Skip to main content

Large-Scale Computational Modeling of the Primary Visual Cortex

  • Chapter
  • First Online:
Coherent Behavior in Neuronal Networks

Part of the book series: Springer Series in Computational Neuroscience ((NEUROSCI,volume 3))

Abstract

This chapter reviews our approach to large-scale computational modeling of the primary visual cortex (V1). The main objectives of our modeling are to (1) capture groups of experimentally observed phenomena in a single theoretical model of cortical circuitry, and (2) identify the physiological mechanisms underlying the model dynamics. We have achieved these objectives by building parsimonious models based on minimal, yet sufficient, sets of anatomical and physiological assumptions. We have also verified the structural robustness of the proposed network mechanisms. During the modeling process, we have identified a particular operating state of our model cortex from which we believe that V1 responds to changes in visual stimulation. This state is characterized by (1) high total conductance, (2) strong inhibition, (3) large synaptic fluctuations, (4) an important role of NMDA conductance in the orientation-specific, long-range interactions, and (5) a high degree of correlation between the neuronal membrane potentials, NMDA-type conductances, and firing rates. Tuning our model to this operating state in the absence of stimuli, we have used it to identify and investigate model neuronal network mechanisms underlying cortical phenomena including (1) spatiotemporal patterns of spontaneous cortical activity, (2) cortical activity patterns induced by the Hikosaka line-motion illusion stimulus paradigm, (3) membrane potential synchronization in nonspiking neurons several millimeters apart, and (4) neuronal orientation tuning in V1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. D. Cai, A. V. Rangan, and D. W. McLaughlin. Architectural and synaptic mechanisms underlying coherent spontaneous activity in V1. Proc. Natl. Acad. Sci. USA, 102:5868–5873, 2005.

    PubMed  CAS  Google Scholar 

  2. A. V. Rangan, D. Cai, and D. W. McLaughlin. Modeling the spatiotemporal cortical activity associated with the line-motion illusion in primary visual cortex. Proc. Natl. Acad. Sci. USA, 102:18793–18800, 2005.

    PubMed  CAS  Google Scholar 

  3. L. Tao, D. Cai, D. W. McLaughlin, M. J. Shelley, and R. Shapley. Orientation selectivity in visual cortex by fluctuation-controlled criticality. Proc. Natl. Acad. Sci. USA, 103:12911–12916, 2006.

    PubMed  CAS  Google Scholar 

  4. A. Arieli, D. Shoham, R. Hildesheim, and A. Grinvald. Coherent spatiotemporal patterns of ongoing activity revealed by real-time optical imaging coupled with single-unit recording in the cat visual cortex. J. Neurophysiol., 73:2072–2093, 1995.

    PubMed  CAS  Google Scholar 

  5. D. Fitzpatrick. Cortical imaging: capturing the moment. Curr. Biol., 10:R187–R190, 2000.

    PubMed  CAS  Google Scholar 

  6. R. C. Kelly, M. A. Smith, J. M. Samonds, A. Kohn, A. B. Bonds, J. A. Movshon, and T.-S. Lee. Comparison of recordings from microelectrode arrays and single electrodes in the visual cortex. J. Neurosci., 27:261–264, 2007.

    PubMed  CAS  Google Scholar 

  7. J. Anderson, I. Lampl, D. Gillespie, and D. Ferster. The contribution of noise to contrast invariance of orientation tuning in cat visual cortex. Science, 290:1968–1972, 2000.

    PubMed  CAS  Google Scholar 

  8. M. J. Shelley, D. W. McLaughlin, R. Shapley, and J. Wielaard. States of high conductance in a large-scale model of the visual cortex. J. Comp. Neurosci., 13:93–109, 2002.

    Google Scholar 

  9. D. Pare, E. Shink, H. Gaudreau, A. Destexhe, and E. J. Lang. Impact of spontaneous synaptic activity on the resting properties of cat neocortical pyramidal neurons In vivo. J. Neurophysiol., 79:1450–1460, Mar 1998.

    PubMed  CAS  Google Scholar 

  10. R. Dingledine, K. Borges, D. Bowie, and S. F. Traynelis. The glutamate receptor ion channels. Pharmacol. Rev., 51:7–61, 1999.

    PubMed  CAS  Google Scholar 

  11. A. Angelucci, J. B. Levitt, E. J. Walton, J. M. Hupe, J. Bullier, and J. S. Lund. Circuits for local and global signal integration in primary visual cortex. J. Neurosci., 22:8633–8646, 2002.

    PubMed  CAS  Google Scholar 

  12. J Marino, J. Schummers, D. C. Lyon, L. Schwabe, O. Beck, P. Wiesing, K. Obermayer, and M. Sur. Invariant computations in local cortical networks with balanced excitation and inhibition. Nat. Neurosci., 8:194–201, 2005.

    Google Scholar 

  13. M. Tsodyks, T. Kenet, A. Grinvald, and A. Arieli. Linking spontaneous activity of single cortical neurons and the underlying functional architecture. Science, 286:1943–1946, 1999.

    PubMed  CAS  Google Scholar 

  14. T. Kenet, D. Bibitchkov, M. Tsodyks, A. Grinvald, and A. Arieli. Spontaneously emerging cortical representations of visual attributes. Nature, 425:954–956, 2003.

    PubMed  CAS  Google Scholar 

  15. A. Grinvald and R. Heildesheim. VSDI: a new era in functional imaging of cortical dynamics. Nat. Rev. Neurosci., 5:874–885, 2004.

    PubMed  CAS  Google Scholar 

  16. M. N. Shadlen and W. T. Newsome. The variable discharge of cortical neurons: implications for connectivity, computation and information coding. J. Neurosci., 18:3870–3896, 1998.

    PubMed  CAS  Google Scholar 

  17. O. Hikosaka, S. Miyauchi, and S. Shimojo. Focal visual attention produces illusory temporal order and motion sensation. Vis. Res., 33:1219–1240, 1993.

    PubMed  CAS  Google Scholar 

  18. D. Jancke, F. Chavance, S. Naaman, and A. Grinvald. Imaging cortical correlates of illusion in early visual cortex. Nature, 428:423–426, 2004.

    PubMed  CAS  Google Scholar 

  19. I. Lampl, I. Reichova, and D. Ferster. Synchronous membrane potential fluctuations in neurons of the cat visual cortex. Neuron, 22:361–374, 1999.

    PubMed  CAS  Google Scholar 

  20. L. Borg-Graham, C. Monier, and Y. Fregnac. Voltage-clamp measurement of visually-evoked conductances with whole-cell patch recordings in primary visual cortex. J. Physiol. (Paris), 90:185–188, 1996.

    Google Scholar 

  21. L. J. Borg-Graham, C. Monier, and Y. Fregnac. Visual input evokes transient and strong shunting inhibition in visual cortical neurons. Nature, 393:369–373, 1998.

    PubMed  CAS  Google Scholar 

  22. M. N. Shadlen and W. T. Newsome. The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. J. Neurosci., 18:3870–3896, 1998.

    PubMed  CAS  Google Scholar 

  23. A. Destexhe, M. Rudolph, and D. Pare. The high-conductance state of neocortical neurons in vivo. Nat. Rev. Neurosci., 4:739–751, 2003.

    PubMed  CAS  Google Scholar 

  24. J. Anderson, I. Lampl, I. Reichova, M. Carandini, and D. Ferster. Stimulus dependence of two-state fluctuations of membrane potential in cat visual cortex. Nat. Neurosci., 3:617–621, 2000.

    PubMed  CAS  Google Scholar 

  25. M. Volgushev, J. Pernberg, and U. T. Eysel. A novel mechanism of response selectivity of neurons in cat visual cortex. J. Physiol., 540:307–320, 2002.

    PubMed  CAS  Google Scholar 

  26. M. Volgushev, J. Pernberg, and U. T. Eysel. Gamma-frequency fluctuations of the membrane potential and response selectivity in visual cortical neurons. Eur. J. Neurosci., 17:1768–1776, 2003.

    PubMed  Google Scholar 

  27. C. Rivadulla, J. Sharma, and M. Sur. Specific roles of NMDA and AMPA receptors in direction-selective and spatial phase-selective response in visual cortex. J. Neurosci., 21:1710–1719, 2001.

    PubMed  CAS  Google Scholar 

  28. R. Ben-Yishai, R. Bar-Or, and H. Sompolinsky. Theory of orientation tuning in the visual cortex. Proc. Natl. Acad. Sci. USA, 92:3844–3848, 1995.

    PubMed  CAS  Google Scholar 

  29. J.A. Goldberg, U. Rokni, and H. Sompolinsky. Patterns of ongoing activity and the functional architecture of the primary visual cortex. Neuron, 13:489–500, 2004.

    Google Scholar 

  30. A. V. Rangan and D. Cai. Fast numerical methods for simulating large-scale integrate-and-fire neuronal networks. J. Comput. Neurosci., 22:81–100, 2007.

    PubMed  Google Scholar 

  31. D. Hubel and T. Wiesel. Receptive fields, binocular interaction and functional architecture of the cat’s visual cortex. J. Physiol. (Lond.), 160:106–154, 1962.

    Google Scholar 

  32. J. A. Movshon, I. D. Thompson, and D. J. Tolhurst. Spatial summation in the receptive fields of simple cells in the cat’s striate cortex. J. Physiol. (Lond.), 283:53–77, 1978.

    Google Scholar 

  33. J. A. Movshon, I. D. Thompson, and D. J. Tolhurst. Receptive field organization of complex cells in the cat’s striate cortex. J. Physiol. (Lond.), 283:79–99, 1978.

    Google Scholar 

  34. K. Toyama, M. Kimura, and K. Tanaka. Organization of cat visual cortex as investigated by cross-correlation technique. J. Neurophysiol., 46:202–214, 1981.

    PubMed  CAS  Google Scholar 

  35. D. Ringach, R. Shapley, and M. Hawken. Orientation selectivity in macaque V1: Diversity and laminar dependence. J. Neurosci., 22:5639–5651, 2002.

    PubMed  CAS  Google Scholar 

  36. K. P. Hoffman and J. Stone. Conduction velocity of afferents to cat visual cortex: a correlation with cortical receptive field properties. Brain Res., 32:460–466, 1971.

    PubMed  CAS  Google Scholar 

  37. W. Singer, F. Tretter, and M. Cynader. Organization of cat striate cortex: a correlation of receptive-field properties with afferent and efferent connections. J. Neurophysiol., 38:1080–1098, 1975.

    PubMed  CAS  Google Scholar 

  38. D. Ferster and S. Lindstrom. An intracellular analysis of geniculo-cortical connectivity in area 17 of the cat. J. Physiol., 342:181–215, 1983.

    PubMed  CAS  Google Scholar 

  39. J. A. Movshon. The velocity tuning of single units in cat striate cortex. J. Physiol., 249:445–468, 1975.

    PubMed  CAS  Google Scholar 

  40. P. Hammond and D. M. MacKay. Differential responsiveness of simple and complex cells in cat striate cortex to visual texture. Exp. Brain. Res., 30:275–296, 1977.

    PubMed  CAS  Google Scholar 

  41. J. G. Malpeli. Activity of cells in area 17 of the cat in absence of input from layer a of lateral geniculate nucleus. J. Neurophysiol., 49:595–610, 1983.

    PubMed  CAS  Google Scholar 

  42. J. G. Malpeli, C. Lee, H. D. Schwark, and T. G. Weyand. Cat area 17. I. pattern of thalamic control of cortical layers. J. Neurophysiol., 56:1062–1073, 1986.

    Google Scholar 

  43. M. Mignard and J. G. Malpeli. Paths of information flow through visual cortex. Science, 251:1249–1251, 1991.

    PubMed  CAS  Google Scholar 

  44. K. Tanaka. Organization of geniculate inputs to visual cortical cells in the cat. Vis. Res., 25:357–364, 1985.

    PubMed  CAS  Google Scholar 

  45. J.-M. Alonso, W. M. Usrey, and R. Reid. Rules of connectivity between geniculate cells and simple cells in cat primary visual cortex. J. Neurosci., 21:4002–4015, 2001.

    PubMed  CAS  Google Scholar 

  46. D. Ringach. Spatial structure and symmetry of simple-cell receptive fields in macaque primary visual cortex. J. Neurophysiol., 88:455–463, 2002.

    PubMed  Google Scholar 

  47. L. Tao, M. J. Shelley, D. W. McLaughlin, and R. Shapley. An egalitarian network model for the emergence of simple and complex cells in visual cortex. Proc. Natl. Acad. Sci. USA, 101:366–371, 2004.

    PubMed  CAS  Google Scholar 

  48. K. Miller and D. MacKay. The role of constraints in hebbian learning. Neural Comput., 6:100–126, 1994.

    Google Scholar 

  49. K. Miller. Synaptic economics: Competition and cooperation in synaptic plasticity. Neuron, 17:371–374, 1996.

    PubMed  CAS  Google Scholar 

  50. S. Royer and D. Pare. Bidirectional synaptic plasticity in intercalated amygdala neurons and the extinction of conditioned fear responses. Neuroscience, 115:455–462, 2002.

    PubMed  CAS  Google Scholar 

  51. S. Royer and D. Pare. Conservation of total synaptic weight through balanced synaptic depression and potentiation. Nature, 422:518–522, 2003.

    PubMed  CAS  Google Scholar 

  52. J. Wielaard, M. J. Shelley, R. Shapley, and D. W. McLaughlin. How simple cells are made in a nonlinear network model of the visual cortex. J. Neurosci., 21:5203–5211, 2001.

    PubMed  CAS  Google Scholar 

  53. T. Bonhoeffer and A. Grinvald. Iso-orientation domains in cat visual cortex are arranged in pinwheel like patterns. Nature, 353:429–431, 1991.

    PubMed  CAS  Google Scholar 

  54. G. Blasdel. Differential imaging of ocular dominance and orientation selectivity in monkey striate cortex. J. Neurosci., 12:3115–3138, 1992.

    PubMed  CAS  Google Scholar 

  55. G. Blasdel. Orientation selectivity, preference, and continuity in the monkey striate cortex. J. Neurosci., 12:3139–3161, 1992.

    PubMed  CAS  Google Scholar 

  56. G. DeAngelis, R. Ghose, I. Ohzawa, and R. Freeman. Functional micro-organization of primary visual cortex: Receptive field analysis of nearby neurons. J. Neurosci., 19:4046–4064, 1999.

    PubMed  CAS  Google Scholar 

  57. M. Hubener, D. Shoham, A. Grinvald, and T. Bonhoeffer. Spatial relationships among three columnar systems in cat area 17. J. Neurosci., 17:9270–9284, 1997.

    PubMed  CAS  Google Scholar 

  58. R. Everson, A. Prashanth, M. Gabbay, B. Knight, L. Sirovich, and E. Kaplan. Representation of spatial frequency and orientation in the visual cortex. Proc. Natl. Acad. Sci. USA, 95:8334–8338, 1998.

    PubMed  CAS  Google Scholar 

  59. N. P. Issa, C. Trepel, and M. P. Stryker. Spatial frequency maps in cat visual cortex. J. Neurosci., 20:8504–8514, 2000.

    PubMed  CAS  Google Scholar 

  60. L. Sirovich and R. Uglesich. The organization of orientation and spatial frequency in primary visual cortex. Proc. Natl. Acad. Sci. USA, 101:16941–16946, 2004.

    PubMed  CAS  Google Scholar 

  61. S. Molotchnikoff, P.-C. Gillet, S. Shumikhina, and M. Bouchard. Spatial frequency characteristics of nearby neurons in cats’ visual cortex. Neurosci. Lett., 418:242–247, 2007.

    PubMed  CAS  Google Scholar 

  62. D. Fitzpatrick, J. Lund, and G. Blasdel. Intrinsic connections of macaque striate cortex Afferent and efferent connections of lamina 4C. J. Neurosci., 5:3329–3349, 1985.

    PubMed  CAS  Google Scholar 

  63. J. S. Lund. Local circuit neurons of macaque monkey striate cortex: Neurons of laminae 4C and 5A. J. Comp. Neurology, 257:60–92, 1987.

    CAS  Google Scholar 

  64. E. Callaway and A. Wiser. Contributions of individual layer 2 to 5 spiny neurons to local circuits in macaque primary visual cortex. Vis. Neurosci., 13:907–922, 1996.

    PubMed  CAS  Google Scholar 

  65. E. Callaway. Local circuits in primary visual cortex of the macaque monkey. Ann. Rev. Neurosci., 21:47–74, 1998.

    PubMed  CAS  Google Scholar 

  66. C. Koch. Biophysics of Computation. Oxford University Press, Oxford, 1999.

    Google Scholar 

  67. W. H. Bosking, Y. Zhang, B. Schofield, and D. Fitzpatrick. Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex. J. Neurosci., 17:2112–2127, 1997.

    PubMed  CAS  Google Scholar 

  68. L. Sincich and G. Blasdel. Oriented axon projections in primary visual cortex of the monkey. J. Neurosci., 21:4416–4426, 2001.

    PubMed  CAS  Google Scholar 

  69. A. Angelucci, J. B. Levitt, E. J. S. Walton, J. Hupe, J. Bullier, and J. S. Lund. Circuits for local and global signal integration in primary visual cortex. J. Neurosci., 22:8633–8646, 2002.

    PubMed  CAS  Google Scholar 

  70. A. Angelucci and J. Bullier. Reaching beyond the classical receptive field of V1 neurons: horizontal or feedback axons? J. Physiol. (Paris), 97(2-3):141–154, 2003.

    Google Scholar 

  71. J. S. Lund, A. Angelucci, and P. C. Bressloff. Anatomical substrates for functional columns in macaque monkey primary visual cortex. Cereb. Cortex, 12:15–24, 2003.

    Google Scholar 

  72. A. Angelucci, J. B. Levitt, P. Adorjan, Y. Zheng, L. C. Sincich, N. P. McLoughlin, G. P. Blasdel, and J. S. Lund. Bar-like patterns of lateral connectivity in layers 4B and upper 4Cα of macaque primary visual cortex, area V1. preprint.

    Google Scholar 

  73. Z. F. Kisvárday, K. A. C. Martin, T. F. Freund, Z. Magloczky, D. Whitteridge, and P. Somogy. Synaptic targets of HRP-filled layer III pyramidal cells in the cat striate cortex. Exp. Brain Res., 64:541–552, 1986.

    PubMed  Google Scholar 

  74. K. A. C. Martin and D. Whitteridge. Form, function and intracortical projections of spiny neurons in the striate cortex of the cat. J. Physiol. (Lond.), 353:463–504, 1984.

    Google Scholar 

  75. B. A. McGuire, C. D. Gilbert, P. K. Rivlin, and T. N. Wiesel. Targets of horizontal connections in macaque primary visual cortex. J. Comp. Neurol., 305:370–392, 1991.

    PubMed  CAS  Google Scholar 

  76. J. A. Hirsch and C. D. Gilbert. Synaptic physiology of horizontal connnections in the cat’s visual cortex. J. Neurosci., 11:1800–1809, 1991.

    PubMed  CAS  Google Scholar 

  77. Y. Yoshimura, H. Sato, K. Imamura, and Y. Watanabe. Properties of horizontal and vertical inputs to pyramidal cells in the superficial layers of the cat visual cortex. J. Neurosci., 20:1931–1940, 2000.

    PubMed  CAS  Google Scholar 

  78. K. S. Rockland and T. Knutson. Axon collaterals of Meynert cells diverge over large portions of area V1 in the macaque monkey. J. Comp. Neurol., 441:134–147, 2001.

    PubMed  CAS  Google Scholar 

  79. H. J. Chisum, F. Mooser, and D. Fitzpatrick. Emergent properties of layer 2/3 neurons reflect the collinear arrangement of horizontal connections in tree shrew visual cortex. J. Neurosci., 23:2947–2960, 2003.

    PubMed  CAS  Google Scholar 

  80. D. Shoham, D. E. Glaser, A. Arieli, T. Kenet, C. Wijnbergen, Y. Toledo, R. Hildesheim, and A. Grinvald. Imaging cortical dynamics at high spatial and temporal resolution with novel blue voltage-sensitive dyes. Neuron, 24:791–802, 1999.

    PubMed  CAS  Google Scholar 

  81. Z. Kisvarday, E. Toth, M. Rausch, and U. Eysel. Orientation-specific relationship between populations of excitatory and inhibitory lateral connections in the visual cortex of the cat. Cereb. Cortex, 7:605–618, 1997.

    PubMed  CAS  Google Scholar 

  82. R. Malach, Y. Amir, M. Harel, and A. Grinvald. Relationship between intrinsic connections and functional architecture revealed by optical imaging and in vivo targeted biocytin injections in primate striate cortex. Proc. Natl. Acad. Sci. USA, 90:10469–10473, 1993.

    PubMed  CAS  Google Scholar 

  83. T. Yoshioka, G. Blasdel, J. Levitt, and J. Lund. Relation between patterns of intrinsic lateral connectivity, ocular dominance, and cytochrome oxidase-reactive regions in macaque monkey striate cortex. Cereb. Cortex, 6:297–310, 1996.

    PubMed  CAS  Google Scholar 

  84. B. Roerig and J. P. Kao. Organization of intracortical circuits in relation to direction preference maps in ferret visual cortex. J. Neurosci., 19:RC44:1–5, 1999.

    Google Scholar 

  85. N. W. Daw, P. G. S. Stein, and K. Fox. The role of NMDA receptors in information transmission. Annu. Rev. Neurosci., 16:207–222, 1993.

    PubMed  CAS  Google Scholar 

  86. H. Sato, Y. Hata, and T. Tsumoto. Effects of blocking non-N-methyl-D-aspartate receptors on visual responses of neurons in the cat visual cortex. Neuroscience, 94:697–703, 1999.

    PubMed  CAS  Google Scholar 

  87. C. E. Schroeder, D. C. Javitt, M. Steinschneider, A. D. Mehta, S. J. Givre, H. G. Vaughan, Jr., and J. C. Arezzo. N-methyl-D-aspartate enhancement of phasic responses in primate neocortex. Exp. Brain Res., 114:271–278, 1997.

    PubMed  CAS  Google Scholar 

  88. P. Seriès, J. Lorenceau, and Y. Frégnac. The “silent” surround of V1 receptive fields: theory and experiments. J. Physiol. (Paris), 97:453–474, 2003.

    Google Scholar 

  89. S. Friedman-Hill, P. E. Maldonado, and C. M. Gray. Dynamics of striate cortical activity in the alert macaque: I. Incidence and stimulus-dependence of gamma-band neuronal oscillations. Cereb. Cortex, 10:1105–1116, 2000.

    Google Scholar 

  90. A. Kohn and M. A. Smith. Stimulus dependence of neuronal correlation in primary visual cortex of the macaque. J. Neurosci., 25:3661–3673, 2005.

    PubMed  CAS  Google Scholar 

  91. W. Singer and C. M. Gray. Visual feature integration and the temporal correlation hypothesis. Annu. Rev. Neurosci., 18:555–586, 1995.

    PubMed  CAS  Google Scholar 

  92. P. E. Maldonado, S. Friedman-Hill, and C. M. Gray. Dynamics of striate cortical activity in the alert macaque: II. Fast time scale synchronization. Cereb. Cortex, 10:1117–1131, 2000.

    Google Scholar 

  93. D. Ringach, M. Hawken, and R. Shapley. Dynamics of orientation tuning in macaque primary visual cortex. Nature, 387:281–284, 1997.

    PubMed  CAS  Google Scholar 

  94. D. Xing, R. Shapley, M. Hawken, and D. Ringach. The effect of stimulus size on the dynamics of orientation selectivity in macaque V1. J. Neurophysiol., 94:799–812, 2005.

    PubMed  Google Scholar 

  95. D. C. Somers, E. V. Todorov, A. G. Siapas, L. J. Toth, D. S. Kim, and M. Sur. A local circuit approach to understanding integration of long-range inputs in primary visual cortex. Cereb. Cortex, 8:204–217, 1998.

    PubMed  CAS  Google Scholar 

  96. P. C. Bressloff, J. D. Cowan, M. Golubitsky, P. J. Thomas, and M. C. Wiener. Geometric visual hallucinations, euclideansymmetry and the functional architecture of striate cortex. Phil. Trans. R. Soc. Lond. B, 356:299–330, 2001.

    CAS  Google Scholar 

  97. P. C. Bressloff. Spatially periodic modulation of cortical patterns by long-range horizontal connections. Physica D, 185:131–157, 2002.

    Google Scholar 

  98. L. Schwabe, K. Obermayer, A. Angelucci, and P. C. Bressloff. The role of feedback in shaping the extra-classical receptive field of cortical neurons: A recurrent network model. J. Neurosci., 26:9117–9129, 2006.

    PubMed  CAS  Google Scholar 

  99. F. Chance, S. Nelson, and L. F. Abbott. Complex cells as cortically amplified simple cells. Nature Neurosci., 2:277–282, 1999.

    PubMed  CAS  Google Scholar 

  100. T. Troyer, A. Krukowski, N. Priebe, and K. Miller. Contrast invariant orientation tuning in cat visual cortex with feedforward tuning and correlation based intracortical connectivity. J. Neurosci., 18:5908–5927, 1998.

    PubMed  CAS  Google Scholar 

  101. D. W. McLaughlin, R. Shapley, M. J. Shelley, and J. Wielaard. A neuronal network model of macaque primary visual cortex (V1): Orientation selectivity and dynamics in the input layer 4Cα. Proc. Natl. Acad. Sci. USA, 97:8087–8092, 2000.

    PubMed  CAS  Google Scholar 

  102. C. Myme, K. Sugino, G. Turrigiano, and S. B. Nelson. The nmda-to-ampa ratio at synapses onto layer 2/3 pyramidal neurons is conserved across prefrontal and visual cortices. J. Neurophysiol., 90:771–779, 2003.

    PubMed  CAS  Google Scholar 

  103. G. W. Huntley, J. C. Vickers, N. Brose, S. F. Heinemann, and J. H. Morrison. Distribution and synaptic localization of immunocytochemically identified nmda receptor subunit proteins in sensory motor and visual cortices of monkey and human. J. Neurosci., 14:3603–3619, 1994.

    PubMed  CAS  Google Scholar 

  104. R. C. Reid and J.-M. Alonso. Specificity of monosynaptic connections from thalamus to visual cortex. Nature, 378:281–284, 1995.

    PubMed  CAS  Google Scholar 

  105. G. DeAngelis, I. Ohzawa, and R. Freeman. Receptive-field dynamics in the central visual pathways. Trends Neurosci., 18:451–458, 1995.

    PubMed  CAS  Google Scholar 

  106. C. D. Gilbert. Horizontal integration and cortical dynamics. Neuron, 9:1–13, 1992.

    PubMed  CAS  Google Scholar 

  107. P. Maldonado, I. Godecke, C. Gray, and T. Bonhoeffer. Orientation selectivity in pinwheel centers in cat striate cortex. Science, 276:1551–1555, 1997.

    PubMed  CAS  Google Scholar 

  108. U. Eysel. Turning a corner in vision research. Nature, 399:641–644, 1999.

    PubMed  CAS  Google Scholar 

  109. D. Hansel, G. Mato, C. Meunier, and L. Neltner. Numerical simulations of integrate-and-fire neural networks. Neural Comp., 10:467–483, 1998.

    CAS  Google Scholar 

  110. M. J. Shelley and L. Tao. Efficient and accurate time-stepping schemes for integrate-and-fire neuronal networks. J. Comput. Neurosci., 11:111–119, 2001.

    PubMed  CAS  Google Scholar 

  111. K. Fox, H. Sato, and N. Daw. The effect of varying stimulus intensity on NMDA-receptor activity in cat visual cortex. J Neurophysiol., 64:1413–1428, 1990.

    PubMed  CAS  Google Scholar 

  112. F. Mechler and D. Ringach. On the classification of simple and complex cells. Vis. Res., 42:1017–1033, 2002.

    PubMed  Google Scholar 

  113. N. Priebe, F. Mechler, M. Carandini, and D. Ferster. The contribution of spike threshold to the dichotomy of cortical simple and complex cells. Nat. Neurosci., 7:1113–1122, 2004.

    PubMed  CAS  Google Scholar 

  114. J. Schummers, J. Marino, and M. Sur. Synaptic integration by v1 neurons depends on location within the orientation map. Neuron, 36:969–978, 2002.

    PubMed  CAS  Google Scholar 

  115. N. Fourcaud-Trocmé, D. Hansel, C. van Vreeswijk, and N. Brunel. How spike generation mechanisms determine the neuronal response to fluctuating inputs. J. Neurosci., 23:11628–11640, 2003.

    PubMed  Google Scholar 

Download references

Acknowledgment

A.V.R. and D.C. were partly supported by the NSF grant DMS-0506396 and by the Schwartz foundation. L.T. was supported by the NSF grant DMS-0506257. G.K. was supported by NSF grants IGMS-0308943 and DMS-0506287, and gratefully acknowledges the hospitality of the Courant Institute of Mathematical Sciences and Center for Neural Science during his visits at New York University in 2003/04 and 2008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Cai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Rangan, A.V., Tao, L., Kovačič, G., Cai, D. (2009). Large-Scale Computational Modeling of the Primary Visual Cortex. In: Josic, K., Rubin, J., Matias, M., Romo, R. (eds) Coherent Behavior in Neuronal Networks. Springer Series in Computational Neuroscience, vol 3. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0389-1_14

Download citation

Publish with us

Policies and ethics