Skip to main content

Advertisement

Log in

Stem cells and cancer: a deadly mix

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Stem cells and cancer are inextricably linked; the process of carcinogenesis initially affects normal stem cells or their closely related progenitors and then, at some point, neoplastic stem cells are generated that propagate and ultimately maintain the process. Many, if not all, cancers contain a minority population of self-renewing stem cells, “cancer stem cells”, that are entirely responsible for sustaining the tumour and for giving rise to proliferating but progressively differentiating cells that contribute to the cellular heterogeneity typical of many solid tumours. Thus, the bulk of the tumour is often not the clinical problem, and so the identification of cancer stem cells and the factors that regulate their behaviour are likely to have an enormous bearing on the way that we treat neoplastic disease in the future. This review summarises (1) our knowledge of the origins of some cancers from normal stem cells and (2) the evidence for the existence of cancer stem cells; it also illustrates some of the stem cell renewal pathways that are frequently aberrant in cancer and that may represent druggable targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Nat Acad Sci USA 100:3983–3988

    PubMed  CAS  Google Scholar 

  • Alison MR (2003) Tissue-based stem cells: ABC transporter proteins take centre stage. J Pathol 200:547–550

    PubMed  CAS  Google Scholar 

  • Alison MR, Lovell MJ (2005) Liver cancer: the role of stem cells. Cell Prolif 38:407–421

    PubMed  CAS  Google Scholar 

  • Alison MR, Brittan M, Lovell MJ, Wright NA (2006a) Markers of adult tissue-based stem cells. Handb Exp Pharmacol 174:185–227

    Article  PubMed  CAS  Google Scholar 

  • Alison MR, Lovell MJ, Direkze NC, Wright NA, Poulsom R (2006b) Stem cell plasticity and tumour formation. Eur J Cancer 42:1247–1256

    PubMed  CAS  Google Scholar 

  • Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD, Rich JN (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444:756–760

    PubMed  CAS  Google Scholar 

  • Bapat SA, Mali AM, Koppikar CB, Kurrey NK (2005) Stem and progenitor-like cells contribute to the aggressive behavior of human epithelial ovarian cancer. Cancer Res 65:3025–3029

    PubMed  CAS  Google Scholar 

  • Beckwith JB, Kiviat NB, Bonadio JF (1990) Nephrogenic rests, nephroblastomatosis, and the pathogenesis of Wilms’ tumor. Pediatr Pathol 10:1–36

    PubMed  CAS  Google Scholar 

  • Berenblum I, Shubik P (1949) The persistence of latent tumour cells induced in the mouse’s skin by a single application of 9:10-dimethyl-1:2-benzanthracene. Br J Cancer 3:384–386

    PubMed  CAS  Google Scholar 

  • Berman DM, Karhadkar SS, Maitra A, Montes De Oca R, Gerstenblith MR, Briggs K, Parker AR, Shimada Y, Eshleman JR, Watkins DN, Beachy PA (2003) Widespread requirement for Hedgehog ligand stimulation in growth of digestive tract tumours. Nature 425:846–851

    PubMed  CAS  Google Scholar 

  • Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3:730–737

    PubMed  CAS  Google Scholar 

  • Braun KM, Watt FM (2004) Epidermal label-retaining cells: background and recent applications. J Invest Dermatol Symp Proc 9:196–201

    Google Scholar 

  • Bruce WR, Van Der Gaag H (1963) A quantitative assay for the number of murine lymphoma cells capable of proliferation in vivo. Nature 199:79–80

    PubMed  CAS  Google Scholar 

  • Brunschwig A, Southam CM, Levin AG (1965) Host resistance to cancer. Clinical experiments by homotransplants, autotransplants and admixture of autologous leucocytes. Ann Surg 162:416–425

    PubMed  CAS  Google Scholar 

  • Cairns J (1975) Mutation selection and the natural history of cancer. Nature 255:197–200

    PubMed  CAS  Google Scholar 

  • Calabrese P, Tavare S, Shibata D (2004) Pretumor progression: clonal evolution of human stem cell populations. Am J Pathol 164:1337–1346

    PubMed  Google Scholar 

  • Calabrese C, Poppleton H, Kocak M, Hogg TL, Fuller C, Hamner B, Oh EY, Gaber MW, Finklestein D, Allen M, Frank A, Bayazitov IT, Zakharenko SS, Gajjar A, Davidoff A, Gilbertson RJ (2007) A perivascular niche for brain tumor stem cells. Cancer Cell 11:69–82

    PubMed  CAS  Google Scholar 

  • Caussinus E, Gonzalez C (2005) Induction of tumor growth by altered stem cell asymmetric division in Drosophila melanogaster. Nat Genet 37:1125–1129

    PubMed  CAS  Google Scholar 

  • Cheung AM, Wan TS, Leung JC, Chan LY, Huang H, Kwong YL, Liang R, Leung AY (2007) Aldehyde dehydrogenase activity in leukemic blasts defines a subgroup of acute myeloid leukemia with adverse prognosis and superior NOD/SCID engrafting potential. Leukemia 21:1423–1430

    PubMed  CAS  Google Scholar 

  • Chiba T, Kita K, Zheng YW, Yokosuka O, Saisho H, Iwama A, Nakauchi H, Taniguchi H (2006) Side population purified from hepatocellular carcinoma cells harbors cancer stem cell-like properties. Hepatology 44:240–251

    PubMed  CAS  Google Scholar 

  • Clevers H (2005) Stem cells, asymmetric division and cancer. Nat Genet 37:1027–1028

    PubMed  CAS  Google Scholar 

  • Cobaleda C, Gutierrez-Cianca N, Perez-Losada J, Flores T, Garcia-Sanz R, Gonzalez M, Sanchez-Garcia I (2000) A primitive hematopoietic cell is the target for the leukemic transformation in human Philadelphia-positive acute lymphoblastic leukemia. Blood 95:1007–1013

    PubMed  CAS  Google Scholar 

  • Cogle CR, Theise ND, Fu D, Ucar D, Lee S, Guthrie SM, Lonergan J, Rybka W, Krause DS, Scott EW (2007) Bone marrow contributes to epithelial cancers in mice and humans as developmental mimicry. Stem Cells 25:1881–1887

    PubMed  Google Scholar 

  • Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ (2005) Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 65:10946–10951

    PubMed  CAS  Google Scholar 

  • Cozzio A, Passegue E, Ayton PM, Karsunky H, Cleary ML, Weissman IL (2003) Similar MLL-associated leukemias arising from self renewing stem cells and short-lived myeloid progenitors. Genes Dev 17:3029–3035

    PubMed  CAS  Google Scholar 

  • Dalerba P, Dylla SJ, Park IK, Liu R, Wang X, Cho RW, Hoey T, Gurney A, Huang EH, Simeone DM, Shelton AA, Parmiani G, Castelli C, Clarke MF (2007) Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci USA 104:10158-10163

    PubMed  CAS  Google Scholar 

  • Davidoff AM, Ng CY, Brown P, Leary MA, Spurbeck WW, Zhou J, Horwitz E, Vanin EF, Nienhuis AW (2001) Bone marrow-derived cells contribute to tumor neovasculature and, when modified to express an angiogenesis inhibitor, can restrict tumor growth in mice. Clin Can Res 7:2870–2879

    CAS  Google Scholar 

  • De Palma M, Venneri MA, Galli R, Sergi Sergi L, Politi LS, Sampaolesi M, Naldini L (2005) Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell 8:211–226

    PubMed  Google Scholar 

  • Direkze NC, Hodivala-Dilke K, Jeffery R, Hunt T, Poulsom R, Oukrif D, Alison MR, Wright NA (2004) Bone marrow contribution to tumor-associated myofibroblasts and fibroblasts. Cancer Res 64:8492–8495

    PubMed  CAS  Google Scholar 

  • Direkze NC, Jeffery R, Hodivala-Dilke K, Hunt T, Playford RJ, Elia G, Poulsom R, Wright NA, Alison MR (2006) Bone marrow-derived stromal cells express lineage related messenger RNA species. Cancer Res 66:1265–1269

    PubMed  CAS  Google Scholar 

  • Dontu G, Ai-Hajj M, Abdallah WM, Clarke MF, Wicha MS (2003) Stem cells in normal breast development and breast cancer. Cell Prolif 36 (Suppl 1):59–72

    PubMed  CAS  Google Scholar 

  • Dontu G, Jackson KW, McNicholas E, Kawamura MJ, Abdallah WM, Wicha MS (2004) Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells. Breast Cancer Res 6:R605–R615

    PubMed  CAS  Google Scholar 

  • Dwenger A, Rosenthal F, Machein M, Waller C, Spyridonidis A (2004) Transplanted bone marrow cells preferentially home to the vessels of in situ generated murine tumors rather than of normal organs. Stem Cells 22:86–92

    PubMed  Google Scholar 

  • Farnie G, Clarke RB, Spence K, Pinnock N, Brennan K, Anderson NG, Bundred NJ (2002) Novel cell culture technique for primary ductal carcinoma in situ: role of Notch and epidermal growth factor receptor signaling pathways. J Natl Cancer Inst 99:616–627

    Google Scholar 

  • Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, De Vitis S, Fiocco R, Foroni C, Dimeco F, Vescovi A (2004) Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 64:7011–7021

    PubMed  CAS  Google Scholar 

  • Giangreco A, Shen A, Reynolds SD, Stripp BR (2004) Molecular phenotype of airway side population cells. Am J Physiol 286:L624–L630

    CAS  Google Scholar 

  • Gil J, Bernard D, Peters G (2005) Role of Polycomb group proteins in stem cell self-renewal and cancer. DNA Cell Biol 24:117–125

    PubMed  CAS  Google Scholar 

  • Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC (1996) Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 183:1797–1806

    PubMed  CAS  Google Scholar 

  • Gorlin RJ (2004) Nevoid basal cell carcinoma (Gorlin) syndrome. Genet Med 6:530–539

    Article  PubMed  Google Scholar 

  • Hamburger AW, Salmon SE (1977) Primary bioassay of human tumor stem cells. Science 197:461–463

    PubMed  CAS  Google Scholar 

  • Hammerling GJ, Ganss R (2006) Vascular integration of endothelial progenitors during multistep tumor progression. Cell Cycle 5:509–511

    PubMed  Google Scholar 

  • Haraguchi N, Utsunomiya T, Inoue H, Tanaka F, Mimori K, Barnard GF, Mori M (2006) Characterization of a side population of cancer cells from human gastrointestinal system. Stem Cells 24:506–513

    PubMed  CAS  Google Scholar 

  • He XC, Zhang J, Tong WG, Tawfik O, Ross J, Scoville DH, Tian Q, Zeng X, He X, Wiedemann LM, Mishina Y, Li L (2004) BMP signalling inhibits intestinal stem cell self-renewal through suppression of Wnt-beta-catenin signaling. Nat Genet 36:1117–1121

    PubMed  CAS  Google Scholar 

  • High A, Zedan W (2005) Basal cell nevus syndrome. Curr Opin Oncol 17:160–166

    PubMed  Google Scholar 

  • Hirschmann-Jax C, Foster AE, Wulf GG, Nuchtern JG, Jax TW, Gobel U, Goodell MA, Brenner MK (2004) A distinct “side population” of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci USA 101:14228–14233

    PubMed  CAS  Google Scholar 

  • Hirschmann-Jax C, Foster AE, Wulf GG, Goodell MA, Brenner MK (2005) A distinct “side population” of cells in human tumor cells: implications for tumor biology and therapy. Cell Cycle 4:203–205

    PubMed  CAS  Google Scholar 

  • Holtz M, Forman SJ, Bhatia R (2007) Growth factor stimulation reduces residual quiescent chronic myelogenous leukemia progenitors remaining after imatinib treatment. Cancer Res 67:1113–1120

    PubMed  CAS  Google Scholar 

  • Hope KJ, Jin L, Dick JE (2004) Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nat Immunol 5:738–743

    PubMed  CAS  Google Scholar 

  • Houghton J, Stoicov C, Nomura S, Rogers AB, Carlson J, Li H, Cai X, Fox JG, Goldenring JR, Wang TC (2004) Gastric cancer originating from bone marrow-derived cells. Science 306:1568–1571

    PubMed  CAS  Google Scholar 

  • Huntly BJ, Shigematsu H, Deguchi K, Lee BH, Mizuno S, Duclos N, Rowan R, Amaral S, Curley D, Williams IR, Akashi K, Gilliland DG (2004) MOZ-TIF2, but not BCR-ABL, confers properties of leukemic stem cells to committed murine hematopoietic progenitors. Cancer Cell 6:587–596

    PubMed  CAS  Google Scholar 

  • Jamieson CH, Ailles LE, Dylla SJ, Muijtjens M, Jones C, Zehnder JL, Gotlib J, Li K, Manz MG, Keating A, Sawyers CL, Weissman IL (2004) Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med 351:657–667

    PubMed  CAS  Google Scholar 

  • Jiang X, Saw KM, Eaves A, Eaves C (2007) Instability of BCR-ABL gene in primary and cultured chronic myeloid leukemia stem cells. J Natl Cancer Inst 99:680–693

    PubMed  CAS  Google Scholar 

  • Jones PH, Watt FM (1993) Separation of human epidermal stem cells from transit amplifying cells on the basis of differences in integrin function and expression. Cell 73:713–724

    PubMed  CAS  Google Scholar 

  • Kanemura Y, Mori K, Sakakibara S, Fujikawa H, Hayashi H, Nakano A, Matsumoto T, Tamura K, Imai T, Ohnishi T, Fushiki S, Nakamura Y, Yamasaki M, Okano H, Arita N (2001) Musashi1, an evolutionarily conserved neural RNA binding protein, is a versatile marker of human glioma cells in determining their cellular origin, malignancy, and proliferative activity. Differentiation 68:141–152

    PubMed  CAS  Google Scholar 

  • Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C, MacDonald DD, Jin DK, Shido K, Kerns SA, Zhu Z, Hicklin D, Wu Y, Port JL, Altorki N, Port ER, Ruggero D, Shmelkov SV, Jensen KK, Rafii S, Lyden D (2005) VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438:820–827

    PubMed  CAS  Google Scholar 

  • Karanu FN, Murdoch B, Gallacher L, Wu DM, Koremoto M, Sakano S, Bhatia M (2005) The Notch ligand Jagged-1 represents a novel growth factor of human hematopoietic stem cells. J Exp Med 192:1365–1372

    Google Scholar 

  • Kasper M, Regl G, Frischauf AM, Aberger F (2006) GLI transcription factors: mediators of oncogenic Hedgehog signalling. Eur J Cancer 42:437–445

    PubMed  CAS  Google Scholar 

  • Khakoo AY, Finkel T (2005) Endothelial progenitor cells. Annu Rev Med 56:79–101

    PubMed  CAS  Google Scholar 

  • Kiel MJ, He S, Ashkenazi R, Gentry SN, Teta M, Kushner JA, Jackson TL, Morrison SJ (2007) Haematopoietic stem cells do not asymmetrically segregate chromosomes or retain BrdU. Nature 449:238–242

    PubMed  CAS  Google Scholar 

  • Kim CF, Jackson EL, Woolfenden AE, Lawrence S, Babar I, Vogel S, Crowley D, Bronson RT, Jacks T (2005) Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 121:823–835

    PubMed  CAS  Google Scholar 

  • Kondo T, Setoguchi T, Taga T (2004) Persistence of a small subpopulation of cancer stem like cells in the C6 glioma cell line. Proc Natl Acad Sci USA 101:781–786

    PubMed  CAS  Google Scholar 

  • Korinek V, Barker N, Willert K, Molenaar M, Roose J, Wagenaar G, Markman M, Lamers W, Destree O, Clevers H (1998) Two members of the Tcf family implicated in Wnt/beta catenin signaling during embryogenesis in the mouse. Mol Cell Biol 18:1248–1256

    PubMed  CAS  Google Scholar 

  • Krause DS, Lazarides K, Andrian UH von, Van Etten RA (2006) Requirement for CD44 in homing and engraftment of BCR-ABL-expressing leukemic stem cells. Nat Med 12:1175–1180

    PubMed  CAS  Google Scholar 

  • Kremsdorf D, Soussan P, Paterlini-Brechot P, Brechot C (2006) Hepatitis B virus-related hepatocellular carcinoma: paradigms for viral-related human carcinogenesis. Oncogene 25:3823–3833

    PubMed  CAS  Google Scholar 

  • Krivtsov AV, Twomey D, Feng Z, Stubbs MC, Wang Y, Faber J, Levine JE, Wang J, Hahn WC, Gilliland DG, Golub TR, Armstrong SA (2006) Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature 442:818–822

    PubMed  CAS  Google Scholar 

  • Lansdorp PM (2007) Immortal strands? Give me a break. Cell 129:1244–1247

    PubMed  CAS  Google Scholar 

  • Larrivee B, Niessen K, Pollet I, Corbel SY, Long M, Rossi FM, Olive PL, Karsan A (2005) Minimal contribution of marrow-derived endothelial precursors to tumor vasculature. J Immunol 175:2890–2899

    PubMed  CAS  Google Scholar 

  • Lee A, Kessler JD, Read TA, Kaiser C, Corbeil D, Huttner WB, Johnson JE, Wechsler-Reya RJ (2005) Isolation of neural stem cells from the postnatal cerebellum. Nat Neurosci 8:723–729

    PubMed  CAS  Google Scholar 

  • Lee JS, Heo J, Libbrecht L, Chu IS, Kaposi-Novak P, Calvisi DF, Mikaelyan A, Roberts LR, Demetris AJ, Sun Z, Nevens F, Roskams T, Thorgeirsson SS (2006) A novel prognostic subtype of human hepatocellular carcinoma derived from hepatic progenitor cells. Nat Med 12:410–416

    PubMed  CAS  Google Scholar 

  • Levrero M (2006) Viral hepatitis and liver cancer: the case of hepatitis C. Oncogene 25:3834–3847

    PubMed  CAS  Google Scholar 

  • Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V, Wicha M, Clarke MF, Simeone DM (2007) Identification of pancreatic cancer stem cells. Cancer Res 67:1030–1037

    PubMed  CAS  Google Scholar 

  • Logan CY, Nusse R (2004) The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 20:781–810

    PubMed  CAS  Google Scholar 

  • Lyden D, Lyden D, Hattori K, Dias S, Costa C, Blaikie P, Butros L, Chadburn A, Heissig B, Marks W, Witte L, Wu Y, Hicklin D, Zhu Z, Hackett NR, Crystal RG, Moore MA, Hajjar KA, Manova K, Benezra R, Rafii S (2001) Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med 7:1194–1201

    PubMed  CAS  Google Scholar 

  • Marino S (2005) Medulloblastoma: developmental mechanisms out of control. Trends Mol Med 11:17–22

    PubMed  CAS  Google Scholar 

  • Marzesco AM, Janich P, Wilsch-Brauninger M, Dubreuil V, Langenfeld K, Corbeil D, Huttner WB (2005) Release of extracellular membrane particles carrying the stem cell marker prominin-1 (CD133) from neural progenitors and other epithelial cells. J Cell Sci 118:2849–2858

    PubMed  CAS  Google Scholar 

  • Metz CN (2003) Fibrocytes: a unique cell population implicated in wound healing. Cell Mol Life Sci 60:1342–1350

    PubMed  CAS  Google Scholar 

  • Michor F, Hughes TP, Iwasa Y, Branford S, Shah NP, Sawyers CL, Nowak MA (2005) Dynamics of chronic myeloid leukaemia. Nature 435:1267–1270

    PubMed  CAS  Google Scholar 

  • Miyamoto T, Weissman IL, Akashi K (2000) AML1/ETO-expressing nonleukemic stem cells in acute myelogenous leukemia with 8;21 chromosomal translocation. Proc Natl Acad Sci USA 97:7521–7526

    PubMed  CAS  Google Scholar 

  • Moon RT, Kohn AD, De Ferrari GV, Kaykas A (2004) WNT and beta-catenin signalling: diseases and therapies. Nat Rev Genet 5:691–701

    PubMed  CAS  Google Scholar 

  • Morita Y, Ema H, Yamazaki S, Nakauchi H (2006) Non-side-population hematopoietic stem cells in mouse bone marrow. Blood 108:2850–2856

    PubMed  CAS  Google Scholar 

  • Nakamizo A, Marini F, Amano T, Khan A, Studeny M, Gumin J, Chen J, Hentschel S, Vecil G, Dembinski J, Andreeff M, Lang FF (2005) Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Res 65:3307–3318

    PubMed  CAS  Google Scholar 

  • Ninomiya M, Abe A, Katsumi A, Xu J, Ito M, Arai F, Suda T, Ito M, Kiyoi H, Kinoshita T, Naoe T (2007) Homing, proliferation and survival sites of human leukemia cells in vivo in immunodeficient mice. Leukemia 21:136–142

    PubMed  CAS  Google Scholar 

  • O’Brien CA, Pollett A, Gallinger S, Dick JE (2007) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445:106–110

    PubMed  CAS  Google Scholar 

  • Owens DM, Watt FM (2003) Contribution of stem cells and differentiated cells to epidermal tumours. Nat Rev Cancer 3:444–451

    PubMed  CAS  Google Scholar 

  • Park HS, Goodlad RA, Wright NA (1995) Crypt fission in the small intestine and colon. A mechanism for the emergence of G6PD locus-mutated crypts after treatment with mutagens. Am J Pathol 147:1416–1427

    PubMed  CAS  Google Scholar 

  • Park IK, Morrison SJ, Clarke MF (2004) Bmi1, stem cells, and senescence regulation. J Clin Invest 113:175–179

    PubMed  CAS  Google Scholar 

  • Passegue E, Jamieson CH, Ailles LE, Weissman IL (2003) Normal and leukemic hematopoiesis: are leukemias a stem cell disorder or a reacquisition of stem cell characteristics? Proc Natl Acad Sci USA 100 (Suppl 1):11842–11849

    PubMed  CAS  Google Scholar 

  • Patrawala L, Calhoun T, Schneider-Broussard R, Li H, Bhatia B, Tang S, Reilly JG, Chandra D, Zhou J, Claypool K, Coghlan L, Tang DG (2006) Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. Oncogene 25:1696–1708

    PubMed  CAS  Google Scholar 

  • Pece S, Serresi M, Santolini E, Capra M, Hulleman E, Galimberti V, Zurrida S, Maisonneuve P, Viale G, Di Fiore PP (2004) Loss of negative regulation by Numb over Notch is relevant to human breast carcinogenesis. J Cell Biol 167:215–221

    PubMed  CAS  Google Scholar 

  • Peters BA, Diaz LA, Polyak K, Meszler L, Romans K, Guinan EC, Antin JH, Myerson D, Hamilton SR, Vogelstein B, Kinzler KW, Lengauer C (2005) Contribution of bone marrow-derived endothelial cells to human tumor vasculature. Nat Med 11:261–262

    PubMed  CAS  Google Scholar 

  • Piccirillo SG, Reynolds BA, Zanetti N, Lamorte G, Binda E, Broggi G, Brem H, Olivi A, Dimeco F, Vescovi AL (2006) Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature 444:761–765

    PubMed  CAS  Google Scholar 

  • Pikarsky E, Porat RM, Stein I, Abramovitch R, Amit S, Kasem S, Gutkovich-Pyest E, Urieli-Shoval S, Galun E, Ben-Neriah Y (2004) NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature 431:461–466

    PubMed  CAS  Google Scholar 

  • Ponti D, Costa A, Zaffaroni N, Pratesi G, Petrangolini G, Coradini D, Pilotti S, Pierotti MA, Daidone MG (2005) Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res 65:5506–5511

    PubMed  CAS  Google Scholar 

  • Potten CS, Owen G, Booth D (2002) Intestinal stem cells protect their genome by selective segregation of template DNA strands. J Cell Sci 115:2381–2388

    PubMed  CAS  Google Scholar 

  • Preston SL, Wong WM, Chan AO, Poulsom R, Jeffery R, Goodlad RA, Mandir N, Elia G, Novelli M, Bodmer WF, Tomlinson IP, Wright NA (2003) Bottom-up histogenesis of colorectal adenomas: origin in the monocryptal adenoma and initial expansion by crypt fission. Cancer Res 63:3819–3825

    PubMed  CAS  Google Scholar 

  • Prince ME, Sivanandan R, Kaczorowski A, Wolf GT, Kaplan MJ, Dalerba P, Weissman IL, Clarke MF, Ailles LE (2007) Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci USA 104:973–978

    PubMed  CAS  Google Scholar 

  • Rando TA (2007) The immortal strand hypothesis: segregation and reconstruction. Cell 129:1239–1243

    PubMed  CAS  Google Scholar 

  • Reedijk M, Odorcic S, Chang L, Zhang H, Miller N, McCready DR, Lockwood G, Egan SE (2005) High-level coexpression of JAG1 and NOTCH1 is observed in human breast cancer and is associated with poor overall survival. Cancer Res 65:8530–8537

    PubMed  CAS  Google Scholar 

  • Reya T, Clevers H (2005) Wnt signalling in stem cells and cancer. Nature 434:843–850

    PubMed  CAS  Google Scholar 

  • Reya T, Duncan AW, Ailles L, Domen J, Scherer DC, Willert K, Hintz L, Nusse R, Weissman IL (2003) A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 423:409–414

    PubMed  CAS  Google Scholar 

  • Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C, De Maria R (2007) Identification and expansion of human colon-cancer-initiating cells. Nature 445:111–115

    PubMed  CAS  Google Scholar 

  • Salahshor S, Woodgett JR (2005) The links between axin and carcinogenesis. J Clin Pathol 58:225–236

    PubMed  CAS  Google Scholar 

  • Sanai N, Alvarez-Buylla A, Berger MS (2005) Neural stem cells and the origin of gliomas. N Engl J Med 353:811–822

    PubMed  CAS  Google Scholar 

  • Sancho E, Batlle E, Clevers H (2004) Signaling pathways in intestinal development and cancer. Annu Rev Cell Dev Biol 20:695–723

    PubMed  CAS  Google Scholar 

  • Seigel GM, Campbell LM, Narayan M, Gonzalez-Fernandez F (2005) Cancer stem cell characteristics in retinoblastoma. Mol Vis 11:729–737

    PubMed  CAS  Google Scholar 

  • Sell S, Pierce GB (1994) Maturation arrest of stem cell differentiation is a common pathway for the cellular origin of teratocarcinomas and epithelial cancers. Lab Invest 70:6–22

    PubMed  CAS  Google Scholar 

  • Shackleton M, Vaillant F, Simpson KJ, Stingl J, Smyth GK, Asselin-Labat ML, Wu L, Lindeman GJ, Visvader JE (2006) Generation of a functional mammary gland from a single stem cell. Nature 439:84–88

    PubMed  CAS  Google Scholar 

  • Shih IM, Wang TL, Traverso G, Romans K, Hamilton SR, Ben-Sasson S, Kinzler KW, Vogelstein B (2001) Top-down morphogenesis of colorectal tumors. Proc Natl Acad Sci USA 98:2640–2645

    PubMed  CAS  Google Scholar 

  • Shinde Patil VR, Friedrich EB, Wolley AE, Gerszten RE, Allport JR, Weissleder R (2005) Bone marrow-derived lin(−)c-kit(+)Sca-1(+) stem cells do not contribute to vasculogenesis in Lewis lung carcinoma. Neoplasia 7:234–240

    PubMed  CAS  Google Scholar 

  • Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63:5821–5828

    PubMed  CAS  Google Scholar 

  • Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB (2004) Identification of human brain tumour initiating cells. Nature 432:396–401

    PubMed  CAS  Google Scholar 

  • Sjolund J, Manetopoulos C, Stockhausen MT, Axelson H (2005) The Notch pathway in cancer: differentiation gone awry. Eur J Cancer 41:2620–2629

    PubMed  Google Scholar 

  • Smith GH (2005) Label-retaining epithelial cells in mouse mammary gland divide asymmetrically and retain their template DNA strands. Development 132:681–687

    PubMed  CAS  Google Scholar 

  • Steeg PS (2005) Cancer biology: emissaries set up new sites. Nature 438:750–751

    PubMed  CAS  Google Scholar 

  • Stingl J, Eirew P, Ricketson I, Shackleton M, Vaillant F, Choi D, Li HI, Eaves CJ (2006) Purification and unique properties of mammary epithelial stem cells. Nature 439:993–997

    PubMed  CAS  Google Scholar 

  • Storms RW, Trujillo AP, Springer JB, Shah L, Colvin OM, Ludeman SM, Smith C (1999) Isolation of primitive human hematopoietic progenitors on the basis of aldehyde dehydrogenase activity. Proc Natl Acad Sci USA 96:9118–9123

    PubMed  CAS  Google Scholar 

  • Studeny M, Marini FC, Champlin RE, Zompetta C, Fidler IJ, Andreeff M (2002) Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Res 62:3603–3608

    PubMed  CAS  Google Scholar 

  • Studeny M, Marini FC, Dembinski JL, Zompetta C, Cabreira-Hansen M, Bekele BN, Champlin RE, Andreeff M (2004) Mesenchymal stem cells: potential precursors for tumor stroma and targeted delivery vehicles for anticancer agents. J Natl Cancer Inst 96:1593–1603

    Article  PubMed  CAS  Google Scholar 

  • Suetsugu A, Nagaki M, Aoki H, Motohashi T, Kunisada T, Moriwaki H (2006) Characterization of CD133+ hepatocellular carcinoma cells as cancer stem/progenitor cells. Biochem Biophys Res Commun 351:820–824

    PubMed  CAS  Google Scholar 

  • Takayama T, Katsuki S, Takahashi Y, Ohi M, Nojiri S, Sakamaki S, Kato J, Kogawa K, Miyake H, Niitsu Y (1998) Aberrant crypt foci of the colon as precursors of adenoma and cancer. N Engl J Med 339:1277–1284

    PubMed  CAS  Google Scholar 

  • Tang DG, Patrawala L, Calhoun T, Bhatia B, Choy G, Schneider-Broussard R, Jeter C (2007) Prostate cancer stem/progenitor cells: identification, characterization, and implications. Mol Carcinog 46:1–14

    PubMed  CAS  Google Scholar 

  • Taylor RW, Barron MJ, Borthwick GM, Gospel A, Chinnery PF, Samuels DC, Taylor GA, Plusa SM, Needham SJ, Greaves LC, Kirkwood TB, Turnbull DM (2003) Mitochondrial DNA mutations in human colonic crypt stem cells. J Clin Invest 112:1351–1360

    PubMed  CAS  Google Scholar 

  • Thliveris AT, Halberg RB, Clipson L, Dove WF, Sullivan R, Washington MK, Stanhope S, Newton MA (2005) Polyclonality of familial murine adenomas: analyses of mouse chimeras with low tumor multiplicity suggest short-range interactions. Proc Natl Acad Sci USA 102:6960–6965

    PubMed  CAS  Google Scholar 

  • Till JE, McCulloch EA (1961) A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Rad Res 14:213–222

    CAS  Google Scholar 

  • Triel C, Vestergaard ME, Bolund L, Jensen TG, Jensen UB (2004) Side population cells in human and mouse epidermis lack stem cell characteristics. Exp Cell Res 295:79–90

    PubMed  CAS  Google Scholar 

  • Valk-Lingbeek ME, Bruggeman SW, Lohuizen M van (2004) Stem cells and cancer; the Polycomb connection. Cell 118:409–418

    PubMed  CAS  Google Scholar 

  • van Es JH, Clevers H (2005) Notch and Wnt inhibitors as potential new drugs for intestinal neoplastic disease. Trends Mol Med 11:496–502

    PubMed  Google Scholar 

  • Vescovi AL, Galli R, Reynolds BA (2006) Brain tumour stem cells. Nat Rev Cancer 6:425–436

    PubMed  CAS  Google Scholar 

  • Vig P, Russo FP, Edwards RJ, Tadrous PJ, Wright NA, Thomas HC, Alison MR, Forbes SJ (2006) The sources of parenchymal regeneration after chronic hepatocellular liver injury in mice. Hepatology 43:316–324

    PubMed  Google Scholar 

  • Virchow R (1855) Cellular-Pathologie. Arch Pathol Anat Physiol Klin Med 8:3–39

    Google Scholar 

  • Wang J, Guo LP, Chen LZ, Zeng YX, Lu SH (2007) Identification of cancer stem cell-like side population cells in human nasopharyngeal carcinoma cell line. Cancer Res 67:3716–3724

    PubMed  CAS  Google Scholar 

  • Wasan HS, Park HS, Liu KC, Mandir NK, Winnett A, Sasieni P, Bodmer WF, Goodlad RA, Wright NA (1998) APC in the regulation of intestinal crypt fission. J Pathol 185:246–255

    PubMed  CAS  Google Scholar 

  • Watkins DN, Peacock CD (2004) Hedgehog signalling in foregut malignancy. Biochem Pharmacol 68:1055–1060

    PubMed  CAS  Google Scholar 

  • Webb A, Li A, Kaur P (2004) Location and phenotype of human adult keratinocyte stem cells of the skin. Differentiation 72:387–395

    PubMed  Google Scholar 

  • Wiemels J (1999) Prenatal origin of acute lymphoblastic leukemia in children. Lancet 354:1499–1503

    PubMed  CAS  Google Scholar 

  • Willert K, Brown JD, Danenberg E, Duncan AW, Weissman IL, Reya T, Yates JR 3rd, Nusse R (2003) Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 423:448–452

    PubMed  CAS  Google Scholar 

  • Yin S, Li J, Hu C, Chen X, Yao M, Yan M, Jiang G, Ge C, Xie H, Wan D, Yang S, Zheng S, Gu J (2007) CD133 positive hepatocellular carcinoma cells possess high capacity for tumorigenicity. Int J Cancer 120:1444–1450

    PubMed  CAS  Google Scholar 

  • Yuan X, Curtin J, Xiong Y, Liu G, Waschsmann-Hogiu S, Farkas DL, Black KL, Yu JS (2004) Isolation of cancer stem cells from adult glioblastoma multiforme. Oncogene 23:9392–9400

    PubMed  CAS  Google Scholar 

  • Zurawel RH, Chiappa SA, Allen C, Raffel C (1998) Sporadic medulloblastomas contain oncogenic beta catenin mutations. Cancer Res 58:896–899

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malcolm R. Alison.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alison, M.R., Murphy, G. & Leedham, S. Stem cells and cancer: a deadly mix. Cell Tissue Res 331, 109–124 (2008). https://doi.org/10.1007/s00441-007-0510-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-007-0510-7

Keywords

Navigation