Skip to main content

Multiple Roles for Sphingolipids in Steroid Hormone Biosynthesis

  • Chapter
Lipids in Health and Disease

Part of the book series: Subcellular Biochemistry ((SCBI,volume 49))

Abstract

Steroid hormones are essential regulators of a vast number of physiological processes. The biosynthesis of these chemical messengers occurs in specialized steroidogenic tissues via a multi-step process that is catalyzed by members of the cytochrome P450 superfamily of monooxygenases and hydroxysteroid dehydrogenases. Though numerous signaling mediators, including cytokines and growth factors control steroidogenesis, trophic peptide hormones are the primary regulators of steroid hormone production. These peptide hormones activate a cAMP/cAMP-dependent kinase (PKA) signaling pathway, however, studies have shown that crosstalk between multiple signal transduction pathways and signaling molecules modulates optimal steroidogenic capacity. Sphingolipids such as ceramide, sphingosine, sphingosine-1-phosphate, sphingomyelin, and gangliosides have been shown to control the steroid hormone biosynthetic pathway at multiple levels, including regulating steroidogenic gene expression and activity as well as acting as second messengers in signaling cascades. In this review, we provide an overview of recent studies that have investigated the role of sphingolipids in adrenal, gonadal, and neural steroidogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdallah, M. A., Lei, Z. M., Li, X., Greenwold, N., Nakajima, S. T., Jauniaux, E., and Rao Ch, V. (2004). Human fetal nongonadal tissues contain human chorionic gonadotropin/luteinizing hormone receptors. J Clin Endocrinol Metab 89, 952–956.

    Article  PubMed  CAS  Google Scholar 

  • Adams, J. M., Pratipanawatr, T., Berria, R., Wang, E., DeFronzo, R. A., Sullards, M. C., and Mandarino, L. J. 2nd. (2004). Ceramide content is increased in skeletal muscle from obese insulin-resistant humans. Diabetes 53, 25–31.

    Google Scholar 

  • An, S., Bleu, T., Huang, W., Hallmark, O. G., Coughlin, S. R., and Goetzl, E. J. (1997). Identification of cDNAs encoding two G protein-coupled receptors for lysosphingolipids. FEBS Lett 417, 279–282.

    Article  PubMed  CAS  Google Scholar 

  • Andrieu-Abadie, N., and Levade, T. (2002). Sphingomyelin hydrolysis during apoptosis. Biochim Biophys Acta 1585, 126–134.

    PubMed  CAS  Google Scholar 

  • Anic M., and Mesaric M. (1998). The influence of sex steroid hormones on ganglioside biosynthesis in rat kidney. Biol Chem 379, 693–697.

    Article  PubMed  CAS  Google Scholar 

  • Arai, N., Masuzaki, H., Tanaka, T., Ishii, T., Yasue, S., Kobayashi, N., Tomita, T., Noguchi, M., Kusakabe, T., Fujikura, J., Ebihara, K., Hirata, M., Hosoda, K., Hayashi, T., Sawai, H., Minokoshi, Y., and Nakao, K. (2007). Ceramide and Adenosine 5'-Monophosphate-Activated Protein Kinase Are Two Novel Regulators of 11{beta}-Hydroxysteroid Dehydrogenase Type 1 Expression and Activity in Cultured Preadipocytes. Endocrinology 148, 5268–5277.

    Article  PubMed  CAS  Google Scholar 

  • Arlt, W., and Stewart, P. M. (2005). Adrenal corticosteroid biosynthesis, metabolism, and action. Endocrinol Metab Clin North Am 34, 293–313.

    Article  PubMed  CAS  Google Scholar 

  • Azhar, S., Nomoto, A., Leers-Sucheta, S., and Reaven, E. (1998). Simultaneous induction of an HDL receptor protein (SR-BI) and the selective uptake of HDL-cholesteryl esters in a physiologically relevant steroidogenic cell model. J Lipid Res 39, 1616–1628.

    PubMed  CAS  Google Scholar 

  • Bassett, M. H., White, P C., and Rainey, W. E. (2004a). Regulation of aldosterone synthase expression. Mol Cell Endocrinol 217, 67–74.

    Article  CAS  Google Scholar 

  • Bassett, M. H., White, P. C., and Rainey, W. E. (2004b). A role for the NGFI-B family in adrenal zonation and adrenocortical disease. Endocr Res 30, 567–574.

    Article  CAS  Google Scholar 

  • Besman, M. J., Yanagibashi, K., Lee, T. D., Kawamura, M., Hall, P. F., and Shively, J. E. (1989). Identification of des-(Gly-Ile)-endozepine as an effector of corticotropin-dependent adrenal steroidogenesis: stimulation of cholesterol delivery is mediated by the peripheral benzodiazepine receptor. Proc Natl Acad Sci U S A 86, 4897–4901.

    Article  PubMed  CAS  Google Scholar 

  • Blanchette-Mackie, E. J. (2000). Intracellular cholesterol trafficking: role of the NPC1 protein. Biochim Biophys Acta 1486, 171–183.

    PubMed  CAS  Google Scholar 

  • Bornstein, S. R., Rutkowshi, H., and Vrezas, I. (2004). Cytokines and steroidogenesis. Mol Cell Endocrinol 215, 135–141.

    Article  PubMed  CAS  Google Scholar 

  • Brentano, S. T., and Miller, W. L. (1992). Regulation of human cytochrome P450scc and adrenodoxin messenger ribonucleic acids in JEG-3 cytotrophoblast cells. Endocrinology 131, 3010–3018.

    Article  PubMed  CAS  Google Scholar 

  • Brizuela, L., Rabano, M., Gangoiti, P., Narbona, N., Macarulla, J. M., Trueba, M., and Gomez-Munoz, A. (2007). Sphingosine-1-phosphate stimulates aldosterone secretion through a mechanism involving the PI3K/PKB and MEK/ERK 1/2 pathways. J Lipid Res 48, 2264–2274.

    Article  PubMed  CAS  Google Scholar 

  • Brizuela, L., Rabano, M., Pena, A., Gangoiti, P., Macarulla, J. M., Trueba, M., and Gomez-Munoz, A. (2006). Sphingosine 1-phosphate: a novel stimulator of aldosterone secretion. J Lipid Res 47, 1238–1249.

    Article  PubMed  CAS  Google Scholar 

  • Budnik, L. T., Jahner, D., and Mukhopadhyay, A. K. (1999). Inhibitory effects of TNF alpha on mouse tumor Leydig cells: possible role of ceramide in the mechanism of action. Mol Cell Endocrinol 150, 39–46.

    Article  PubMed  CAS  Google Scholar 

  • Cai, Z., Bettaieb, A., Mahdani, N. E., Legres, L. G., Stancou, R., Masliah, J., and Chouaib, S. (1997). Alteration of the sphingomyelin/ceramide pathway is associated with resistance of human breast carcinoma MCF7 cells to tumor necrosis factor-alpha-mediated cytotoxicity. J Biol Chem 272, 6918–6926.

    Article  PubMed  CAS  Google Scholar 

  • Cai, Z., Kwintkiewicz, J., Young, M., and Stocco, C. (2007). Prostaglandin E2 increases cyp19 expression in rat granulosa cells: implications of GATA-4. Molecular and Cellular Endocrinology 263, 181–189.

    Article  PubMed  CAS  Google Scholar 

  • Caron, K. M., Ikeda, Y., Soo, S. C., Stocco, D. M., Parker, K. L., and Clark, B. J. (1997). Characterization of the promoter region of the mouse gene encoding the steroidogenic acute regulatory protein. Mol Endocrinol 11, 138–147.

    Article  PubMed  CAS  Google Scholar 

  • Castilla, R., Maloberti, P., Castillo, F., Duarte, A., Cano, F., Maciel, F. C., Neuman, I., Mendez, C. F., Paz, C., and Podesta, E. J. (2004). Arachidonic acid regulation of steroid synthesis: new partners in the signaling pathway of steroidogenic hormones. Endocr Res 30, 599–606.

    Article  PubMed  CAS  Google Scholar 

  • Chen, J. Y., and Waterman, M. R. (1992). Two promoters in the bovine adrenodoxin gene and the role of associated, unique cAMP-responsive sequences. Biochemistry 31, 2400–2407.

    Article  PubMed  CAS  Google Scholar 

  • Chen, W. Y., Lee, W. C., Hsu, N. C., Huang, F., and Chung, B. C. (2004). SUMO modification of repression domains modulates function of nuclear receptor 5A1 (steroidogenic factor-1). J Biol Chem 279, 38730–38735.

    Article  PubMed  CAS  Google Scholar 

  • Choi, M. S., and Cooke, B. A. (1990). Evidence for two independent pathways in the stimulation of steroidogenesis by luteinizing hormone involving chloride channels and cyclic AMP. FEBS Lett 261, 402–404.

    Article  PubMed  CAS  Google Scholar 

  • Choi, M. S., and Cooke, B. A. (1992). Calmidazolium is a potent stimulator of steroidogenesis via mechanisms not involving cyclic AMP, calcium or protein synthesis. Biochem J 281 (Pt 1), 291–296.

    PubMed  CAS  Google Scholar 

  • Clark, B. J., and Combs, R. (1999). Angiotensin II and cyclic adenosine 3',5'-monophosphate induce human steroidogenic acute regulatory protein transcription through a common steroidogenic factor-1 element. Endocrinology 140, 4390–4398.

    Article  PubMed  CAS  Google Scholar 

  • Clem, B. F., Hudson, E. A., and Clark, B. J. (2005). Cyclic adenosine 3',5'-monophosphate (cAMP) enhances cAMP-responsive element binding (CREB) protein phosphorylation and phospho-CREB interaction with the mouse steroidogenic acute regulatory protein gene promoter. Endocrinology 3, 1348–1356.

    Google Scholar 

  • Clyne, C. D., Speed, C. J., Zhou, J., and Simpson, E. R. (2002). Liver receptor homologue-1 (LRH-1) regulates expression of aromatase in preadipocytes. J Biol Chem 277, 20591–20597.

    Article  PubMed  CAS  Google Scholar 

  • Condon, J. C., Pezzi, V., Drummond, B. M., Yin, S., and Rainey, W. E. (2002). Calmodulin-dependent kinase I regulates adrenal cell expression of aldosterone synthase. Endocrinology 143, 3651–3657.

    Article  PubMed  CAS  Google Scholar 

  • Cuvillier, O., Pirianov, G., Kleuser, B., Vanek, P. G., Coso, O. A., Gutkind, S., and Spiegel, S. (1996). Suppression of ceramide-mediated programmed cell death by sphingosine-1-phosphate. Nature 381, 800–803.

    Article  PubMed  CAS  Google Scholar 

  • Degnan, B. M., Bourdelat-Parks, B., Daniel, A., Salata, K., and Francis, G. L. (1996). Sphingomyelinase inhibits in vitro Leydig cell function. Ann Clin Lab Sci 26, 234–242.

    PubMed  CAS  Google Scholar 

  • Ding, T., Li, Z., Hailemariam, T., Mukherjee, S., Maxfield, F. R., Wu, M., and Jiang, X. C. (2007). Sphingomyelin synthase (SMS) overexperssion and knockdown: Impact on cellular sphingomyelin and diacylglycerol metabolism, and cell apopotosis. J Lipid Res 49 (2), 376–385.

    Article  PubMed  CAS  Google Scholar 

  • Foster, R. H. (2004). Reciprocal influences between the signalling pathways regulating proliferation and steroidogenesis in adrenal glomerulosa cells. J Mol Endocrinol 32, 893–902.

    Article  PubMed  CAS  Google Scholar 

  • Fuxe, K., Gustafsson, J. A., and Wetterberg, L. (1981). Steroid hormone regulation of the brain. Pergamon Press, Oxford.

    Google Scholar 

  • Gallo-Payet, N., Cote, M., Chorvatova, A., Guillon, G., and Payet, M. D. (1999). Cyclic AMP-independent effects of ACTH on glomerulosa cells of the rat adrenal cortex. J Steroid Biochem Mol Biol 69, 335–342.

    Article  PubMed  CAS  Google Scholar 

  • Gallo-Payet, N., and Payet, M. D. (1989). Excitation-secretion coupling: involvement of potassium channels in ACTH-stimulated rat adrenocortical cells. J Endocrinol 120, 409–421.

    PubMed  CAS  Google Scholar 

  • Ghayee, H. K., and Auchus, R. J. (2007). Basic concepts and recent developments in human steroid hormone biosynthesis. Rev Endocr Metab Disord 8 (4), 289–300.

    Article  PubMed  CAS  Google Scholar 

  • Gomez-Munoz, A. (2006). Ceramide 1-phosphate/ceramide, a switch between life and death. Biochim Biophys Acta 1758, 2049–2056.

    Article  PubMed  CAS  Google Scholar 

  • Gomez-Munoz, A., Kong, J., Salh, B., and Steinbrecher, U. P. (2003). Sphingosine-1-phosphate inhibits acid sphingomyelinase and blocks apoptosis in macrophages. FEBS Lett 539, 56–60.

    Article  PubMed  CAS  Google Scholar 

  • Gomez-Munoz, A., Kong, J. Y., Salh, B., and Steinbrecher, U. P. (2004). Ceramide-1-phosphate blocks apoptosis through inhibition of acid sphingomyelinase in macrophages. J Lipid Res 45, 99–105.

    Article  PubMed  CAS  Google Scholar 

  • Goni, F. M., and Alonso, A. (2006). Biophysics of sphingolipids I. Membrane properties of sphingosine, ceramides and other simple sphingolipids. Biochim Biophys Acta 1758, 1902–1921.

    Article  PubMed  CAS  Google Scholar 

  • Griffin, L. D., Gong, W., Verot, L., and Mellon, S. H. (2004). Niemann-Pick type C disease involves disrupted neurosteroidogenesis and responds to allopregnanolone. Nat Med 10, 704–711.

    Article  PubMed  CAS  Google Scholar 

  • Hadizadeh, S., King, D., Shah, S., and Sewer, M. B. (2007). Sphingosine-1-phosphate regulates the expression of the liver receptor homologue-1. Molecular and Cellular Endocrinology In press, accepted manuscript, available online 5 December 2007, doi:10.1016/j.mce.2007.11.030.

    Google Scholar 

  • Hammer, G. D., Krylova, I., Zhang, Y., Darimont, B. D., Simpson, K., Weigel, N. L., and Ingraham, H. A. (1999). Phosphorylation of the nuclear receptor SF-1 modulates cofactor recruitment: integration of hormone signaling in reproduction and stress. Mol Cell 3, 521–526.

    Article  PubMed  CAS  Google Scholar 

  • Hanada, K., Kumagai, K., Yasuda, S., Miura, Y., Kawano, M., Fukasawa, M., and Nishijima, M. (2003). Molecular machinery for non-vesicular trafficking of ceramide. Nature 426, 803–809.

    Article  PubMed  CAS  Google Scholar 

  • Hannun, Y. A. (1996). Functions of ceramide in coordinating cellular responses to stress. Science 274, 1855–1859.

    Article  PubMed  CAS  Google Scholar 

  • Hannun, Y. A., Loomis, C. R., Merrill, A. H., Jr., and Bell, R. M. (1986). Sphingosine inhibition of protein kinase C activity and of phorbol dibutyrate binding in vitro and in human platelets. J Biol Chem 261, 12604–12609.

    PubMed  CAS  Google Scholar 

  • Hauet, T., Liu, J., Li, H., Gazouli, M., Culty, M., and Papadopoulos, V. (2002). PBR, StAR, and PKA: partners in cholesterol transport in steroidogenic cells. Endocr Res 28, 395–401.

    Article  PubMed  CAS  Google Scholar 

  • Havelock, J. C., Auchus, R. J., and Rainey, W. E. (2004). The rise in adrenal androgen biosynthesis: adrenarche. Semin Reprod Med 22, 337–347.

    Article  PubMed  CAS  Google Scholar 

  • Hedger, M. P. (1997). Testicular leukocytes: what are they doing? Rev Reprod 2, 38–47.

    Article  PubMed  CAS  Google Scholar 

  • Hung, W. C., Chang, H. C., and Chuang, L. Y. (1999). Activation of caspase-3-like proteases in apoptosis induced by sphingosine and other long-chain bases in Hep3B hepatoma cells. Biochem J 338 (Pt 1), 161–166.

    Article  PubMed  CAS  Google Scholar 

  • Huwiler, A., Kolter, T., Pfeilschifter, J., and Sandhoff, K. (2000). Physiology and pathophysiology of sphingolipid metabolism and signaling. Biochim Biophys Acta 1485, 63–99.

    PubMed  CAS  Google Scholar 

  • Im, D. S., Heise, C. E., Ancellin, N., O'Dowd, B. F., Shei, G. J, Heavens, R. P., Rigby, M. R., Hla, T., Mandala, S., McAllister, G., George, S. R., and Lynch, K. R. (2000). Characterization of a Novel Sphingosine 1-Phosphate Receptor, Edg-8. J Biol Chem 275, 14281–14286.

    Article  PubMed  CAS  Google Scholar 

  • Ishihara, S. L., and Morohashi, K. (2005). A boundary for histone acetylation allows distinct expression patterns of the Ad4BP/SF-1 and GCNF loci in adrenal cortex cells. Biochem Biophys Res Commun 329, 554–562.

    Article  PubMed  CAS  Google Scholar 

  • Jamnongjit, M., and Hammes, S. R. (2006). Ovarian steroids: the good, the bad, and the signals that raise them. Cell Cycle 5, 1178–1183.

    PubMed  CAS  Google Scholar 

  • Jefferson, A. B., and Schulman, H. (1988). Sphingosine inhibits calmodulin-dependent enzymes. J Biol Chem 263, 15241–15244.

    PubMed  CAS  Google Scholar 

  • Kassel, O., and Herrlich, P. (2007). Crosstalk between the glucocorticoid receptor and other transcription factors: Molecular aspects. Molecular and Cellular Endocrinology 275, 13–29.

    Article  PubMed  CAS  Google Scholar 

  • Kihara, A., Mitsutake, S., Mizutani, Y., and Igarashi, Y. (2007). Metabolism and biological functions of two phosphorylated sphingolipids, sphingosine 1-phosphate and ceramide 1-phosphate. Prog Lipid Res 46, 126–144.

    Article  PubMed  CAS  Google Scholar 

  • Kolesnick, R. (2002). The therapeutic potential of modulating the ceramide/sphingomyelin pathway. J Clin Invest 110, 3–8.

    PubMed  CAS  Google Scholar 

  • Kraemer, F. B., Shen, W. J., Harada, K., Patel, S., Osuga, J., Ishibashi, S., and Azhar, S. (2004). Hormone-sensitive lipase is required for high-density lipoprotein cholesteryl ester-supported adrenal steroidogenesis. Mol Endocrinol 18, 549–557.

    Article  PubMed  CAS  Google Scholar 

  • Krieger, M. (1999). Charting the fate of the "good cholesterol": identification and characterization of the high-density lipoprotein receptor SR-BI. Annu Rev Biochem 68, 523–558.

    Article  PubMed  CAS  Google Scholar 

  • Krylova, I. N., Sablin, E. P., Moore, J., Xu, R. X., Waitt, G. M., MacKay, J. A., Juzumiene, D., Bynum, J. M., Madauss, K., Montana, V., Lebedeva, L., Suzawa, M., Williams, J. D., Williams, S. P., Guy, R. K., Thornton, J. W., Fletterick, R. J., Willson, T. M., and Ingraham, H. A. (2005). Structural analyses reveal phosphatidyl inositols as ligands for the NR5 orphan receptors SF-1 and LRH-1. Cell 120, 343–355.

    Article  PubMed  CAS  Google Scholar 

  • Lala, D. S., Rice, D.A., and Parker, K. L. (1992). Steroidogenic factor I, a key regulator of steroidogenic enzyme expression, is the mouse homolog of fushi tarazu-factor I. Mol Endocrinol 6, 1249–1258.

    Article  PubMed  CAS  Google Scholar 

  • Lavaque, E., Sierra, A., Azcoitia, I., and Garcia-Segura, L. M. (2006). Steroidogenic acutre regulatory protein in the brain. Neuroscience 138, 741–747.

    Article  PubMed  CAS  Google Scholar 

  • Lavieu, G., Scarlatti, F., Sala, G., Carpentier, S., Levade, T., Ghidoni, R., Botti, J., and Codogno, P. (2006). Regulation of autophagy by sphingosine kinase 1 and its role in cell survival during nutrient starvation. J Biol Chem 281, 8518–8527.

    Article  PubMed  CAS  Google Scholar 

  • Lavieu, G., Scarlatti, F., Sala, G., Levade, T., Ghidoni, R., Botti, J., and Codogno, P. (2007). Is autophagy the key mechanism by which the sphingolipid rheostat controls the cell fate decision? Autophagy 3, 45–47.

    PubMed  CAS  Google Scholar 

  • Le Stunff, H., Giussani, P., Maceyka, M., Lépine, S., Milstien, S., and Spiegel, S. (2007). Recycling of sphingosine is regulated by the concerted actions of sphingosine-1-phosphate phosphohydrolase 1 and sphingosine kinase 2. J Biol Chem 282, 34372–34380.

    Article  PubMed  Google Scholar 

  • Ledeen, R. W., and Wu, G. (2006). Sphingolipids of the nucleus and their roles in nuclear signaling. Biochim Biophys Acta 1761, 588–598.

    PubMed  CAS  Google Scholar 

  • Lee, M. J., Thangada, S., Liu, C. H., Thompson, B. D., and Hla, T. (1998). Lysophosphatidic acid stimulates the G-protein-coupled receptor EDG-1 as a low affinity agonist. J Biol Chem 273, 22105–22112.

    Article  PubMed  CAS  Google Scholar 

  • Li, D., Urs, A. N., Allegood J., Leon, A., Merrill, A. H., Jr., and Sewer, M. B. (2007). Cyclic AMP-stimulated interaction between steroidogenic factor 1 and diacylglycerol kinase theta facilitates induction of CYP17. Mol Cell Biol 27, 6669–6685.

    Article  PubMed  CAS  Google Scholar 

  • Li, Q., Ni, J., Bian, S., Yao, L., Zhu, H., and Zhang, W. (2001). Inhibition of steroidogenesis and induction of apoptosis in rat luteal cells by cell-permeable ceramide in vitro. Sheng Li Xue Bao 53, 142–146.

    PubMed  CAS  Google Scholar 

  • Li, Y., Choi, M., Cavey, G., Daugherty, J., Suino, K., Kovach, A., Bingham, N. C., Kliewer, S. A., and Xu, H. E. (2005). Crystallographic identification and functional characterization of phospholipids as ligands for the orphan nuclear receptor steroidogenic factor-1. Mol Cell 17, 491–502.

    Article  PubMed  CAS  Google Scholar 

  • Liu, H., Toman, R. E., Goparaju, S. K., Maceyka, M., Nava, V. E., Sankala, H., Payne, S. G., Bektas, M., Ishii, I., Chun, J., Milstien, S., and Spiegel, S. (2003a). Sphingosine kinase type 2 is a putative BH3-only protein that induces apoptosis. J Biol Chem 278, 40330–40336.

    Article  CAS  Google Scholar 

  • Liu, J., Li, H., and Papadopoulos, V. (2003b). PAP7, a PBR/PKA-RIalpha-associated protein: a new element in the relay of the hormonal induction of steroidogenesis. J Steroid Biochem Mol Biol 85, 576–586.

    Google Scholar 

  • Liu, J., Rone, M. B., and Papadopoulos, V. (2006). Protein-protein interactions mediate mitochondrial cholesterol transport and steroid biosynthesis. J Biol Chem 281, 38879–38893.

    Article  PubMed  CAS  Google Scholar 

  • Lorenz, J. N., Arend, L. J., Robitz, R., Paul, R. J., and MacLennan, A. J. (2007). Vascular dysfunction in S1P2 sphingosine 1-phosphate receptor knockout mice. Am J Physiol Regul Integr Comp Physiol 292, R440–446.

    PubMed  CAS  Google Scholar 

  • Lu, Z. H., Mu, Y. M., Wang, B. A., Li, X. L., Lu, J. M., Li, J. Y., Pan, C. Y., Yanase, T., and Nawata, H. (2003). Saturated free fatty acids, palmitic acid and stearic acid, induce apoptosis by stimulation of ceramide generation in rat testicular Leydig cell. Biochem Biophys Res Commun 303, 1002–1007.

    Article  PubMed  CAS  Google Scholar 

  • Maceyka, M., Payne, S. G., Milstien, S., and Spiegel, S. (2002). Sphingosine kinase, sphingosine-1-phosphate, and apoptosis. Biochim Biophys Acta 1585, 193–201.

    PubMed  CAS  Google Scholar 

  • Maceyka, M., Sankala, H., Hait, N. C., Le Stunff, H., Liu, H., Toman, R., Collier, C., Zhang, M., Satin, L. S., Merrill, A. H., Jr., Milstien, S., and Spiegel, S. (2005). SphK1 and SphK2, sphingosine kinase isoenzymes with opposing functions in sphingolipid metabolism. J Biol Chem 280, 37118–37129.

    Article  PubMed  CAS  Google Scholar 

  • McClellan, D. R., Bourdelat-Parks, B., Salata, K., and Francis, G. L. (1997). Sphingomyelinase affects hormone production in Jeg-3 choriocarcinoma cells. Cell Endocrinology Metabolism 9, 19–24.

    Google Scholar 

  • McEwen, B. S. (1991). Steroid hormones are multifuctional messengers in the brain. Trends in Endocrinology Metabolism 2, 62–67.

    Article  CAS  Google Scholar 

  • Mellon, S. H., Gong, W., and Griffin, L. D. (2004). Niemann pick type C disease as a model for defects in neurosteroidogenesis. Endocr Res 30, 727–735.

    Article  PubMed  CAS  Google Scholar 

  • Mellon, S. H. (2007). Neurosteroid regulation of central nervous system development. Pharmacol Ther 116, 107–124.

    Article  PubMed  CAS  Google Scholar 

  • Mellon, S. H., and Deschepper, C. F. (1993). Neurosteroid biosynthesis: genes for adrenal steroidogenic enzymes are expressed in the brain. Brain Res 629, 283–292.

    Article  PubMed  CAS  Google Scholar 

  • Mellon, S. H., and Griffin, L. D. (2002). Neurosteroids: biochemistry and clinical significance. Trends Endocrinol Metab 13, 35–43.

    Article  PubMed  CAS  Google Scholar 

  • Mendelson, C. R., Jiang, B., Shelton, J. M., Richardson, J. A., and Hinshelwood, M. M. (2005). Transcriptional regulation of aromatase in placenta and ovary. J Steroid Biochem Mol Biol 95, 25–33.

    Article  PubMed  CAS  Google Scholar 

  • Meroni, S. B., Pellizzari, E. H., Canepa, D. F., and Cigorraga, S. B. (2000). Possible involvement of ceramide in the regulation of rat Leydig cell function. J Steroid Biochem Mol Biol 75, 307–313.

    Article  PubMed  CAS  Google Scholar 

  • Meroni, S. B., Riera, M. F., Pellizzari, E. H., and Cigorraga, S. B. (2002). Regulation of rat Sertoli cell function by FSH: possible role of phosphatidylinositol 3-kinase/protein kinase B pathway. J Endocrinol 174, 195–204.

    Article  PubMed  CAS  Google Scholar 

  • Merrill, A. H., Jr., Nikolova-Karakashian, N., Schmelz, E. M., Morgan, E. T., and Stewart, J. (1999). Regulation of cytochrome P450 expression by sphingolipids. Chemistry and Physics of Lipids 102, 131–139.

    Article  CAS  Google Scholar 

  • Miller, W. L. (2007). Mechanism of StAR's regulation of mitochondrial cholesterol import. Mol Cell Endocrinol 265–266, 46–50.

    Article  PubMed  CAS  Google Scholar 

  • Mimeault, M. (2002). New advances on structural and biological functions of ceramide in apoptotic/necrotic cell death and cancer. FEBS Lett 530, 9–16.

    Article  PubMed  CAS  Google Scholar 

  • Morales, V., Santana, P., Diaz, R., Tabraue, C., Gallardo, G., Blanco, F. L., Hernandez, I., Fanjul, L. F., and Ruiz de Galarreta, C. M. (2003). Intratesticular Delivery of Tumor Necrosis Factor-{alpha} and Ceramide Directly Abrogates Steroidogenic Acute Regulatory Protein Expression and Leydig Cell Steroidogenesis in Adult Rats. Endocrinology 144, 4763–4772.

    Article  PubMed  CAS  Google Scholar 

  • Morohashi, K., Honda, S., Inomata, Y., Handa, H., and Omura, T. (1992). A common trans-acting factor, Ad4-binding protein, to the promoters of steroidogenic P-450s. J Biol Chem 267, 17913–17919.

    PubMed  CAS  Google Scholar 

  • Mueller, M., Atanasov, A., Cima, I., Corazza, N., Schoonjans, K., and Brunner, T. (2007). Differential regulation of glucocorticoid synthesis in murine intestinal epithelial versus adrenocortical cell lines. Endocrinology 148, 1445–1453.

    Article  PubMed  CAS  Google Scholar 

  • Mukai, H., Tsurugizawa, T., Ogiue-Ikeda, M., Murakami, G., Hojo, Y., Ishii, H., Kimoto, T., and Kawato, S. (2006). Local neurosteroid production in the hippocampus: influence on synaptic plasticity of memory. Neuroendocrinology 84, 255–263.

    Article  PubMed  CAS  Google Scholar 

  • Natarajan, V., Jayaram, H. N., Scribner, W. M., and Garcia, J. G. (1994). Activation of endothelial cell phospholipase D by sphingosine and sphingosine-1-phosphate. Am J Respir Cell Mol Biol 11, 221–229.

    PubMed  CAS  Google Scholar 

  • Newton, R., and Holden, N. S. (2007). Separating transrepression and transactivation: A distressing divorce for the glococorticoid receptor? Molecular Pharmacology 72, 799–809.

    Article  PubMed  CAS  Google Scholar 

  • Ogretmen, B. (2006). Sphingolipids in cancer: regulation of pathogenesis and therapy. FEBS Lett 580, 5467–5476.

    Article  PubMed  CAS  Google Scholar 

  • Okada, T., Ding, G., Sonoda, H., Kajimoto, T., Haga, Y., Khosrowbeygi, A., Gao, S., Miwa, N., Jahangeer, S., and Nakamura, S. (2005). Involvement of N-terminal-extended form of sphingosine kinase 2 in serum-dependent regulation of cell proliferation and apoptosis. J Biol Chem 280, 36318–36325.

    Article  PubMed  CAS  Google Scholar 

  • Okamoto, M., Takemori, H., and Katoh, Y. (2004). Salt-inducible kinase in steroidogenesis and adipogenesis. Trends Endocrinol Metab 15, 21–26.

    Article  PubMed  CAS  Google Scholar 

  • Okazaki, T., Bell, R. M., and Hannun, Y. A. (1989). Sphingomyelin turnover induced by vitamin D3 in HL-60 cells. Role in cell differentiation. J Biol Chem 264, 19076–19080.

    PubMed  CAS  Google Scholar 

  • Olivera, A., Kohama, T., Edsall, L., Nava, V., Cuvillier, O., Poulton, S., and Spiegel, S. (1999). Sphingosine kinase expression increases intracellular sphingosine-1-phosphate and promotes cell growth and survival. J Cell Biol 147, 545–558.

    Article  PubMed  CAS  Google Scholar 

  • Olivera, A., and Spiegel, S. (1993). Sphingosine-1-phosphate as second messenger in cell proliferation induced by PDGF and FCS mitogens. Nature 365, 557–560.

    Article  PubMed  CAS  Google Scholar 

  • Osawa, Y., Uchinami, H., Bielawski, J., Schwabe, R. F., Hannun, Y. A., and Brenner, D. A. (2005). Roles for C16-ceramide and sphingosine 1-phosphate in regulating hepatocyte apoptosis in response to tumor necrosis factor-alpha. J Biol Chem 280, 27879–27887.

    Article  PubMed  CAS  Google Scholar 

  • Otis, M., and Gallo-Payet, N. (2007). Role of MAPKs in angiotensin II-induced steroidogenesis in rat glomerulosa cells. Mol Cell Endocrinol 265–266, 126–130.

    Article  PubMed  CAS  Google Scholar 

  • Ozbay, T., Merrill, A. H., Jr., and Sewer, M. B. (2004). ACTH regulates steroidogenic gene expression and cortisol biosynthesis in the human adrenal cortex via sphingolipid metabolism. Endocr Res 30, 787–794.

    Article  PubMed  CAS  Google Scholar 

  • Ozbay, T., Rowan, A., Leon, A., Patel, P., and Sewer, M. B. (2006). Cyclic adenosine 5'-monophosphate-dependent sphingosine-1-phosphate biosynthesis induces human CYP17 gene transcription by activating cleavage of sterol regulatory element binding protein 1. Endocrinology 147, 1427–1437.

    Article  PubMed  CAS  Google Scholar 

  • Papadopoulos, V. (1993). Peripheral-type benzodiazepine/diazepam binding inhibitor receptor: biological role in steroidogenic cell function. Endocr Rev 14, 222–240.

    Article  PubMed  CAS  Google Scholar 

  • Parker, K. L., Rice, D. A., Lala, D. S., Ikeda, Y., Luo, X., Wong, M., Bakke, M., Zhao, L., Frigeri, C., Hanley, N. A., Stallings, N., and Schimmer, B. P. (2002). Steroidogenic factor 1: an essential mediator of endocrine development. Recent Prog Horm Res 57, 19–36.

    Article  PubMed  CAS  Google Scholar 

  • Payne, A. H., and Hales, D. B. (2004). Overview of steroidogenic enzymes in the pathway from cholesterol to active steroid hormones. Endocr Rev 25, 947–970.

    Article  PubMed  CAS  Google Scholar 

  • Payne, S. G., Milstien, S., Barbour, S. E., and Spiegel, S. (2004). Modulation of adaptive immune responses by sphingosine-1-phosphate. Semin Cell Dev Biol 15, 521–527.

    Article  PubMed  CAS  Google Scholar 

  • Pepe, G. J., and Albrecht, E. D. (1995). Actions of placental and fetal adrenal steroid hormones in primate pregnancy. Endocr Rev 16, 608–648.

    Article  PubMed  CAS  Google Scholar 

  • Pettus, B. J., Bielawska, A., Spiegel, S., Roddy, P., Hannun, Y. A., and Chalfant, C. E. (2003). Ceramide kinase mediates cytokine- and calcium ionophore-induced arachidonic acid release. J Biol Chem 278, 38206–38213.

    Article  PubMed  CAS  Google Scholar 

  • Pettus, B. J., Chalfant, C. E., and Hannun, Y. A. (2002). Ceramide in apoptosis: an overview and current perspectives. Biochim Biophys Acta 1585, 114–125.

    PubMed  CAS  Google Scholar 

  • Plassart-Schiess, E., and Baulieu, E. E. (2001). Neurosteroids: recent findings. Brain Res Brain Res Rev 37, 133–140.

    Article  PubMed  CAS  Google Scholar 

  • Porn, M. I., Tenhunen, J., and Slotte, J. P. (1991). Increased steroid hormone secretion in mouse Leydig tumor cells after induction of cholesterol translocation by sphingomyelin degradation. Biochim Biophys Acta 1093, 7–12.

    Article  PubMed  CAS  Google Scholar 

  • Rabano, M., Pena, A., Brizuela, L., Marino, A., Macarulla, J. M., Trueba, M., and Gomez-Munoz, A. (2003). Sphingosine-1-phosphate stimulates cortisol secretion. FEBS Lett 535, 101–105.

    Article  PubMed  CAS  Google Scholar 

  • Rainey, W. E. (1999). Adrenal zonation: clues from 11beta-hydroxylase and aldosterone synthase. Mol Cell Endocrinol 151, 151–160.

    Article  PubMed  CAS  Google Scholar 

  • Rainey, W. E., Carr, B. R., Sasano, H., Suzuki, T., and Mason, J. I. (2002). Dissecting human adrenal androgen production. Trends Endocrinol Metab 13, 234–239.

    Article  PubMed  CAS  Google Scholar 

  • Ramnath, H. I., Peterson, S., Michael, A. E., Stocco, D. M., and Cooke, B. A. (1997). Modulation of steroidogenesis by chloride ions in MA-10 mouse tumor Leydig cells: roles of calcium, protein synthesis, and the steroidogenic acute regulatory protein. Endocrinology 138, 2308–2314.

    Article  PubMed  CAS  Google Scholar 

  • Reinhart, A. J., Williams, S. C., Clark, B. J., and Stocco, D. M. (1999). SF-1 (steroidogenic factor-1) and C/EBP beta (CCAAT/enhancer binding protein-beta) cooperate to regulate the murine StAR (steroidogenic acute regulatory) promoter. Mol Endocrinol 13, 729–741.

    Article  PubMed  CAS  Google Scholar 

  • Ruvolo, P. P., Clark, W., Mumby, M., Gao, F., and May, W. S. (2002). A functional role for the B56 alpha-subunit of protein phosphatase 2A in ceramide-mediated regulation of Bcl2 phosphorylation status and function. J Biol Chem 277, 22847–22852.

    Article  PubMed  CAS  Google Scholar 

  • Sakakura, C., Sweeney, E. A., Shirahama, T., Hagiwara, A., Yamaguchi, T., Takahashi, T., Hakomori, S., and Igarashi, Y. (1998). Selectivity of sphingosine-induced apoptosis. Lack of activity of DL-erythyro-dihydrosphingosine. Biochem Biophys Res Commun 246, 827–830.

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto, H., Ukena, K., Kawata, M., and Tsutsui, K. (2007). Expression, localization and possible actions of 25-Dx, a membrane-associated putative progesterone-binding protein, in the developing Purkinje cell of the cerebellum: A new insight into the biosynthesis, metabolism and multiple actions of progesterone as a neurosteroid. Cerebellum Mar 2:1–8 [Epub ahead of print].

    Google Scholar 

  • Santana, P., Llanes, L., Hernandez, I., Gallardo, G., Quintana, J., Gonzalez, J., Estevez, F., Ruiz de Galarreta, C., and Fanjul, L. F. (1995). Ceramide mediates tumor necrosis factor effects on P450-aromatase activity in cultured granulosa cells. Endocrinology 136, 2345–2348.

    Article  PubMed  CAS  Google Scholar 

  • Santana, P., Llanes, L., Hernandez, I., Gonzalez-Robayna, I., Tabraue, C., Gonzalez-Reyes, J., Quintana, J., Estevez, F., Ruiz de Galarreta, C. M., and Fanjul, L. F. (1996). Interleukin-1 beta stimulates sphingomyelin hydrolysis in cultured granulosa cells: evidence for a regulatory role of ceramide on progesterone and prostaglandin biosynthesis. Endocrinology 137, 2480–2489.

    Article  PubMed  CAS  Google Scholar 

  • Sawai, H., Okazaki, T., Takeda, Y., Tashima, M., Sawada, H., Okuma, M., Kishi, S., Umehara, H., and Domae, N. (1997). Ceramide-induced translocation of protein kinase C-delta and -epsilon to the cytosol. Implications in apoptosis. J Biol Chem 272, 2452–2458.

    Article  PubMed  CAS  Google Scholar 

  • Sewer, M. B., Dammer, E. B., and Jagarlapudi, S. (2007). Transcriptional Regulation of Adrenocortical Steroidogenic Gene Expression. Drug Metab Rev 39, 371–388.

    Article  PubMed  CAS  Google Scholar 

  • Sewer, M. B., and Waterman, M. R. (2001). Insights into the transcriptional regulation of steroidogenic enzymes and StAR. Rev Endocr Metab Disord 2, 269–274.

    Article  PubMed  CAS  Google Scholar 

  • Sewer, M. B., and Waterman, M. R. (2003). ACTH modulation of transcription factors responsible for steroid hydroxylase gene expression in the adrenal cortex. Microsc Res Tech 61, 300–307.

    Article  PubMed  CAS  Google Scholar 

  • Shah, B. H., Baukal, A. J., Shah, F. B., and Catt, K. J. (2005). Mechanisms of extracellularly regulated kinases 1/2 activation in adrenal glomerulosa cells by lysophosphatidic acid and epidermal growth factor. Mol Endocrinol 19, 2535–2548.

    Article  PubMed  CAS  Google Scholar 

  • Sierra, A. (2004). Neurosteroids: the StAR protein in the brain. J Neuroendocrinol 16, 787–793.

    Article  PubMed  CAS  Google Scholar 

  • Sirianni, R., Carr, B. R., Ando, S., and Rainey, W. E. (2003). Inhibition of Src tyrosine kinase stimulates adrenal androgen production. J Mol Endocrinol 30, 287–299.

    Article  PubMed  CAS  Google Scholar 

  • Smith, W. L., and Merrill, A. H., Jr. (2002). Sphingolipid metabolism and signaling minireview series. J Biol Chem 277, 25841–25842.

    Article  PubMed  CAS  Google Scholar 

  • Son, D. S., Arai, K. Y., Roby, K. F., and Terranova, P. F. (2004). Tumor necrosis factor alpha (TNF) increases granulosa cell proliferation: dependence on c-Jun and TNF receptor type 1. Endocrinology 145, 1218–1226.

    Article  PubMed  CAS  Google Scholar 

  • Spiegel, S., and Milstien, S. (2002). Sphingosine 1-phosphate, a key cell signaling molecule. J Biol Chem 277, 25851–25854.

    Article  PubMed  CAS  Google Scholar 

  • Spiegel, S., and Milstien, S. (2003a). Exogenous and intracellularly generated sphingosine 1-phosphate can regulate cellular processes by divergent pathways. Biochem Soc Trans 31, 1216–1219.

    CAS  Google Scholar 

  • Spiegel, S., and Milstien, S. (2003b). Sphingosine-1-phosphate: an enigmatic signalling lipid. Nat Rev Mol Cell Biol 4, 397–407.

    Article  CAS  Google Scholar 

  • Spiegel, S., and Milstien, S. (2007). Functions of the multifaceted family of sphingosine kinases and some close relatives. J Biol Chem 282, 2125–2129.

    Article  PubMed  CAS  Google Scholar 

  • Stocco, D. M., and Khan, S. A. (1992). Effects of steroidogenesis inducing protein (SIP) on steroid production in MA-10 mouse Leydig tumor cells: utilization of a non-cAMP second messenger pathway. Mol Cell Endocrinol 84, 185–194.

    Article  PubMed  CAS  Google Scholar 

  • Sweeney, E. A., Inokuchi, J., and Igarashi, Y. (1998). Inhibition of sphingolipid induced apoptosis by caspase inhibitors indicates that sphingosine acts in an earlier part of the apoptotic pathway than ceramide. FEBS Lett 425, 61–65.

    Article  PubMed  CAS  Google Scholar 

  • Tajima, K., Yoshii, K., Fukuda, S., Orisaka, M., Miyamoto, K., Amsterdam, A., and Kotsuji, F. (2005). Luteinizing hormone-induced extracellular-signal regulated kinase activation differently modulates progesterone and androstenedione production in bovine theca cells. Endocrinology 146, 2903–2910.

    Article  PubMed  CAS  Google Scholar 

  • Takamiya, K., Yamamoto, A., Furukawa, Z. K., Zhao, J., Fukumoto, S., Yamashiro, S., Okada, M., Hraguchi, M., Shin, M., Kishikawa, M., Shiku, H., Aizawa, S., and Furukawa, K. (1998). Complex gangliosides are essential in spermatogenesis of mice: Possible roles in the transport of testosterone. Proc Natl Acad Sci 95, 12147–12152.

    Article  PubMed  CAS  Google Scholar 

  • Tamboli, I. Y., Prager, K., Barth, E., Heneka, M., Sandhoff, K., and Walter, J. (2005). Inhibition of glycosphingolipid biosynthesis reduces secretion of the beta-amyloid precursor protein and amyloid beta-peptide. J Biol Chem 280, 28110–28117.

    Article  PubMed  CAS  Google Scholar 

  • Tani, M., Ito, M., and Igarashi, Y. (2007). Ceramide/sphingosine/sphingosine 1-phosphate metabolism on the cell surface and in the extracellular space. Cell Signal 19, 229–237.

    Article  PubMed  CAS  Google Scholar 

  • Thomson, M. (1997). Molecular and cellular mechanisms used in the acute phase of stimulated steroidogenesis. Hormone Metabolism Research 30, 16–28.

    Article  Google Scholar 

  • Thon, L., Mohlig, H., Mathieu, S., Lange, A., Bulanova, E., Winoto-Morbach, S., Schutze, S., Bulfone-Paus, S., and Adam, D. (2005). Ceramide mediates caspase-independent programmed cell death. Faseb J 19, 1945–1956.

    Article  PubMed  CAS  Google Scholar 

  • Tsutsui, K., and Ukena, K. (1999). Neurosteroids in the cerebellar Purkinje neuron and their actions (review). Int J Mol Med 4, 49–56.

    PubMed  CAS  Google Scholar 

  • Tsutsui, K., Ukena, K., Usui, M., Sakamoto, H., and Takase, M. (2000). Novel brain function: biosynthesis and actions of neurosteroids in neurons. Neurosci Res 36, 261–273.

    Article  PubMed  CAS  Google Scholar 

  • Turinsky, J., O'Sullivan, D. M., and Bayly, B. P. (1990). 1,2-Diacylglycerol and ceramide levels in insulin-resistant tissues of the rat in vivo. J Biol Chem 265, 16880–16885.

    PubMed  CAS  Google Scholar 

  • Urs, A. N., Dammer, E. B., and Sewer, M. B. (2006). Sphingosine regulates the transcription of CYP17 by binding to steroidogenic factor-1. Endocrinology 147, 5249–5258.

    Article  PubMed  CAS  Google Scholar 

  • Van Brocklyn, J. R., Graler, M. H., Bernhardt, G., Hobson, J. P., Lipp, M., and Spiegel, S. (2000). Sphingosine-1-phosphate is a ligand for the G protein-coupled receptor EDG-6. Blood 95, 2624–2629.

    PubMed  Google Scholar 

  • Vianello, S., Waterman, M. R., Dalla Valle, L., and Colombo, L. (1997). Developmentally regulated expression and activity of 17alpha-hydroxylase/C-17,20-lyase cytochrome P450 in rat liver. Endocrinology 138, 3166–3174.

    Article  PubMed  CAS  Google Scholar 

  • Wang, W., Zhang, C., Marimuthu, A., Krupka, H. I., Tabrizizad, M., Shelloe, R., Mehra, U., Eng, K., Nguyen, H., Settachatgul, C., Powell, B., Milburn, M. V., and West, B. L. (2005). The crystal structures of steroidogenic factor-1 and liver receptor homologue-1. Proc Natl Acad Sci U S A 102, 7505–7510.

    Article  PubMed  CAS  Google Scholar 

  • Weber, M. M., Michl, P., Auernhammer, C. J., and Engelhardt, D. (1997). Interleukin-3 and interleukin-6 stimulate cortisol secretion from adult human adrenocortical cells. Endocrinology 138, 2207–2210.

    Article  PubMed  CAS  Google Scholar 

  • Williams-Ashman, H. G., and Reddi, A. H. (1971). Actions of vertebrate sex hormones. Annu Rev Physiol 33, 31–82.

    Article  PubMed  CAS  Google Scholar 

  • Yamada, K., and Sakane, F. (1993). The different effects of sphingosine on diacylglycerol kinase isozymes in Jurkat cells, a human T-cell line. Biochim Biophys Acta 1169, 211–216.

    PubMed  CAS  Google Scholar 

  • Yamazaki, Y., Kon, J., Sato, K., Tomura, H., Sato, M., Yoneya, T., Okazaki, H., Okajima, F., and Ohta, H. (2000). Edg-6 as a putative sphingosine 1-phosphate receptor coupling to Ca(2+) signaling pathway. Biochem Biophys Res Commun 268, 583–589.

    Article  PubMed  CAS  Google Scholar 

  • Zeidan, Y. H., and Hannun, Y. A. (2007). Translational aspects of sphingolipid metabolism. Trends Mol Med 13, 327–336.

    Article  PubMed  CAS  Google Scholar 

  • Zeidan, Y. H., Pettus, B. J., Elojeimy, S., Taha, T., Obeid, L. M., Kawamori, T., Norris, J. S., and Hannun, Y. A. (2006). Acid ceramidase but not acid sphingomyelinase is required for tumor necrosis factor-{alpha}-induced PGE2 production. J Biol Chem 281, 24695–24703.

    Article  PubMed  CAS  Google Scholar 

  • Zheng, W., Kollmeyer, J., Symolon, H., Momin, A., Munter, E., Wang, E., Kelly, S., Allegood, J. C., Liu, Y., Peng, Q., Ramaraju, H., Sullards, M. C., Cabot, M., and Merrill, A. H. J. (2006). Ceramides and other bioactive sphingolipid backbones in health and disease: lipidomic analysis, metabolism and roles in membrane structure, dynamics, signaling and autophagy. Biochem Biophys Res Commun 1758, 1864–1884.

    CAS  Google Scholar 

  • Ziulkoski, A. L., Zimmer, A. R., and Guma, F. C. (2001). De novo synthesis and recycling pathways of sphingomyelin in rat Sertoli cells. Biochem Biophys Res Commun 281, 971–975.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Lucki, N.C., Sewer, M.B. (2008). Multiple Roles for Sphingolipids in Steroid Hormone Biosynthesis. In: Quinn, P.J., Wang, X. (eds) Lipids in Health and Disease. Subcellular Biochemistry, vol 49. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8831-5_15

Download citation

Publish with us

Policies and ethics