Skip to main content

Cancer Stem Cells and Radiation

  • Chapter
Targeted Radionuclide Tumor Therapy

Summary

Cancer stem cells have recently been proposed to play a significant role in the initiation and propagation of tumor cells. They display indefinite self-renewal capacity and multilineage potential as well as an excessive proliferation capacity. Cancer stem cells are quiescent with low mitotic frequencies. They seem to be relatively radioresistant and have been demonstrated to increase in relative amount following radiotherapy. The stem cells express a number of marker molecules, which hopefully can be used for therapeutic purposes. These possibilities will be discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Virchow R. Editorial Archiv für pathologische Anatomie und Physiologie und für klinische Medizin 1855; 8:23.

    Google Scholar 

  2. Hill RP. Identifying cancer stem cells in solid tumors: case not proven. Cancer Research 2006; 66(4):1891-5; discussion 0.

    Article  PubMed  CAS  Google Scholar 

  3. Kelly PN, Dakic A, Adams JM, Nutt SL, Strasser A. Tumor growth need not be driven by rare cancer stem cells. Science (New York) 2007; 317(5836):337.

    CAS  Google Scholar 

  4. Kern SE, Shibata D. The fuzzy math of solid tumor stem cells: a perspective. Cancer Research 2007; 67(19):8985-8.

    Article  PubMed  CAS  Google Scholar 

  5. Ailles LE, Weissman IL. Cancer stem cells in solid tumors. Current Opinion in Biotechnology 2007; 18(5):460-6.

    Article  PubMed  CAS  Google Scholar 

  6. Alison MR, Murphy G, Leedham S. Stem cells and cancer: a deadly mix. Cell and Tissue Research 2008; 331(1):109-24.

    Article  PubMed  Google Scholar 

  7. Burkert J, Wright NA, Alison MR. Stem cells and cancer: an intimate relationship. The Journal of Pathology 2006; 209(3):287-97.

    Article  PubMed  CAS  Google Scholar 

  8. Sanchez-Garcia I, Vicente-Duenas C, Cobaleda C. The theoretical basis of cancer-stem-cellbased therapeutics of cancer: can it be put into practice? Bioessays 2007; 29(12):1269-80.

    Article  PubMed  CAS  Google Scholar 

  9. Cozzio A, Passegue E, Ayton PM, Karsunky H, Cleary ML, Weissman IL. Similar MLL-associated leukemias arising from self-renewing stem cells and short-lived myeloid progenitors. Genes & Development 2003; 17(24):3029-35.

    Article  CAS  Google Scholar 

  10. Jamieson CH, Ailles LE, Dylla SJ, et al. Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. The New England Journal of Medicine 2004; 351 (7):657-67.

    Article  PubMed  CAS  Google Scholar 

  11. Weissman IL. Normal and neoplastic stem cells. Novartis Foundation symposium 2005; 265:35-50; discussion -4, 92-7.

    Article  PubMed  Google Scholar 

  12. Clarke MF, Dick JE, Dirks PB, et al. Cancer stem cells-perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Research 2006; 66(19):9339-44.

    Article  PubMed  CAS  Google Scholar 

  13. Dreesen O, Brivanlou AH. Signaling pathways in cancer and embryonic stem cells. Stem Cell Reviews 2007; 3(1):7-17.

    Article  PubMed  CAS  Google Scholar 

  14. Wang TL, Rago C, Silliman N, et al. Prevalence of somatic alterations in the colorectal cancer cell genome. Proceedings of the National Academy of Sciences of the United States of America 2002; 99(5):3076-80.

    Article  PubMed  CAS  Google Scholar 

  15. Jordan CT, Guzman ML, Noble M. Cancer stem cells. The New England Journal of Medicine 2006; 355(12):1253-61.

    Article  PubMed  CAS  Google Scholar 

  16. Wicha MS, Liu S, Dontu G. Cancer stem cells: an old idea-a paradigm shift. Cancer Research 2006; 66(4):1883-90; discussion 95-6.

    Article  PubMed  CAS  Google Scholar 

  17. Al-Hajj M, Clarke MF. Self-renewal and solid tumor stem cells. Oncogene 2004; 23(43):7274-82.

    Article  PubMed  CAS  Google Scholar 

  18. Sell S. Stem cell origin of cancer and differentiation therapy. Critical Reviews in Oncology/ Hematology 2004; 51(1):1-28.

    Article  PubMed  Google Scholar 

  19. Dalerba P, Cho RW, Clarke MF. Cancer stem cells: models and concepts. Annual review of Medicine 2007; 58:267-84.

    Article  PubMed  CAS  Google Scholar 

  20. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature 2001; 414(6859):105-11.

    Article  PubMed  CAS  Google Scholar 

  21. Croker AK, Allan AL. Cancer stem cells: implications for the progression and treatment of metastatic disease. Journal of Cellular and Molecular Medicine 2008; 12(2):374-90.

    Article  PubMed  CAS  Google Scholar 

  22. Lapidot T, Sirard C, Vormoor J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 1994; 367(6464):645-8.

    Article  PubMed  CAS  Google Scholar 

  23. Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Medicine 1997; 3(7):730-7.

    Article  PubMed  CAS  Google Scholar 

  24. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America 2003; 100(7):3983-8.

    Article  PubMed  CAS  Google Scholar 

  25. Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Research 2005; 65(23):10946-51.

    Article  PubMed  CAS  Google Scholar 

  26. Dalerba P, Dylla SJ, Park IK, et al. Phenotypic characterization of human colorectal cancer stem cells. Proceedings of the National Academy of Sciences of the United States of America 2007; 104(24):10158-63.

    Article  PubMed  CAS  Google Scholar 

  27. Eramo A, Lotti F, Sette G, et al. Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death and Differentiation 2008; 15(3):504-14.

    Article  PubMed  CAS  Google Scholar 

  28. Fang D, Nguyen TK, Leishear K, et al. A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Research 2005; 65(20):9328-37.

    Article  PubMed  CAS  Google Scholar 

  29. Li C, Heidt DG, Dalerba P, et al. Identification of pancreatic cancer stem cells. Cancer Research 2007; 67(3):1030-7.

    Article  PubMed  CAS  Google Scholar 

  30. Ma S, Chan KW, Hu L, Lee TK, Wo JY, Ng IO, Zheng BJ, Guan XY. Identification and char- acterization of tumorigenic liver cancer stem/progenitor cells. Gastroenterology 2007; 132(7):2542-56.

    Article  PubMed  CAS  Google Scholar 

  31. Monzani E, Facchetti F, Galmozzi E, et al. Melanoma contains CD133 and ABCG2 positive cells with enhanced tumourigenic potential. European Journal of Cancer 2007; 43(5):935-46.

    Article  PubMed  CAS  Google Scholar 

  32. O’Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 2007; 445(7123):106-10.

    Article  PubMed  CAS  Google Scholar 

  33. Prince ME, Sivanandan R, Kaczorowski A, et al. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proceedings of the National Academy of Sciences of the United States of America 2007; 104(3):973-8.

    Article  PubMed  CAS  Google Scholar 

  34. Schatton T, Murphy GF, Frank NY, et al. Identification of cells initiating human melanomas. Nature 2008; 451(7176):345-9.

    Article  PubMed  CAS  Google Scholar 

  35. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB. Identification of a cancer stem cell in human brain tumors. Cancer Research 2003; 63(18):5821-8.

    PubMed  CAS  Google Scholar 

  36. Singh SK, Hawkins C, Clarke ID, et al. Identification of human brain tumour initiating cells. Nature 2004; 432(7015):396-401.

    Article  PubMed  CAS  Google Scholar 

  37. Yang ZF, Ho DW, Ng MN, et al. Significance of CD90(+) Cancer stem cells in human liver cancer. Cancer Cell 2008; 13(2):153-66.

    Article  PubMed  CAS  Google Scholar 

  38. Hurt EM, Kawasaki BT, Klarmann GJ, Thomas SB, Farrar WL. CD44(+)CD24(-) prostate cells are early cancer progenitor/stem cells that provide a model for patients with poor prognosis. British Journal of Cancer 2008; 98(4):756-65.

    Article  PubMed  CAS  Google Scholar 

  39. Patrawala L, Calhoun T, Schneider-Broussard R, et al. Highly purified CD44 + prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. Oncogene 2006; 25(12):1696-708.

    Article  PubMed  CAS  Google Scholar 

  40. Farnie G, Clarke RB. Mammary stem cells and breast cancer-role of Notch signalling. Stem Cell Reviews 2007; 3(2):169-75.

    Article  PubMed  CAS  Google Scholar 

  41. Mizrak D, Brittan M, Alison MR. CD133: molecule of the moment. The Journal of Pathology 2008; 214(1):3-9.

    Article  PubMed  CAS  Google Scholar 

  42. Neuzil J, Stantic M, Zobalova R, et al. Tumour-initiating cells vs. cancer ‘stem’ cells and CD133: what’s in the name? Biochemical and Biophysical Research Communications 2007; 355 (4):855-9.

    Article  PubMed  CAS  Google Scholar 

  43. Blair A, Hogge DE, Ailles LE, Lansdorp PM, Sutherland HJ. Lack of expression of Thy-1 (CD90) on acute myeloid leukemia cells with long-term proliferative ability in vitro and in vivo. Blood 1997; 89(9):3104-12.

    PubMed  CAS  Google Scholar 

  44. Matsui W, Huff CA, Wang Q, et al. Characterization of clonogenic multiple myeloma cells. Blood 2004; 103(6):2332-6.

    Article  PubMed  CAS  Google Scholar 

  45. Hadnagy A, Gaboury L, Beaulieu R, Balicki D. SP analysis may be used to identify cancer stem cell populations. Experimental Cell Research 2006; 312(19):3701-10.

    Article  PubMed  CAS  Google Scholar 

  46. Hirschmann-Jax C, Foster AE, Wulf GG, Nuchtern JG, Jax TW, Gobel U, Goodell MA, Brenner MK. A distinct “side population” of cells with high drug efflux capacity in human tumor cells. Proceedings of the National Academy of Sciences of the United States of America 2004; 101(39):14228-33.

    Article  PubMed  CAS  Google Scholar 

  47. Burkert J, Otto W, Wright N. Side populations of gastrointestinal cancers are not enriched in stem cells. The Journal of Pathology 2008; 214(5):564-73.

    Article  PubMed  CAS  Google Scholar 

  48. Sell S. Cancer and stem cell signaling: a guide to preventive and therapeutic strategies for cancer stem cells. Stem Cell Reviews 2007; 3(1):1-6.

    Article  PubMed  CAS  Google Scholar 

  49. Dean M, Fojo T, Bates S. Tumour stem cells and drug resistance. Nature Reviews 2005; 5(4):275-84.

    Article  PubMed  CAS  Google Scholar 

  50. Diehn M, Clarke MF. Cancer stem cells and radiotherapy: new insights into tumor radioresistance. Journal of the National Cancer Institute 2006; 98(24):1755-7.

    PubMed  Google Scholar 

  51. Bao S, Wu Q, McLendon RE, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 2006; 444(7120):756-60.

    Article  PubMed  CAS  Google Scholar 

  52. Chen MS, Woodward WA, Behbod F, Peddibhotla S, Alfaro MP, Buchholz TA, Rosen JM. Wnt/beta-catenin mediates radiation resistance of Sca1 + progenitors in an immortalized mammary gland cell line. Journal of Cell Science 2007; 120(Pt 3):468-77.

    Article  PubMed  CAS  Google Scholar 

  53. Phillips TM, McBride WH, Pajonk F. The response of CD24(-/low)/CD44 + breast cancerinitiating cells to radiation. Journal of the National Cancer Institute 2006; 98(24):1777-85.

    Article  PubMed  Google Scholar 

  54. Woodward WA, Chen MS, Behbod F, Alfaro MP, Buchholz TA, Rosen JM. WNT/beta-catenin mediates radiation resistance of mouse mammary progenitor cells. Proceedings of the National Academy of Sciences of the United States of America 2007; 104(2):618-23.

    Article  PubMed  CAS  Google Scholar 

  55. Rich JN. Cancer stem cells in radiation resistance. Cancer Research 2007; 67(19):8980-4.

    Article  PubMed  CAS  Google Scholar 

  56. Testa U, Riccioni R, Diverio D, Rossini A, Lo Coco F, Peschle C. Interleukin-3 receptor in acute leukemia. Leukemia 2004; 18(2):219-26.

    Article  PubMed  CAS  Google Scholar 

  57. Du X, Ho M, Pastan I. New immunotoxins targeting CD123, a stem cell antigen on acute myeloid leukemia cells. Journal of Immunotherapy (1997) 2007; 30(6):607-13.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Eriksson, D., Riklund, K., Johansson, L., Stigbrand, T. (2008). Cancer Stem Cells and Radiation. In: Stigbrand, T., Carlsson, J., Adams, G.P. (eds) Targeted Radionuclide Tumor Therapy. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8696-0_15

Download citation

Publish with us

Policies and ethics