Skip to main content
Log in

A hybrid approach for predicting promiscuous MHC class I restricted T cell epitopes

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

In the present study, a systematic attempt has been made to develop an accurate method for predicting MHC class I restricted T cell epitopes for a large number of MHC class I alleles. Initially, a quantitative matrix (QM)-based method was developed for 47 MHC class I alleles having at least 15 binders. A secondary artificial neural network (ANN)-based method was developed for 30 out of 47 MHC alleles having a minimum of 40 binders. Combination of these ANN-and QM-based prediction methods for 30 alleles improved the accuracy of prediction by 6% compared to each individual method. Average accuracy of hybrid method for 30 MHC alleles is 92.8%. This method also allows prediction of binders for 20 additional alleles using QM that has been reported in the literature, thus allowing prediction for 67 MHC class I alleles. The performance of the method was evaluated using jack-knife validation test. The performance of the methods was also evaluated on blind or independent data. Comparison of our method with existing MHC binder prediction methods for alleles studied by both methods shows that our method is superior to other existing methods. This method also identifies proteasomal cleavage sites in antigen sequences by implementing the matrices described earlier. Thus, the method that we discover allows the identification of MHC class I binders (peptides binding with many MHC alleles) having proteasomal cleavage site at C-terminus. The user-friendly result display format (HTML-II) can assist in locating the promiscuous MHC binding regions from antigen sequence. The method is available on the web at www.imtech.res.in/raghava/nhlapred and its mirror site is available at http://bioinformatics.uams.edu/mirror/nhlapred/.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ANN:

Artificial neural network

CTL:

cytotoxic T lymphocytes

QM:

quantitative matrix

SSE:

Sum of Squared Error function

References

  • Adams H P and Koziol J A 1995 Prediction of binding to MHC class I molecules; J. Immunol. Methods 185 181–190

    Article  PubMed  CAS  Google Scholar 

  • Ayyoub M, Stevanovic S, Sahin U, Guillaume P, Servis C, Rimoldi D, Valmori D, Romero P, Cerottini J C, Rammensee H G, Pfreundschuh M, Speiser D and Levy F 2002 Proteasome-assisted identification of a SSX-2-derived epitope recognized by tumor-reactive CTL infiltrating metastatic melanoma; J. Immunol. 168 1717–1722

    PubMed  CAS  Google Scholar 

  • Bairoch A and Apweiler R 2000 The SWISS-PROT protein sequences database and its supplyment TrEMBL in 2000; Nucleic Acids Res. 28 45–48

    Article  PubMed  CAS  Google Scholar 

  • Bhasin M, Singh H, Raghava G P S 2003 MHCBN A comprehensive database of MHC binding and non-binding peptides; Bioinformatics 19 665–666

    Article  PubMed  CAS  Google Scholar 

  • Brusic V, Rudy G and Harrison L C 1994 Prediction of MHC binding peptides by using artificial neural networks; in Complex mechanism of adaptation (Amsterdam: IOS Press) pp 253–258

    Google Scholar 

  • Buus S 1999 Description and prediction of peptide-MHC binding: the ‘human MHC project’; Curr. Opin. Immunol. 11 209–213

    Article  PubMed  CAS  Google Scholar 

  • Cresswell P, Bangia N, Dick T and Diedrich G 1999 The nature of the MHC class I peptide loading complex; Immunol. Rev. 172 21–28

    Article  PubMed  CAS  Google Scholar 

  • Donnes P and Elofsson A 2002 Prediction of MHC class I binding peptides, using SVMHC; BMC Bioinformatics 3 25

    Article  PubMed  Google Scholar 

  • Doytchinova I A and Flower D R 2001 Toward the quantitative prediction of T-cell epitopes: coMFA and coMSIA studies of peptides with affinity for the class I MHC molecule HLA-A*0201; J. Med. Chem. 44 3572–3581

    Article  PubMed  CAS  Google Scholar 

  • Feng Z P 2001 Prediction of the subcellular location of prokaryotic proteins based on a new representation of the amino acid composition; Biopolymers 58 491–499

    Article  PubMed  CAS  Google Scholar 

  • Feng Z P and Zhang C T 2001 Prediction of the subcellular location of prokaryotic proteins based on the hydrophobicity index of amino acids; Int. J. Biol. Macromol. 28 255–261

    Article  PubMed  Google Scholar 

  • Goldberg A, Cascio P, Saric T and Rock K 2002 The importance of the proteasome and subsequent proteolytic steps in the generation of antigenic peptides; Mol. Immunol. 39 147–164

    Article  PubMed  CAS  Google Scholar 

  • Gulukota K, Sidney J, Sette A and DeLisi C 1997 Two complementary methods for predicting peptides binding major histocompatibility complex molecules; J. Mol. Biol. 267 1258–1267

    Article  PubMed  CAS  Google Scholar 

  • Hammer J, Valsasnini P, Tolba K, Bolin D, Higelin J, Takacs B and Sinigaglia F 1993 Promiscuous and allele-specific anchors in HLA-DR-binding peptides; Cell 74 197–203

    Article  PubMed  CAS  Google Scholar 

  • Hertz J A, Palmer R G and Krogh A S 1991 Introduction to theory of neural computation (Redwood City: Addison-wesley)

    Google Scholar 

  • Honeyman M C, Brusic V, Stone N L and Harrison L C 1998 Neural network-based prediction of candidate T-cell epitopes; Nat. Biotechnol. 16 966–999

    Article  PubMed  CAS  Google Scholar 

  • Hua S and Sun Z 2001 Support vector machine approach for protein subcellular localization prediction; Bioinformatics 17 721–728

    Article  PubMed  CAS  Google Scholar 

  • Kessler J H, Beekman N J, Bres-Vloemans S A, Verdijk P, van Veelen P A, Kloosterman-Joosten A M, Vissers D C J, ten Bosch G J A, Kester M G D, Sijts A, Drijfhout J W, Ossendrop F, Offringa R and Melief C J M 2001 Efficient identification of novel HLA-A*0201-presented cytotoxic T lymphocyte epitopes in the widely expressed tumor antigen PRAME by proteasome-mediated digestion analysis; J. Exp. Med. 193 73–88

    Article  PubMed  CAS  Google Scholar 

  • Mardia K V, Kent J T and Bibby J M 1979 Multivariate analysis (London: Academic Press) pp 322–381

    Google Scholar 

  • Parker K C, Bednarek M A and Coligan J E 1994 Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains; J. Immunol. 152 163–175

    PubMed  CAS  Google Scholar 

  • Rammensee H G, Bachmann J, Emmerich N P N, Bachor O A and Stevanović S 1999 SYFPEITHI: database for MHC ligands and peptide motifs; Immunogenetics 50 213–219

    Article  PubMed  CAS  Google Scholar 

  • Reche P, Glutting J and Reinherz E 2002 Prediction of MHC class I binding peptides using profile motifs; Hum. Immunol. 63 701–709

    Article  PubMed  CAS  Google Scholar 

  • Schueler-Furman O, Altuvia Y, Sette A and Margalit H 2000 Structure-based prediction of binding peptides to MHC class I molecules:application to a broad range of MHC alleles; Protein Sci. 9 1838–1876

    Article  PubMed  CAS  Google Scholar 

  • Singh H and Raghava G P S 2003 ProPred1 Prediction of Promiscuous MHC class I binding sites; Bioinformatics 19 1009–1014

    Article  PubMed  CAS  Google Scholar 

  • Singh H and Raghava G P S 2001 ProPred: prediction of HLA-DR binding sites; Bioinformatics 17 1236–1237

    Article  PubMed  CAS  Google Scholar 

  • Sturniolo T, Bono E, Ding J, Raddrizzani L, Tuereci O, Sahin U, Braxenthaler M, Gallazzi F, Protti M P, Sinigaglia F and Hammer J 1999 Generation of tissue-specific and promiscuous HLA ligand databases using DNA microarrays and virtual HLA class II matrices; Nat. Biotechnol. 17 555–561

    Article  PubMed  CAS  Google Scholar 

  • Toes R E, Nussbaum A K, Degermann S, Schirle M, Emmerich N P N, Kraft M, Laplace C, Zwinderman A, Dick T P, Muller J, Schonfisch B, Schmid C, Fehling H J, Stevanovic S, Rammensee H G and Schild H 2001 Discrete cleavage motifs of constitutive and immunoproteasomes revealed by quantitative analysis of cleavage products; J. Exp. Med. 194 1–12

    Article  PubMed  CAS  Google Scholar 

  • Vordermeier M, Whelan A O and Hewinson R G 2003 Recognition of Mycobacterial Epitopes by T Cells across Mammalian Species and Use of a Program That Predicts Human HLA-DR Binding Peptides To Predict Bovine Epitopes; Infect. Immun. 71 1980–1987

    Article  PubMed  CAS  Google Scholar 

  • Yuan Z 1999 Prediction of protein subcellular locations using Markov chain models; FEBS Lett. 451 23–26

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G P S Raghava.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhasin, M., Raghava, G.P.S. A hybrid approach for predicting promiscuous MHC class I restricted T cell epitopes. J Biosci 32, 31–42 (2007). https://doi.org/10.1007/s12038-007-0004-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-007-0004-5

Keywords

Navigation