005) Integrated modeling of the major events in the MHC Class I antigen processing pathway. Protein Sci 14:2132–2140

    Article  PubMed  Google Scholar 

  • Doytchinova IA, Flower DR (2005) In silico identification of supertypes for Class II MHCs. J Immunol 174:7085–7095

    CAS  PubMed  Google Scholar 

  • Doytchinova IA, Flower DR (2006) Modeling the peptide-T-cell receptor interaction by the comparative molecular similarity indices analysis-soft independent modeling of class analogy technique. J Med Chem 49(7):2193–2199

    Article  CAS  PubMed  Google Scholar 

  • Doytchinova IA, Flower DR (2007a) VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinform 8:4

    Article  Google Scholar 

  • Doytchinova IA, Flower DR (2007b) Identifying candidate subunit vaccines using an alignment-independent method based on principal amino acid properties. Vaccine 25:856–866

    Article  CAS  PubMed  Google Scholar 

  • Doytchinova IA, Guan P, Flower DR (2004) Identifiying human MHC supertypes using bioinformatic methods. J Immunol 172:4314–4323

    CAS  PubMed  Google Scholar 

  • Doytchinova I, Hemsley S, Flower DR (2004) Transporter associated with antigen processing preselection of peptides binding to the MHC: a bioinformatic evaluation. J Immunol 173(11):6813–6819

    CAS  PubMed  Google Scholar 

  • Doytchinova IA, Guan P, Flower DR (2006) EpiJen: a server for multistep T-cell epitope prediction. BMC Bioinform 7:131

    Article  Google Scholar 

  • El-Manzalawy Y, Dobbs D, Honavar V (2008a) On evaluating MHC-II binding peptide prediction methods. PLoS ONE 3:e3268

    Article  PubMed  Google Scholar 

  • El-Manzalawy Y, Dobbs D, Honavar V (2008b) Predicting linear B-cell epitopes using string kernels. J Mol Recogn 21:243–255

    Article  CAS  Google Scholar 

  • Flower DR (2003) Towards in silico prediction of immunogenic epitopes. Trends Immunol 24:667–674

    Article  CAS  PubMed  Google Scholar 

  • Flower DR (2008) Bioinformatics for vaccinology. Wiley

    Book  Google Scholar 

  • Flower DR, Doytchinova IA (2002) Immunoinformatics and the prediction of immunogenicity. Appl Bioinform 1:167–176

    CAS  Google Scholar 

  • Gowthaman U, Agrewala JN (2008) In silico tools for predicting peptides binding to HLA-Class II molecules: more confusion than conclusion. J Proteome Res 7:154–163

    Article  CAS  PubMed  Google Scholar 

  • Guan P et al (2006) MHCPred 2.0: an updated quantitative T-cell epitope prediction server. Appl Bioinform 5:55–61

    Article  CAS  Google Scholar 

  • Haste Andersen P, Nielsen M, Lund O (2006) Prediction of residues in discontinuous B-cell epitopes using protein 3D structures. Protein Sci 15:2558–2567

    Article  PubMed  Google Scholar 

  • Hattotuwagama CK, Toseland CP, Guan P, Taylor DJ, Hemsley SL, Doytchinova IA, Flower DR (2006) Toward prediction of Class II mouse major histocompatibility complex peptide binding affinity: in silico bioinformatic evaluation using partial least squares, a robust multivariate statistical technique. J Chem Inf Model 46(3):1491–1502

    Article  CAS  PubMed  Google Scholar 

  • Huang YX, Bao YL, Guo SY, Wang Y et al (2008) Pep-3D-Search: a method for B-cell epitope prediction based on mimotope analysis. BMC Bioinform 9:538

    Article  Google Scholar 

  • Janeway CA Jr, Medzhitov R (2002) Innate immune recognition. Annu Rev Immunol 20:197–216

    Article  CAS  PubMed  Google Scholar 

  • Jardetzky TS et al (1996) Crystallographic analysis of endogenous peptides associated with HLADR1 suggests a common, polyproline II-like conformation for bound peptides. Proc Natl Acad Sci USA 93:734–738

    Article  CAS  PubMed  Google Scholar 

  • Jerne NK (1960) Immunological speculations. Annu Rev Microbiol 14:341–358

    Article  CAS  PubMed  Google Scholar 

  • Jung G et al (2001) From combinatorial libraries to MHC ligand motifs, T-cell superagonists and antagonists. Biologicals 29:179–181

    Article  CAS  PubMed  Google Scholar 

  • Knapp B, Omasits U, Frantal S, Schreiner W (2009) A critical cross-validation of high throughput structural binding prediction methods for pMHC. J Comput Aided Mol Des 23:301–307

    Google Scholar 

  • Korber BT et al (2005) HIV Molecular Immunology 2005. Los Alamos National Laboratory, Theoretical Biology and Biophysics

    Google Scholar 

  • Kornbluth RS, Stone GW (2006) Immunostimulatory combinations: designing the next generation of vaccine adjuvants. J Leukoc Biol 80:1084–1102

    Article  CAS  PubMed  Google Scholar 

  • Kulkarni-Kale U, Bhosle S, Kolaskar AS (2005) CEP: a conformational epitope prediction server. Nucleic Acids Res 33(Web Server issue):W168–171

    Article  CAS  PubMed  Google Scholar 

  • Larsen JE, Lund O, Nielsen M (2006) Improved method for predicting linear B-cell epitopes. Immunome Res 2:2

    Article  PubMed  Google Scholar 

  • Larsen MV et al (2005) An integrative approach to CTL epitope prediction. A combined algorithm integrating MHC-I binding, TAP transport efficiency, and proteasomal cleavage predictions. Eur J Immunol 35:2295–2303

    Article  CAS  PubMed  Google Scholar 

  • Larsen MV, Lundegaard C, Lamberth K, Buus S, Brunak S, Lund O, Nielsen M (2005) An integrative approach to CTL epitope prediction: a combined algorithm integrating MHC Class I binding, TAP transport efficiency, and proteasomal cleavage predictions. Eur J Immunol 35:2295–2303

    Article  CAS  PubMed  Google Scholar 

  • Lin HH, Zhang GL, Tongchusak S, Reinherz EL, Brusic V (2008) Evaluation of MHC-II peptide binding prediction servers: applications for vaccine research. BMC Bioinform 9(Suppl 12):S22

    Article  Google Scholar 

  • Lin ML, Zhan Y, Villadangos JA, Lew AM (2008) The cell biology of cross-presentation and the role of dendritic cell subsets. Immunol Cell Biol 86:353–362

    Article  CAS  PubMed  Google Scholar 

  • Loureiro J, Ploegh HL (2006) Antigen presentation and the ubiquitin-proteasome system in host-pathogen interactions. Adv Immunol 92:225–305

    Article  CAS  PubMed  Google Scholar 

  • Matzinger P (2002) An innate sense of danger. Ann NY Acad Sci 961:341–342

    Google Scholar 

  • Moreau V, Granier C, Villard S, Laune D, Molina F (2006) Discontinuous epitope prediction based on mimotope analysis. Bioinform 22:1088–1095

    Article  CAS  Google Scholar 

  • Moreau V, Fleury C, Piquer D, Nguyen C et al (2008) PEPOP: computational design of immunogenic peptides. BMC Bioinform 9:71

    Article  Google Scholar 

  • Nielsen M et al (2003) Reliable prediction of T-cell epitopes using neural networks with novel sequence representations. Prot Sci 12:1007–1017

    Article  CAS  Google Scholar 

  • Nielsen M et al (2007) Prediction of MHC Class II binding affinity using SMM-align, a novel stabilization matrix alignment method. BMC Bioinform 8:238

    Article  Google Scholar 

  • Nielsen M, Lundegaard C, Blicher T, Peters B et al (2008) Quantitative predictions of peptide binding to any HLA-DR molecule of known sequence: NetMHCIIpan. PLoS Comput Biol 4:e1000107

    Article  PubMed  Google Scholar 

  • Noguchi H et al (2002) Hidden Markov model-based prediction of antigenic peptides that interact with MHC Class II molecules. J Biosci Bioeng 94:264–270

    CAS  PubMed  Google Scholar 

  • Peters B, Sette A (2005) Generating quantitative models describing the sequence specificity of biological process with the stabilized matrix method. BMC Bioinform 6:132

    Article  Google Scholar 

  • Peters B, Bui HH, Frankild S, Nielson M et al (2006) A community resource benchmarking predictions of peptide binding to MHC-I molecules. PLoS Comput Biol 2:e65

    Article  PubMed  Google Scholar 

  • Ponomarenko J, Bui HH, Li W, Fusseder N et al (2008) ElliPro: a new structure-based tool for the prediction of antibody epitopes. BMC Bioinform 9:514

    Article  Google Scholar 

  • Ponomarenko JV, Bourne PE (2007) Antibody-protein interactions: benchmark datasets and prediction tools evaluation. BMC Struct Biol 7:64

    Article  PubMed  Google Scholar 

  • Rammensee H et al (1999) SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenet 50:213–219

    Article  CAS  Google Scholar 

  • Reche PA et al (2002) Prediction of MHC Class I binding peptides using profile motifs. Hum Immunol 63:701–709

    Article  CAS  PubMed  Google Scholar 

  • Rubinstein ND, Mayrose I, Pupko T. (2009) A machine-learning approach for predicting B-cell epitopes. Mol. Immunol 46:840–847

    Google Scholar 

  • Saha S, Raghava GPS (2006) Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Proteins 65:40–48

    Article  CAS  PubMed  Google Scholar 

  • Saxova P, Buus S, Brunak S, Kesmir C (2003) Predicting proteasomal cleavage sites: a comparison of available methods. Int Immunol 15(7):781–787

    Article  CAS  PubMed  Google Scholar 

  • Serruto D, Rappuoli R. (2006) Post-genomic vaccine development. FEBS Lett 580:2985–2992

    Article  CAS  PubMed  Google Scholar 

  • Singh H, Raghava GPS (2001) ProPred: prediction of HLA-DR binding sites. Bioinform 17:1236–1237

    Article  CAS  Google Scholar 

  • Singh H, Raghava GPS (2003) ProPred1: prediction of promiscuous MHC Class-I binding sites. Bioinform 19:1009–1014

    Article  CAS  Google Scholar 

  • Swain MT et al (2001) An automated approach to modelling Class II MHC alleles and predicting peptide binding. In: Bourbakis NS (ed) Proc 2nd IEEE Int Symp Biol.-Inform Biomed Engin. IEEE Computer Society Press, pp. 81–88

    Google Scholar 

  • Vivona S, Gardy JL, Ramachandran S, Brinkman FS et al (2008) Computer-aided biotechnology: from immuno-informatics to reverse vaccinology. Trends Biotechnol 26:190–200

    Article  CAS  PubMed  Google Scholar 

  • Vyas JM, Van der Veen AG, Ploegh HL (2008) The known unknowns of antigen processing and presentation. Nat Rev Immunol 8:607–618

    Article  CAS  PubMed  Google Scholar 

  • Ya L, Davydov I, Tonevitsky AG (2009) published in Molekulyarnaya Biologiya 43(1):166–174

    Google Scholar 

  • Zhang H, Lundegaard C, Nielsen M (2009) Pan-specific MHC Class I predictors: a benchmark of HLA Class I pan-specific prediction methods. Bioinform 25:83–89

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Davies, M.N., Flower, D.R. (2010). Computational Epitope Mapping. In: Sintchenko, V. (eds) Infectious Disease Informatics. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1327-2_9

Download citation

Publish with us

Policies and ethics