Skip to main content

Hebbian Learning of the Statistical and Geometrical Structure of Visual Input

  • Chapter
Neuromathematics of Vision

Part of the book series: Lecture Notes in Morphogenesis ((LECTMORPH))

Abstract

Experiments on the visual system of carnivorous mammals have revealed complex relationships between the geometry and statistical properties of the visual world, and the geometry and statistical properties of the primary visual cortex. This review surveys an extensive body of modelling work that shows how a relatively simple set of general-purpose neural mechanisms can account for a large fraction of this observed relationship. The models consist of networks of simple artificial neurons with initially unspecific connections that are modified by Hebbian learning and homeostatic plasticity. Given examples of internally generated or visually evoked neural activity, this generic starting point develops into a realistic match to observations from the primary visual cortex, without requiring any vision-specific circuitry or neural properties. We show that the resulting network reflects both the geometrical and statistical structure of the input, and develops under constraints provided by the geometrical structure of the cortical and subcortical regions in the model. Specifically, the model neurons develop adult-like receptive fields and topographic maps selective for all of the major local visual features, and realistic topographically organized lateral connectivity that leads to systematic surround modulation effects depending on the geometry of both the visual input and the cortical representations. Together these results suggest that sensory cortices self-organize to capture the statistical properties of their inputs, revealing the underlying geometry using relatively simple local rules that allow them to build useful representations of the external environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alitto, H.J., Usrey, W.M.: Origin and dynamics of extraclassical suppression in the lateral geniculate nucleus of the macaque monkey. Neuron 57(1), 135–146 (2008), http://dx.doi.org/10.1016/j.neuron.2007.11.019

    Article  Google Scholar 

  2. Andermann, M.L., Moore, C.I.: A somatotopic map of vibrissa motion direction within a barrel column. Nature Neuroscience 9, 543–551 (2006), http://dx.doi.org/10.1038/nn1671

    Article  Google Scholar 

  3. Anderson, J.A., Rosenfeld, E. (eds.): Neurocomputing: Foundations of Research. MIT Press, Cambridge (1988), http://mitpress.mit.edu/book-home.tcl?isbn=0262510480

    Google Scholar 

  4. Antolik, J.: Unified Developmental Model of Maps, Complex Cells and Surround Modulation in the Primary Visual Cortex. PhD thesis, School of Informatics, The University of Edinburgh, Edinburgh, UK (2010), http://hdl.handle.net/1842/4875

  5. Antolik, J., Bednar, J.A.: Development of maps of simple and complex cells in the primary visual cortex. Frontiers in Computational Neuroscience 5, 17 (2011), http://dx.doi.org/10.3389/fncom.2011.00017

  6. Ball, C.E., Bednar, J.A.: A self-organizing model of color, ocular dominance, and orientation selectivity in the primary visual cortex. Society for Neuroscience Abstracts (2009), http://www.sfn.org , Program No. 756.9

  7. Barlow, H.B., Földiák, P.: Adaptation and decorrelation in the cortex. In: Durbin, R., Miall, C., Mitchison, G. (eds.) The Computing Neuron, pp. 54–72. Addison-Wesley, Reading (1989)

    Google Scholar 

  8. Bednar, J.A.: Learning to See: Genetic and Environmental Influences on Visual Development. PhD thesis, Department of Computer Sciences, The University of Texas at Austin, Austin, TX, 2002. Technical Report AI-TR-02-294 (2002), http://nn.cs.utexas.edu/keyword?bednar:phd02

  9. Bednar, J.A.: Building a mechanistic model of the development and function of the primary visual cortex. Journal of Physiology (Paris) 106, 194–211 (2012), http://dx.doi.org/10.1016/j.jphysparis.2011.12.001

    Article  Google Scholar 

  10. Bednar, J.A.: Constructing complex systems via activity-driven unsupervised Hebbian self-organization. In: Growing Adaptive Machines: Combining Development and Learning in Artificial Neural Networks. Studies in Computational Intelligence. Springer, Berlin (2013) (in press)

    Google Scholar 

  11. Bednar, J.A., Kelkar, A., Miikkulainen, R.: Scaling self-organizing maps to model large cortical networks. Neuroinformatics 2, 275–302 (2004), http://nn.cs.utexas.edu/keyword?bednar:neuroinformatics04

    Article  Google Scholar 

  12. Bednar, J.A., Miikkulainen, R.: Self-organization of spatiotemporal receptive fields and laterally connected direction and orientation maps. Neurocomputing 52-54, 473–480 (2003), http://nn.cs.utexas.edu/keyword?bednar:neurocomputing03

    Article  Google Scholar 

  13. Bednar, J.A., Miikkulainen, R.: Prenatal and postnatal development of laterally connected orientation maps. Neurocomputing 58-60, 985–992 (2004), http://nn.cs.utexas.edu/keyword?bednar:neurocomputing04-or

    Article  Google Scholar 

  14. Bednar, J.A., Miikkulainen, R.: Joint maps for orientation, eye, and direction preference in a self-organizing model of V1. Neurocomputing 69(10-12), 1272–1276 (2006), http://nn.cs.utexas.edu/keyword?bednar:neurocomputing06

    Article  Google Scholar 

  15. Bell, A.J., Sejnowski, T.J.: The “independent components” of natural scenes are edge filters. Vision Research 37, 3327 (1997), http://citeseer.nj.nec.com/bell97independent.html

    Article  Google Scholar 

  16. Bienenstock, E.L., Cooper, L.N., Munro, P.W.: Theory for the development of neuron selectivity: Orientation specificity and binocular interaction in visual cortex. The Journal of Neuroscience 2, 32–48 (1982), http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=retrieve&db=pubmed&dopt=abstract&list_uids=7054394

  17. Blasdel, G.G.: Differential imaging of ocular dominance columns and orientation selectivity in monkey striate cortex. The Journal of Neuroscience 12, 3115–3138 (1992a), http://www.jneurosci.org/cgi/content/abstract/12/8/3115

    Google Scholar 

  18. Blasdel, G.G.: Orientation selectivity, preference, and continuity in monkey striate cortex. The Journal of Neuroscience 12, 3139–3161 (1992b), http://www.jneurosci.org/cgi/content/abstract/12/8/3139

    Google Scholar 

  19. Bonin, V., Mante, V., Carandini, M.: The suppressive field of neurons in lateral geniculate nucleus. Journal of Neuroscience 25, 10844–10856 (2005), http://dx.doi.org/10.1523/JNEUROSCI.3562-05.2005

    Article  Google Scholar 

  20. Bosking, W.H., Zhang, Y., Schofield, B.R., Fitzpatrick, D.: Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex. The Journal of Neuroscience 17(6), 2112–2127 (1997), http://www.jneurosci.org/cgi/content/full/17/6/2112

    Google Scholar 

  21. Bosking, W.H., Crowley, J.C., Fitzpatrick, D.: Spatial coding of position and orientation in primary visual cortex. Nature Neuroscience 5(9), 874–882 (2002), http://dx.doi.org/10.1038/nn908

    Article  Google Scholar 

  22. Carreira-Perpiñán, M.A., Lister, R.J., Goodhill, G.J.: A computational model for the development of multiple maps in primary visual cortex. Cerebral Cortex 15(8), 1222–1233 (2005), http://dx.doi.org/10.1093/cercor/bhi004

    Article  Google Scholar 

  23. Chapman, B., Stryker, M.P., Bonhoeffer, T.: Development of orientation preference maps in ferret primary visual cortex. The Journal of Neuroscience 16(20), 6443–6453 (1996), http://www.jneurosci.org/cgi/content/abstract/16/20/6443

    Google Scholar 

  24. Coppola, D.M., White, L.E., Fitzpatrick, D., Purves, D.: Unequal representation of cardinal and oblique contours in ferret visual cortex. Proceedings of the National Academy of Sciences, USA 95(5), 2621–2623 (1998), http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=retrieve&db=pubmed&dopt=abstract&list_uids=9482936

  25. Dong, D.W.: Associative decorrelation dynamics: A theory of self-organization and optimization in feedback networks. In: Tesauro, G., Touretzky, D.S., Leen, T.K. (eds.) Advances in Neural Information Processing Systems, vol. 7, pp. 925–932. MIT Press, Cambridge (1995), ftp://ftp.ci.tuwien.ac.at/pub/texmf/bibtex/nips-7.bib

    Google Scholar 

  26. Durbin, R., Mitchison, G.: A dimension reduction framework for understanding cortical maps. Nature 343, 644–647 (1990), http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=retrieve&db=pubmed&dopt=abstract&list_uids=2304536

    Google Scholar 

  27. Farley, B.J., Yu, H., Jin, D.Z., Sur, M.: Alteration of visual input results in a coordinated reorganization of multiple visual cortex maps. The Journal of Neuroscience 27(38), 10299–10310 (2007), http://dx.doi.org/10.1523/JNEUROSCI.2257-07.2007

    Article  Google Scholar 

  28. Felisberti, F., Derrington, A.M.: Long-range interactions modulate the contrast gain in the lateral geniculate nucleus of cats. Visual Neuroscience 16, 943–956 (1999)

    Article  Google Scholar 

  29. Grabska-Barwinska, A., von der Malsburg, C.: Establishment of a scaffold for orientation maps in primary visual cortex of higher mammals. The Journal of Neuroscience 28(1), 249–257 (2008), http://dx.doi.org/10.1523/JNEUROSCI.5514-06.2008

    Article  Google Scholar 

  30. Hyvärinen, A., Hoyer, P.O.: A two-layer sparse coding model learns simple and complex cell receptive fields and topography from natural images. Vision Research 41(18), 2413–2423 (2001), http://www.sciencedirect.com/science/article/B6T0W-43GCBN2-B/1/94ef0f6b0d8

    Article  Google Scholar 

  31. Jones, H.E., Wang, W., Sillito, A.M.: Spatial organization and magnitude of orientation contrast interactions in primate V1. Journal of Neurophysiology 88(5), 2796–2808 (2002), http://dx.doi.org/10.1152/jn.00403.2001

    Article  Google Scholar 

  32. Kaschube, M., Schnabel, M., Löwel, S., Coppola, D.M., White, L.E., Wolf, F.: Universality in the evolution of orientation columns in the visual cortex. Science 330(6007), 1113–1116 (2010)

    Article  Google Scholar 

  33. Koulakov, A.A., Chklovskii, D.B.: Orientation preference patterns in mammalian visual cortex: A wire length minimization approach. Neuron 29, 519–527 (2001), http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=retrieve&db=pubmed&dopt=abstract&list_uids=11239440

    Article  Google Scholar 

  34. Law, J.S.: Modeling the Development of Organization for Orientation Preference in Primary Visual Cortex. PhD thesis, School of Informatics, The University of Edinburgh, Edinburgh, UK (2009), http://hdl.handle.net/1842/3935

  35. Miikkulainen, R., Bednar, J.A., Choe, Y., Sirosh, J.: Computational Maps in the Visual Cortex. Springer, Berlin (2005)

    Google Scholar 

  36. Miller, K.D.: A model for the development of simple cell receptive fields and the ordered arrangement of orientation columns through activity-dependent competition between ON- and OFF-center inputs. The Journal of Neuroscience 14, 409–441 (1994), http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=retrieve&db=pubmed&dopt=abstract&list_uids=8283248

    Google Scholar 

  37. Miller, K.D., MacKay, D.J.C.: The role of constraints in Hebbian learning. Neural Computation 6, 100–126 (1994), http://wol.ra.phy.cam.ac.uk/mackay/abstracts/constraints.html

    Article  Google Scholar 

  38. Obermayer, K., Ritter, H., Schulten, K.J.: A principle for the formation of the spatial structure of cortical feature maps. Proceedings of the National Academy of Sciences, USA 87, 8345–8349 (1990), http://www.pnas.org/cgi/content/abstract/87/21/8345

    Article  Google Scholar 

  39. Olshausen, B.A., Field, D.J.: Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381, 607–609 (1996), http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=retrieve&db=pubmed&dopt=abstract&list_uids=8637596

    Article  Google Scholar 

  40. Paik, S.-B., Ringach, D.L.: Retinal origin of orientation maps in visual cortex. Nature Neuroscience 14(7), 919–925 (2011), http://dx.doi.org/10.1038/nn.2824

    Article  Google Scholar 

  41. Palmer, C.M.: Topographic and Laminar Models for the Development and Organisation of Spatial Frequency and Orientation in V1. PhD thesis, School of Informatics, The University of Edinburgh, Edinburgh, UK (2009), http://hdl.handle.net/1842/4114

  42. Ramtohul, T.: A self-organizing model of disparity maps in the primary visual cortex. Master’s thesis, The University of Edinburgh, Scotland, UK (2006), http://www.inf.ed.ac.uk/publications/thesis/online/IM060400.pdf

  43. Rehn, M., Sommer, F.T.: A network that uses few active neurones to code visual input predicts the diverse shapes of cortical receptive fields. Journal of Computational Neuroscience 22(2), 135–146 (2007), http://dx.doi.org/10.1007/s10827-006-0003-9

    Article  MathSciNet  Google Scholar 

  44. Ringach, D.L.: On the origin of the functional architecture of the cortex. PLoS One 2(2), e251 (2007), http://dx.doi.org/10.1371/journal.pone.0000251

  45. Ritter, H., Martinetz, T., Schulten, K.J.: Neural Computation and Self-Organizing Maps: An Introduction. Addison-Wesley, Reading (1992)

    MATH  Google Scholar 

  46. Ritter, H., Obermayer, K., Schulten, K.J., Rubner, J.: Self-organizing maps and adaptive filters. In: Models of Neural Networks, pp. 281–306. Springer, Berlin (1991)

    Chapter  Google Scholar 

  47. Roerig, B., Kao, J.P.: Organization of intracortical circuits in relation to direction preference maps in ferret visual cortex. The Journal of Neuroscience 19(24), RC44 (1999), http://www.jneurosci.org/content/19/24/RC44.long

  48. Saul, A.B., Humphrey, A.L.: Evidence of input from lagged cells in the lateral geniculate nucleus to simple cells in cortical area 17 of the cat. Journal of Neurophysiology 68(4), 1190–1208 (1992), http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=retrieve&db=pubmed&dopt=abstract&list_uids=1432077

    Google Scholar 

  49. Sclar, G., Freeman, R.D.: Orientation selectivity in the cat’s striate cortex is invariant with stimulus contrast. Experimental Brain Research 46, 457–461 (1982), http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=retrieve&db=pubmed&dopt=abstract&list_uids=7095050

    Article  Google Scholar 

  50. Sengpiel, F., Sen, A., Blakemore, C.: Characteristics of surround inhibition in cat area 17. Experimental Brain Research 116(2), 216–228 (1997), http://dx.doi.org/10.1007/PL00005751

    Article  Google Scholar 

  51. Shouval, H.Z., Intrator, N., Law, C.C., Cooper, L.N.: Effect of binocular cortical misalignment on ocular dominance and orientation selectivity. Neural Computation 8(5), 1021–1040 (1996), http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=retrieve&db=pubmed&dopt=abstract&list_uids=8697227

    Article  Google Scholar 

  52. Sincich, L.C., Blasdel, G.G.: Oriented axon projections in primary visual cortex of the monkey. The Journal of Neuroscience 21, 4416–4426 (2001), http://www.jneurosci.org/cgi/content/abstract/21/12/4416

    Google Scholar 

  53. Stevens, J.-L.: A temporal model of neural activity and VSD response in the primary visual cortex. Master’s thesis, The University of Edinburgh, Scotland, UK (2011), http://www.inf.ed.ac.uk/publications/thesis/online/IT111096.pdf

  54. Stevens, J.-L.R., Law, J.S., Antolik, J., Bednar, J.A.: Mechanisms for stable, robust, and adaptive development of orientation maps in the primary visual cortex. Journal of Neuroscience 33, 15747–15766 (2013), http://dx.doi.org/10.1523/JNEUROSCI.1037-13.2013

    Article  Google Scholar 

  55. Swindale, N.V., Shoham, D., Grinvald, A., Bonhoeffer, T., Hubener, M.: Visual cortex maps are optimized for uniform coverage. Nature Neuroscience 3(8), 822–826 (2000), http://www.neurosci.info/courses/vision2/V1FuncOrg/swindale00.pdf

    Article  Google Scholar 

  56. Tanaka, S., Ribot, J., Imamura, K., Tani, T.: Orientation-restricted continuous visual exposure induces marked reorganization of orientation maps in early life. Neuroimage 30(2), 462–477 (2006), http://dx.doi.org/10.1016/j.neuroimage.2005.09.056

    Article  Google Scholar 

  57. Turrigiano, G.G.: Homeostatic plasticity in neuronal networks: The more things change, the more they stay the same. Trends in Neurosciences 22(5), 221–227 (1999), http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=retrieve&db=pubmed&dopt=abstract&list_uids=10322495

    Article  Google Scholar 

  58. von der Malsburg, C.: Self-organization of orientation-sensitive cells in the striate cortex. Kybernetik 15, 85–100 (1973), http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=retrieve&db=pubmed&dopt=abstract&list_uids=4786750 , Reprinted in Anderson and Rosenfeld [3], 212–227

    Google Scholar 

  59. Wiesel, T.N.: Postnatal development of the visual cortex and the influence of the environment. Nature 299, 583–591 (1982), http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=retrieve&db=pubmed&dopt=abstract&list_uids=6811951

    Article  Google Scholar 

  60. Wilson, S.P., Law, J.S., Mitchinson, B., Prescott, T.J., Bednar, J.A.: Modeling the emergence of whisker direction maps in rat barrel cortex. PLoS One 5(1), e8778 (2010), http://dx.doi.org/10.1371/journal.pone.0008778

  61. Wolf, F., Geisel, T.: Universality in visual cortical pattern formation. J. Physiol. Paris 97(2-3), 253–264 (2003), http://dx.doi.org/10.1016/j.jphysparis.2003.09.018

    Article  Google Scholar 

  62. Wolfe, J., Palmer, L.A.: Temporal diversity in the lateral geniculate nucleus of cat. Visual Neuroscience 15(4), 653–675 (1998), http://www.journals.cambridge.org/issue_VisualNeuroscience/Vol15No04

    Article  Google Scholar 

  63. Wong, R.O.L.: Retinal waves and visual system development. Annual Review of Neuroscience 22, 29–47 (1999), http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=retrieve&db=pubmed&dopt=abstract&list_uids=10202531

    Article  Google Scholar 

  64. Yu, H., Farley, B.J., Jin, D.Z., Sur, M.: The coordinated mapping of visual space and response features in visual cortex. Neuron 47(2), 267–280 (2005), http://dx.doi.org/10.1016/j.neuron.2005.06.011

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James A. Bednar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bednar, J.A. (2014). Hebbian Learning of the Statistical and Geometrical Structure of Visual Input. In: Citti, G., Sarti, A. (eds) Neuromathematics of Vision. Lecture Notes in Morphogenesis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34444-2_8

Download citation

Publish with us

Policies and ethics