Skip to main content

The Oniom Method and its Applications to Enzymatic Reactions

  • Chapter
Multi-scale Quantum Models for Biocatalysis

Abstract

ONIOM is a flexible hybrid scheme that can combine the most suitable computational methods for a given system without previous parameterization. The reason for its flexibility is that all calculations are performed on complete molecular systems, and the total energy is obtained from an extrapolation scheme. Most commonly used is the combination of a quantum mechanics and a molecular mechanics method (ONIOM QM:MM), and we describe applications of this method to several enzymatic systems, e.g., glutathione peroxidase and methylmalonyl-CoA mutase. The role of the protein is highlighted by comparing models with and without explicit inclusion of the protein matrix. We also outline future directions for the application of ONIOM to enzymes. One of the major deficiencies of QM/MM models in general, including ONIOM QM:MM, is the poor description of electrostatic interactions between the QM and the MM region. An attractive alternative to QM:MM is to take advantage of the multi-layer capability of ONIOM and design three-layer QM:QM’:MM models. In this scheme QM’ is a relatively fast molecular orbital method that can describe charge transfer and mutual polarization between the reactive region and the protein surroundings

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Svensson M, Humbel S, Froese RDJ, Matsubara T, Sieber S, Morokuma K (1996a) J Phys Chem 100:19357–19363

    Google Scholar 

  2. Svensson M, Humbel S, Morokuma K (1996b) J Chem Phys 105:3654–3661

    Google Scholar 

  3. Humbel S, Sieber S, Morokuma K (1996) J Chem Phys 105:1959–1967

    Article  CAS  Google Scholar 

  4. Dapprich S, Komáromi I, Byun KS, Morokuma K, Frisch MJ (1999) J Mol Struct (THEOCHEM) 461–462:1–21

    Article  Google Scholar 

  5. Vreven T, Morokuma K (2000a) J Comput Chem 21:1419–1432

    Google Scholar 

  6. Morokuma K, Musaev DG, Vreven T, Basch H, Torrent M, Khoroshun DV (2001) IBM J Res Dev 45:367–395

    Article  CAS  Google Scholar 

  7. Morokuma K (2002) Philos Trans R Soc London, Ser A 360:1149–1164

    Article  CAS  Google Scholar 

  8. Vreven T, Byun KS, Komáromi I, Dapprich S, Montgomery JA Jr, Morokuma K, Frisch MJ (2006a) J Chem Theor Comp 2:815–826

    Google Scholar 

  9. Vreven T, Frisch MJ, Kudin KN, Schlegel HB, Morokuma K (2006b) Mol Phys 104:701–714

    Google Scholar 

  10. Vreven T, Morokuma K (2006c) In: Spellmeyer D (ed) Annual Report Computational Chemistry, Vol. 2, Elsevier, pp 35–52

    Google Scholar 

  11. Morokuma K, Wang Q, Vreven T (2006) J Chem Theor Comp 2:1317–1324

    Article  CAS  Google Scholar 

  12. Basch H, Mogi K, Musaev DG, Morokuma K (1999) J Am Chem Soc 121:7249–7256

    Article  CAS  Google Scholar 

  13. Musaev DG, Basch H, Morokuma K (2002) J Am Chem Soc 124:4135–4148

    Article  CAS  Google Scholar 

  14. Baik MH, Newcomb M, Friesner RA, Lippard SJ (2003) Chem Rev 103:2385–2420

    Article  CAS  Google Scholar 

  15. Siegbahn PEM, Blomberg MRA (2004) Chem Rev 100:421–437

    Article  CAS  Google Scholar 

  16. de Visser SP, Kumar D, Cohen S, Shacham R, Shaik S (2004) J Am Chem Soc 126:8362–8363

    Article  CAS  Google Scholar 

  17. Noodleman L, Lovell LT, Han W, Li J, Himo F (2004) Chem Rev 104:459–508

    Article  CAS  Google Scholar 

  18. Shaik S, Kumar D, de Visser SP, Altun A, Thiel W (2005) Chem Rev 105:2279–2328

    Article  CAS  Google Scholar 

  19. Gao J (1996) Rev Comput Chem 7:119–185

    Article  CAS  Google Scholar 

  20. Schoeneboom JC, Cohen S, Lin H, Shaik S, Thiel W (2004) J Am Chem Soc 126:4017–4034

    Article  CAS  Google Scholar 

  21. Friesner RA, Guallar V (2005) Annu Rev Phys Chem 56:389–427

    Article  CAS  Google Scholar 

  22. Klähn M, Braun-Sand S, Rosta E, Warshel A (2005) J Phys Chem B 109:15645–15650

    Article  CAS  Google Scholar 

  23. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision C.02, Gaussian Inc Wallingford CT

    Google Scholar 

  24. Torrent M, Musaev DG, Basch H, Morokuma K (2002a) J Comput Chem 23:59–76

    Google Scholar 

  25. Hoffmann M, Khavrutskii IV, Musaev DG, Morokuma K (2004) Int J Quant Chem 99:972–980

    Article  CAS  Google Scholar 

  26. Lundberg M, Morokuma K (2007) J Phys Chem B 111: 9380–9389

    Article  CAS  Google Scholar 

  27. Prabhakar R, Musaev DG, Khavrutskii IV, Morokuma K (2004) J Phys Chem B 108:12643–12645

    Article  CAS  Google Scholar 

  28. Prabhakar R, Vreven T, Frisch MJ, Morokuma K, Musaev DG (2006) J Phys Chem B 110: 13608–13613

    Article  CAS  Google Scholar 

  29. Kwiecien RA, Khavrutskii IV, Musaev DG, Morokuma K, Banerjee R, Paneth P (2006) J Am Chem Soc 128:1287–1292

    Article  CAS  Google Scholar 

  30. Prabhakar R, Morokuma K, Musaev DG (2005a) J Comp Chem 26:443–446

    Google Scholar 

  31. Becke AD (1988) Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  32. Becke AD (1993) J Chem Phys 98:1372–1377

    Article  CAS  Google Scholar 

  33. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  34. Lee CT, Yang WT, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  35. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM Jr, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) J Am Chem Soc 117: 5179–5197 (1995)

    Article  CAS  Google Scholar 

  36. Vreven T, Morokuma K, Farkas Ö, Schlegel HB, Frisch MJ (2003b) J Comp Chem 24:760–769

    Google Scholar 

  37. Vreven T, Morokuma K (2000b) J Chem Phys 113:2969–2975

    Google Scholar 

  38. Vreven T, Morokuma K (2003a) Theor Chem Acc 109:125–132

    Google Scholar 

  39. Torrent M, Musaev DG, Basch H, Morokuma K (2001a) J Phys Chem B 105:8452

    Google Scholar 

  40. Torrent M, Mogi K, Basch H, Musaev DG, Morokuma K (2001b) J Phys Chem B 105:8616

    Google Scholar 

  41. Torrent M, Vreven T, Musaev DG, Morokuma K, Farkas Ö, Schlegel HB (2002b) J Am Chem Soc 124:192–193

    Google Scholar 

  42. Wilkins PC, Dalton H (1994) Biochem Soc Trans 22:700–704

    CAS  Google Scholar 

  43. Liu KE, Lippard SJ (1995) J Adv Inorg Chem 42:263–289

    Article  CAS  Google Scholar 

  44. Lee SY, Lipscomb JD (1999) Biochemistry 38:4423–4432

    Article  CAS  Google Scholar 

  45. Dunietz BD, Beachy MD, Cao YX, Whittington DA, Lippard SJ, Friesner RA (2000) J Am Chem Soc 122:2828–2839

    Article  CAS  Google Scholar 

  46. Stubbe J (1990) J Biol Chem 265:5329–5332

    CAS  Google Scholar 

  47. Nordlund P, Sjöberg BM, Eklund H (1990) Nature 345:593–598

    Article  CAS  Google Scholar 

  48. Reichard P (1993) Science 260:1773–1777

    Article  CAS  Google Scholar 

  49. Mulliez E, Fontecave M (1999) Coord Chem Rev 775:185–186

    Google Scholar 

  50. Nordlund P, Eklund H (1993) J Mol Biol 232:123–164

    Article  CAS  Google Scholar 

  51. Logan DT, Su XD, Åberg A, Rengström K, Hajdu J, Eklund H, Nordlund P (1996) Structure 4: 1053–1064

    Article  CAS  Google Scholar 

  52. Whittington DA, Lippard SJ (2001) J Am Chem Soc 123:827–838

    Article  CAS  Google Scholar 

  53. Baldwin JE, Bradley M (1990) Chem Rev 90:1079–1088

    Article  CAS  Google Scholar 

  54. Schenk WA (2000) Angew Chem Int Ed 39:3409–3411

    Article  CAS  Google Scholar 

  55. Andersson I, Terwisscha van Scheltinga AC, Valegård K (2001) Cell Mol Life Sci 58:1897–1906

    Article  CAS  Google Scholar 

  56. Bassan A, Borowski T, Siegbahn PEM (2004) Dalton Trans 20:3153–3162

    Article  Google Scholar 

  57. Wirstam M, Lippard SJ, Friesner RA (2003) J Am Chem Soc 125:3980–3987

    Article  CAS  Google Scholar 

  58. Nemukhin AV, Grigorenko BL, Topol IA, Burt SK (2006) Int J Quant Chem 106:2184–2190

    Article  CAS  Google Scholar 

  59. Koehntop KD, Emerson, JP, Que L Jr (2005) J Biol Inor Chem 10:87–93

    Article  CAS  Google Scholar 

  60. Roach PL, Clifton IJ, Hensgens CMH, Shibata N, Schofield CJ, Baldwin JE (1997) Nature 387:827–830

    Article  CAS  Google Scholar 

  61. Flohé L (1989) In: Dolphin D, Avramovic O, Poulson R (eds) Glutathione John Wiley & Sons, NewYork pp 644–731

    Google Scholar 

  62. Flohé L, Loschen G, Gunzler WA, Eichele E (1972) Hoppe Seyler’s Z Physiol Chem 353:987–999

    Google Scholar 

  63. Epp O, Ladenstein R, Wendel A (1983) Eur J Biochem 133:51–69

    Article  CAS  Google Scholar 

  64. Ren B, Huang W, Åkesson B, Ladenstein R (1997) J Mol Biol 268:869–885

    Article  CAS  Google Scholar 

  65. Prabhakar R, Vreven T, Morokuma K, Musaev DG (2005b) Biochemistry 44:11864–11871

    Google Scholar 

  66. Roy G, Nethaji M, Mugesh G (2004) J Am Chem Soc 126:2712–2713

    Article  CAS  Google Scholar 

  67. Banerjee R (2003) Chem Rev 103:2081–2081

    Article  CAS  Google Scholar 

  68. Dölker N, Maseras F, Siegbahn PEM (2004) Chem Phys Lett 386:174–178

    Article  CAS  Google Scholar 

  69. Freindorf M, Kozlowski PM (2004) J Am Chem Soc 126:1928–1929

    Article  CAS  Google Scholar 

  70. Jensen KP, Ryde U (2005) J Am Chem Soc 127:9117–9128

    Article  CAS  Google Scholar 

  71. Mancia F, Evans PR (1998) Structure 6:711–720

    Article  CAS  Google Scholar 

  72. Perdew JP (1986) Phys Rev B 33:8822

    Article  Google Scholar 

  73. Jensen KP, Ryde U (2003) J Phys Chem A 107:7539–7545

    Article  CAS  Google Scholar 

  74. Kuta J, Patchkovskii S, Zgierski MZ, Kozlowski PM (2006) J Comput Chem 27:1429–1437

    Article  CAS  Google Scholar 

  75. Fujii T, Maeda M, Mihara H, Kurihara T, Esaki N, Hata Y (2000) Biochemistry 39:1263–1273

    Article  CAS  Google Scholar 

  76. Mihara H, Fujii T, Kato S, Kurihara T, Hata Y, Esaki NJ (2002) Biochemistry 131:679–685

    CAS  Google Scholar 

  77. Zheng L, White RH, Cash VL, Dean DR (1994) Biochemistry 33:4714–4720

    Article  CAS  Google Scholar 

  78. Clausen T, Kaiser JT, Steegborn C, Huber R, Kessler D (2000) Proc Natl Acad Sci 97:3856–3861

    Article  CAS  Google Scholar 

  79. Lima CDJ (2002) Mol Biol 315:1199–1208

    Article  CAS  Google Scholar 

  80. Gascon JA, Batista VS (2004) Biophys J 87: 2931–2941

    Article  CAS  Google Scholar 

  81. Blomgren F, Larsson S (2005) J Phys Chem B 109:9104–9110

    Article  CAS  Google Scholar 

  82. Yamada A, Ishikura K, Yamato T (2004) Proteins 55:1063–1069

    Article  CAS  Google Scholar 

  83. Pelmenschikov V, Siegbahn PEM (2002) Inorg Chem 41:5659–5666

    Article  CAS  Google Scholar 

  84. Cross JB, Vreven T, Meroueh SO, Mobashery S, Schlegel HB (2005) J Phys Chem B 109:4761–4769

    Article  CAS  Google Scholar 

  85. Cerqueira NMFSA, Fernandes PA, Eriksson LA, Ramos MJ (2006) Biophys J 90:2109–2119

    Article  CAS  Google Scholar 

  86. Sousa SF, Fernandes PA, Ramos MJ (2007) J Comput Chem 28:1160–1168

    Article  CAS  Google Scholar 

  87. Yao L, Han Y, Cukier R (2006) J Phys Chem B 110:26320–26326

    Article  CAS  Google Scholar 

  88. Kahn K, Bruice TC (2000) J Am Chem Soc 122:46–51

    Article  CAS  Google Scholar 

  89. Kamachi T, Yoshizawa K (2005) J Am Chem Soc 127:10686–10692

    Article  CAS  Google Scholar 

  90. Leopoldini M, Russo N, Toscano M, Dulak M, Wesolowski TA (2005) Chem Eur J 12:2532–2541

    Article  CAS  Google Scholar 

  91. Wu X-H, Quan J-M, Wu Y-D (2007) J Phys Chem B 111:6236–6244

    Article  CAS  Google Scholar 

  92. Matsubara T, Dupuis M, Aida M (2007) Chem Phys Lett 437:138–142

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus Lundberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Lundberg, M., Morokuma, a.K. (2009). The Oniom Method and its Applications to Enzymatic Reactions. In: York, D.M., Lee, TS. (eds) Multi-scale Quantum Models for Biocatalysis. Challenges and Advances in Computational Chemistry and Physics, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9956-4_2

Download citation

Publish with us

Policies and ethics