Skip to main content

Multiscale Characterization and Domain Partitioning for Multiscale Analysis of Heterogeneous Materials

  • Chapter
  • First Online:
Computational Methods for Microstructure-Property Relationships

Abstract

This chapter discusses the development of a multiscale characterization methodology leading to microstructural morphology-based domain partitioning MDP methodology for materials with nonuniform heterogeneous microstructure. The comprehensive set of methods is intended to provide a concurrent multiscale analysis model with the initial computational domain that delineates regions of statistical homogeneity and inhomogeneity. The MDP methodology is intended as a preprocessor to multiscale analysis of mechanical behavior and damage of heterogeneous materials, e.g., cast aluminum alloys. It introduces a systematic three-step process that is based on geometric features of morphology. The first step simulates high-resolution microstructural information from low-resolution micrographs of the material and a limited number of high-resolution optical or scanning electron microscopy micrographs. The second step is quantitative characterization of the high-resolution images to create effective metrics that can relate microstructural descriptors to material behavior. The third step invokes a partitioning method to demarcate regions belonging to different length scales in a concurrent multiscale model. Partitioning criteria for domain partitioning are defined in terms of microstructural descriptors and their functions. The effectiveness of these metrics in differentiating microstructures of a 319-type cast aluminum alloy with different secondary dendrite arm spacings SDAS is demonstrated. The MDP method establishes intrinsic material length scales and consequently subdivides the computational domain for concurrently coupling macro- and micromechanical analyses in the multiscale model. Finally, a multiscale analysis of ductile fracture is conducted using a differentiated scale structure that has been laid out by the MDP algorithm. The chapter emphasizes the need for coupling multiscale characterization and domain decomposition with multiscale analysis of heterogeneous materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anson, J.P. and Gruzleski, J.E.: The quantitative discrimination between shrinkage and gas microporosity in cast Aluminum alloys using spatial data analysis. Mater. Charac. 43, 319–335 (1999)

    Article  Google Scholar 

  • Argon, A.S., Im, J. and Sofoglu, R.: Cavity formation from inclusions in ductile fracture. Metall. Mater. Trans. A. 6A, 825–837 (1975)

    Google Scholar 

  • Ghosh, S., Bai, J. and Paquet, D.: Homogenization based continuum plasticity-damage model for ductile failure of materials containing heterogeneities. J. Mech. Physics Solids 57, 1017–1044 (2009)

    Article  MATH  Google Scholar 

  • Baker, S. and Kanade, T.: Super-resolution: reconstruction or recognition? Proc. 2001 IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing, (2001)

    Google Scholar 

  • Boehm, H.J., Han, W. and Ecksclager, A.: Multi-inclusion unit cell studies of reinforcement stresses and particle failure in discontinuously reinforced ductile matrix composites. Comp. Model. Eng. Sci. 5, 5–20 (2004)

    MATH  Google Scholar 

  • Boileau, J.M.: The effect of solidification time on the mechanical properties of a cast 319 aluminum alloy. Ph.D. dissertation, Wayne State University (2000)

    Google Scholar 

  • Caceres, C.H. and Griffiths, J.R.: Damage by the cracking of silicon particles in an Al-7Si-0.4Mg casting alloy. Acta Mater. 44, 25–33 (1996)

    Google Scholar 

  • Caceres, C.H., Griffiths, J.R. and Reiner, P.: The influence of microstructure on the bauschinger effect in an Al-Si-Mg casting alloy. Acta Mater. 44, 15–23 (1996)

    Article  Google Scholar 

  • Caceres, C.H.: Particle cracking and the tensile ductility of a model Al-Si-Mg composite system. Aluminum Trans. 1, 1–13 (1999)

    Google Scholar 

  • Christman, T., Needleman, A. and Suresh, S.: An experimental and numerical study of deformation in metal-ceramic composites. Acta Metall. et Mater. 37, 3029–3050 (1989)

    Article  Google Scholar 

  • Chui, C.K.: An introduction to wavelets. Academic (1992)

    Google Scholar 

  • Chung, P.W. and Tamma, K.K.: Woven fabric composites: Developments in engineering bounds, homogenization and applications. Int. J. Numer. Meth. Eng. 45, 1757–1790 (1999)

    Article  MATH  Google Scholar 

  • Cooper, D.W.: Random sequential packing simulation in three dimensions for spheres. Phys. Rev. A: A38, 522–524 (1998)

    Google Scholar 

  • Everett, R.K. and Chu, J.H.: Modeling of non-uniform composite microstructures. J. Compos. Mater. 27, 1128–1144 (1992)

    Article  Google Scholar 

  • Everson, R., Sirooich, L. and Sreenicasan, K.R.: Wavelet analysis of the turbulent jet. Phys. Lett. A. 145, 314–322 (1990)

    Article  MathSciNet  Google Scholar 

  • Farsiu, S., Robinson, D., Elad, M. and Milanfar, P.: Advances and challenges in super-resolution. Int. Jour. Imaging Syst. Tech., 14(2), 47–57 (2004)

    Article  Google Scholar 

  • Fish, J. and Shek, K.: Multiscale analysis of composite materials and structures. Comp. Sci. Tech. 60, 2547–2556 (2000)

    Article  Google Scholar 

  • Freeman, W.T., Pasztor, E.C. and Carmichael, O.T.: Learning low-level vision. Int. J. Comp. Vision. 40, 24–47 (2000)

    Article  Google Scholar 

  • Ghosh, S., Nowak, Z. and Lee, K.: Quantitative characterization and modeling of composite microstructures by Voronoi cells. Acta Mater. 45, 2215–2234 (1997a)

    Article  Google Scholar 

  • Ghosh, S., Nowak, Z. and Lee, K.: Tessellation based computational methods in characterization and analysis of heterogeneous microstructures. Comp. Sci. Tech. 57, 1187–1210 (1997b)

    Article  Google Scholar 

  • Ghosh, S., Ling, Y., Majumdar, B. and Kim, R.: Interfacial debonding analysis in multiple fiber reinforced composites. Mech. Mater. 32, 561–591 (2000)

    Article  Google Scholar 

  • Ghosh, S., Lee, K. and Raghavan, P.: A multi-level computational model for multi-scale damage analysis in composite and porous materials. Int. J. Solids Struct. 38(14), 2335–2385 (2001)

    Article  MATH  Google Scholar 

  • Ghosh, S., Valiveti, D.M., Harris, S.H. and Boileau, J.: Microstructure characterization based domain partitioning as a pre-processor to multi-scale modeling of cast Aluminum alloys. Mod. Simul. Mater. Sci. Eng. 14, 1363–1396 (2006)

    Article  Google Scholar 

  • Ghosh S.: Adaptive concurrent multi-level model for multi-scale analysis of composite materials including damage. In Kwon, Y., Allen, D.H. and Talreja, R. (eds.), Multiscale Modeling and Simulation of Composite Materials and Structures, pp 83–164, Springer (2008)

    Google Scholar 

  • Gokhale, A.M. and Yang, S.: Application of image processing for simulation of mechanical response of multi-length scale microstructures of engineering alloys. Metall. Mater. Trans. A30, 2369–2381 (1999)

    Article  Google Scholar 

  • Gonzalez, C. and Llorca, J.: Prediction of the tensile stress-strain curve and ductility in Al/SiC composites. Scripta Metall. 35(1), 91–97 (1996)

    Article  Google Scholar 

  • Hill, R.: Elastic Properties of Reinforced Solids: Some Theoretical Principles. J. Mech. Phys. Solids 11, 357–372 (1963)

    Article  MATH  Google Scholar 

  • Hu, C. and Ghosh, S.: Locally enhanced Voronoi cell finite element model (LE-VCFEM) for simulating evolving fracture in ductile microstructures containing inclusions, Int. J. Numer. Meth. Eng. 76(12), 1955–1992 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  • Hao, S., Liu, W.K., Moran, B., Vernerey, F. and Olson, G.B.: Multi-scale constitutive model and computational framework for the design of ultra-high strength, high toughness steels. Comp. Meth. Appl. Mech. Eng. 193(17–20), 1865–1908 (2004)

    Article  MATH  Google Scholar 

  • Jain, J.R. and Ghosh, S.: A 3D continuum damage mechanics model from micromechanical analysis of fiber reinforced composites with interfacial damage. ASME J. App. Mech. 75, 031011-1-031011-15 (2008a)

    Google Scholar 

  • Jain, J.R. and Ghosh, S.: Damage evolution in composites with a homogenization based continuum damage mechanics model. Inter. J. Damage Mech. (2008b) doi:10.1177/1056789508091563

    Google Scholar 

  • Jensen, K. and Anastassiou, D.: Subpixel edge localization and the interpolation of still images. IEEE Trans. Image Proc. 4, 285–295 (1995)

    Article  Google Scholar 

  • Karnezis, P.A., Durrant, G. and Cantor, B.: Characterization of reinforced distribution in cast Al-Alloy/SiC composites. Mater. Charac. 40, 97–109 (1998)

    Article  Google Scholar 

  • Kumar, H., Briant, C.L., Curtin, W.A.: Using microstructure reconstruction to model mechanical behavior in complex microstructures. Mech. Mater. 38, 818–832 (2006)

    Article  Google Scholar 

  • Lewalle, J.: Wavelet analysis of experimental data: some methods and the underlying physics. AIAA 94–2281, 25th AIM Fluid Dynamics Colorado Springs (1994)

    Google Scholar 

  • Li, M., Ghosh, S. and Richmond, O.: An experimental-computational approach to the investigation of damage evolution in discontinuously reinforced aluminum matrix composites. Acta Mater. 47(12), 3515–3552 (1999a)

    Article  Google Scholar 

  • Li, M., Ghosh, S., Richmond, O., Weiland, H. and Rouns, T.N.: Three dimensional characterization and modeling of particle reinforced metal matrix composites part II: damage characterization. Mater. Sci. Eng. A266, 221–240 (1999b)

    Google Scholar 

  • Li, S. and Ghosh, S.: Extended Voronoi cell finite element model for multiple cohesive crack propagation in brittle materials. Int. J. Numer. Meth. Eng. 65, 1028–1067 (2006)

    Article  MATH  Google Scholar 

  • Luthon, F., Lievin, M. and Faux, F.: On the use of entropy power for threshold selection. Signal Proc. 84, 1789–1804 (2004)

    Article  MATH  Google Scholar 

  • Manwart, C., Torquato, S. and Hilfer, R.: Stochastic reconstruction of sandstones. Physical Rev. E. 62, 893–899 (2000)

    Article  Google Scholar 

  • Motard, R.L. and Joseph, B.: Wavelet applications in chemical engineering. Kluwer (1994)

    Google Scholar 

  • Poole, W.J., Dowdle, E.J.; Experimental measurements of damage evolution in Al-Si eutectic alloys. Scripta Mater. 39, 1281–1287 (1998)

    Article  Google Scholar 

  • Prasad L and Iyengar S.S.: Wavelet analysis with applications to image processing, CRC, 1997

    Google Scholar 

  • Pyrz, R.: Quantitative description of the microstructure of composites: I. Morphology of unidirectional composite systems. Compos. Sci. Tech. 50, 197–208 (1994)

    Google Scholar 

  • Qian, S. and Weiss, J.: Wavelets and the numerical solution of boundary value problems. Appl. Math. Lett. 6(1), 47–52 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  • Raghavan, P. and Ghosh, S.: Adaptive multi-scale computational modeling of composite materials. Comp. Model. Eng. Sci. 5, 151–170 (2004a)

    MATH  Google Scholar 

  • Raghavan, P. and Ghosh, S.: Concurrent multi-scale analysis of elastic composites by a multi-level computational model. Comput. Meth. Appl. Mech. Eng. 5(2), 151–170 (2004b)

    MATH  Google Scholar 

  • Raghavan, P., Li, S. and Ghosh, S.: Two scale response and damage modeling of composite materials. Fin. Elem. Anal. Des. 40(12), 1619–1640 (2004)

    Article  Google Scholar 

  • Rintoul, M.D. and Torquato, S.: Reconstruction of structure of dispersions. J. Colloid Int. Sci. 186, 467–476 (1996)

    Article  Google Scholar 

  • Robert, R.K.: Cubic convolution interpolation for digital image processing. IEEE Trans. Acous. Speech Signal Proc. ASSP-29, 1153–1160 (1981)

    Google Scholar 

  • Russ, J.C.: The Image Processing Handbook, 3rd Edition, CRC and IEEE, New York (1999)

    MATH  Google Scholar 

  • Sahoo, P.K., Soltani, S., Wong, A.K.C.: A survey of thresholding techniques. Comp. Vision Graphics Image Proc. 41, 233–260 (1988)

    Article  Google Scholar 

  • Segurado, J. and Llorca. J.: A computational micromechanics study of the effects of interface decohesion on the mechanical behavior of composites. Acta Mater. 53, 4931–4942 (2005)

    Google Scholar 

  • Serra, J.: Image Analysis and Mathematical Morphology, Academic (1982)

    Google Scholar 

  • Seul, M., O’Gorman, L. and Sammon, M.J.: Practical Algorithms for Image Analysis, Cambridge University Press (2000)

    Google Scholar 

  • Shan, Z. and Gokhale, A.M.: Digital image analysis and microstructure modeling tools for microstructure sensitive design of materials. Int. J. Plasticity 20, 1347–1370 (2004)

    Article  MATH  Google Scholar 

  • Smit, R.J.M., Brekelmans, W.A.M. and Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Comp. Meth. Appl. Mech. Eng. 155(1–2), 181–192 (1998)

    Article  MATH  Google Scholar 

  • Spitzig, W.A., Kelly, J.F. and Richmond, O.: Quantitative characterization of second-phase populations. Metallography 18, 235–261 (1985)

    Article  Google Scholar 

  • Spowart, J.E., Mayurama, B. and Miracle, D.B.: Multiscale characterization of spatially heterogeneous systems: Implications for discontinuously reinforced metal-matrix composite microstructures. Mater. Sci. Eng. A307, 51–66 (2001)

    Google Scholar 

  • Swaminathan, S., Ghosh, S. and Pagano, N.J.: Statistically equivalent representative volume elements for composite microstructures, Part I: Without damage. J. Compos. Mater. 7(40), 583–604 (2006)

    Google Scholar 

  • Swaminathan, S. and Ghosh, S.: Statistically equivalent representative volume elements for composite microstructures, Part II: With damage. J. Compos. Mater. 7(40), 605–621 (2006)

    Google Scholar 

  • Terada, K. and Kikuchi, N.: Simulation of the multi-scale convergence in computational homogenization approaches. Int. J. Solids Struc. 37, 2285–2311 (2000)

    Article  MATH  Google Scholar 

  • Tewari, A., Gokhale, A.M., Spowart, J.E. and Miracle, D.B.: Quantitative characterization of spatial clustering in three-dimensional microstructures using two-point correlation functions. Acta Mater. 52, 307–319 (2004)

    Article  Google Scholar 

  • Torquato, S.: Random Heterogeneous Materials: Microstructure and macroscopic properties, Springer, New York (2002)

    MATH  Google Scholar 

  • Unser, M., Aldroubi, A. and Eden M.: Fast B-spline transforms for continuous image representation and interpolation. IEEE Trans. Pattern Anal. Mach. Int. 13, 277–285 (1991)

    Article  Google Scholar 

  • Valiveti, D.M. and Ghosh, S.: Domain partitioning of multi-phase materials based on multi-scale characterizations: A preprocessor for multi-scale modeling. Int. J. Numer. Meth. Eng. 69(8), 1717–1754 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  • Vemaganti, K. and Oden, J.T.: Estimation of local modeling error and goal-oriented adaptive modeling of heterogeneous materials, Part II: A computational environment for adaptive modeling of heterogeneous elastic solids. Comput. Meth. Appl. Mech. Eng. 190, 6089–6124 (2001)

    MATH  MathSciNet  Google Scholar 

  • Wang, Q.G., Caceres, C.H. and Griffiths, J.R.: Damage by eutectic particle cracking in Aluminum casting alloys A356/357. Metall. Mater. Trans. A. 34A, 2901–2912 (2003)

    Article  Google Scholar 

  • Wang, Q.G.: Microstructural effects on the tensile and fracture behavior of Aluminum casting alloys A356/357. Metall. Mater. Trans. A. 34A, 2887–2899 (2003)

    Article  Google Scholar 

  • Weissenbek, E., Boehm, H.J. and Rammerstoffer, F.G.: Micromechanical investigations of fiber arrangement effects in particle reinforced metal matrix composites. Comp. Mater. Sci. 3, 263–278 (1994)

    Article  Google Scholar 

  • Xia, Z., Curtin, W.A. and Peters, P.W.M.: Multiscale modeling of failure in metal matrix composites. Acta Mater. 49, 273–287 (2001)

    Article  Google Scholar 

  • Yang, N., Boselli, J. and Sinclair, I.: Simulation and quantitative assessment of homogeneous and inhomogeneous particle distributions in particulate metal matrix composites. J. Microscopy 201, 189–200 (2000a)

    Article  MathSciNet  Google Scholar 

  • Yang, S., Gokhale, A.M. and Shan, Z.: Utility of microstructure modeling for simulation of micro-mechanical response of composites containing non-uniformly distributed fibers. Acta Mater. 48, 2307–2322 (2000b)

    Article  Google Scholar 

  • Yeong, C.L.Y. and Torquato, S.: Reconstructing random media. Physical Rev. E. 57, 495–505 (1998)

    Article  MathSciNet  Google Scholar 

  • Yotte, S., Riss, J., Breysse, D. and Ghosh, S.: PMMC cluster analysis. Comp. Model. Eng. Sci. 5, 171–187 (2004)

    MATH  Google Scholar 

  • Zohdi, T.I. and Wriggers, P.: A domain decomposition method for bodies with heterogeneous microstructure based on material regularization. Int. J. Solids Struct. 36, 2507–2525 (1999)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work has been supported by the National Science Foundation NSF Div Civil and Mechanical Systems Division through the GOALI grant No. CMS-0308666 (Program director: Dr. Clark cooper) and by the Army Research Office through grant No.DAAD19-02-1-0428 (Program Director: Dr. B. Lamattina). This sponsorship is gratefully acknowledged. Computer support by the Ohio Supercomputer Center through grant PAS813-2 is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somnath Ghosh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ghosh, S. (2011). Multiscale Characterization and Domain Partitioning for Multiscale Analysis of Heterogeneous Materials. In: Ghosh, S., Dimiduk, D. (eds) Computational Methods for Microstructure-Property Relationships. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0643-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0643-4_4

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-0642-7

  • Online ISBN: 978-1-4419-0643-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics