Skip to main content

Array-Based Comparative Genomic Hybridization in Prostate Cancer: Research and Clinical Applications

  • Chapter
General Methods and Overviews, Lung Carcinoma and Prostate Carcinoma

Part of the book series: Methods of Cancer Diagnosis, Therapy, and Prognosis ((HAYAT,volume 2))

  • 1113 Accesses

It is widely recognized that acquired genomic aberrations, leading to loss of function of tumor suppressor genes or gain of function of protooncogenes, are the driving force behind cellular neoplastic transformation (Hanahan and Weinberg, 2000). The increased knowledge of the human genome and the advances in the field of biotechnology have provided us with powerful tools for high-throughput characterization of these alterations in cancer samples. Novel microarray platforms with genome-wide coverage at escalating resolutions give promise of quickly uncovering the genetic events driving neoplastic transformation, which have previously gone undetected.

In this chapter we summarize the stateof- the-art in the fast-evolving field of genomic microarrays, highlighting some of the advantages and pitfalls of different array platforms and analyses techniques. We also review the relative contribution of this new technology to the knowledge of prostate cancer genetics, with an emphasis on its potential use in a clinical setting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

REFERENCES

  • Abdulkadir, S.A., Magee, J.A., Peters, T.J., Kaleem, Z., Naughton, C.K., Humphrey, P.A., and Milbrandt, J. 2002. Conditional loss of Nkx3.1 in adult mice induces prostatic intraepi-thelial neoplasia. Mol. Cell Biol. 22: 1495–1503

    Article  PubMed  CAS  Google Scholar 

  • Barrett, M.T., Scheffer, A., Ben Dor, A., Sampas, N., Lipson, D., Kincaid, R., Tsang, P., Curry, B., Baird, K., Meltzer, P.S., Yakhini, Z., Bruhn, L., and Laderman, S. 2004. Comparative genomic hybridization using oligonucleotide microarrays and total genomic DNA. Proc. Natl. Acad. Sci. USA 101: 17765–17770

    Article  PubMed  CAS  Google Scholar 

  • Cerveira, N., Ribeiro, F.R., Peixoto, A., Costa, V., Henrique, R., Jerónimo, C., and Teixeira, M.R. 2006. TMPRSS2-ERG gene fusion causing ERG overexpression precedes chromosome copy number changes in prostate carcinomas and paired HGPIN lesions. Neoplasia 8: 826–832

    Article  PubMed  CAS  Google Scholar 

  • Clark, J., Edwards, S., Feber, A., Flohr, P., John, M., Giddings, I., Crossland, S., Stratton, M.R., Wooster, R., Campbell, C., and Cooper, C.S. 2003. Genome-wide screening for complete genetic loss in prostate cancer by comparative hybridization onto cDNA microarrays. Oncogene 22: 1247–1252

    Article  PubMed  CAS  Google Scholar 

  • Epstein, J.I. 2004. Diagnosis and reporting of limited adenocarcinoma of the prostate on needle biopsy. Mod. Pathol. 17: 307–315

    Article  PubMed  Google Scholar 

  • Gaur, U., and Aggarwal, B.B. 2003. Regulation of proliferation, survival and apoptosis by members of the TNF superfamily. Biochem. Pharmacol. 66: 1403–1408

    Article  PubMed  CAS  Google Scholar 

  • Halvorsen, O.J., Haukaas, S.A., and Akslen, L.A. 2003. Combined loss of PTEN and p27 expression is associated with tumor cell proliferation by Ki-67 and increased risk of recurrent disease in localized prostate cancer. Clin. Cancer Res. 9: 1474–1479

    PubMed  CAS  Google Scholar 

  • Hanahan, D., and Weinberg, R.A. 2000. The hallmarks of cancer. Cell 100: 57–70

    Article  PubMed  CAS  Google Scholar 

  • Hayat, MA. Ed. 2004–2006. Immunohistochemistry and In Situ Hybridization of Human Carcinomas. Elsevier/Academic, San Diego, CA

    Google Scholar 

  • Hermans, K.G., van Marion, R., Van Dekken, H., Jenster, G., van Weerden, W.M., and Trapman, J. 2006. TMPRSS2:ERG fusion by translocation or interstitial deletion is highly relevant in androgen-dependent prostate cancer, but is bypassed in late-stage androgen receptor-negative prostate cancer. Cancer Res. 66: 10658–10663

    Article  PubMed  CAS  Google Scholar 

  • Hughes, S., Yoshimoto, M., Beheshti, B., Houlston, R.S., Squire, J.A., and Evans, A. 2006. The use of whole genome amplification to study chromosomal changes in prostate cancer: insights into genome-wide signature of preneoplasia associated with cancer progression. B.M.C. Genomics 7: 65

    Article  Google Scholar 

  • Iljin, K., Wolf, M., Edgren, H., Gupta, S., Kilpinen, S., Skotheim, R.I., Peltola, M., Smit, F., Verhaegh, G., Schalken, J., Nees, M., and Kallioniemi, O. 2006. TMPRSS2 fusions with oncogenic ETS factors in prostate cancer involve unbalanced genomic rearrangements and are associated with HDAC1 and epigenetic reprogramming. Cancer Res. 66: 10242–10246

    Article  PubMed  CAS  Google Scholar 

  • Kallioniemi, A., Kallioniemi, O.P., Sudar, D., Rutovitz, D., Gray, J.W., Waldman, F., and Pinkel, D. 1992. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science 258: 818–821

    Article  PubMed  CAS  Google Scholar 

  • Kim, M.J., Bhatia-Gaur, R., Banach-Petrosky, W.A., Desai, N., Wang, Y., Hayward, S.W., Cunha, G.R., Cardiff, R.D., Shen, M.M., and Abate-Shen, C. 2002. Nkx3.1 mutant mice recapitulate early stages of prostate carcinogenesis. Cancer Res. 62: 2999–3004

    PubMed  CAS  Google Scholar 

  • King, C.R., and Long, J.P. 2000. Prostate biopsy grading errors: a sampling problem? Int. J. Cancer 90: 326–330

    Article  PubMed  CAS  Google Scholar 

  • Kononen, J., Bubendorf, L., Kallioniemi, A., Barlund, M., Schraml, P., Leighton, S., Torhorst, J., Mihatsch, M.J., Sauter, G., and Kallioniemi, O.P. 1998. Tissue microarraysfor high-throughput molecular profiling of tumor specimens. Nat. Med. 4: 844–847

    Article  PubMed  CAS  Google Scholar 

  • Kwabi-Addo, B., Giri, D., Schmidt, K., Podsypanina, K., Parsons, R., Greenberg, N., and Ittmann, M. 2001. Haploinsufficiency of the Pten tumor suppressor gene promotes prostate cancer progression. Proc. Natl. Acad. Sci. USA 98: 11563–11568

    Article  PubMed  CAS  Google Scholar 

  • Lai, W.R., Johnson, M.D., Kucherlapati, R., and Park, P.J. 2005. Comparative analysis of algorithms for identifying amplifications and deletions in array CGH data. Bioinformatics 21: 3763–3770

    Article  PubMed  CAS  Google Scholar 

  • Liu, W., Chang, B., Sauvageot, J., Dimitrov, L., Gielzak, M., Li, T., Yan, G., Sun, J., Sun, J., Adams, T.S., Turner, A.R., Kim, J.W., Meyers, D.A., Zheng, S.L., Isaacs, W.B., and Xu, J. 2006. Comprehensive assessment of DNA copy number alterations in human prostate cancers using Affymetrix 100K SNP mapping array. Genes Chromosomes Cancer 45: 1018–1032

    Article  PubMed  CAS  Google Scholar 

  • Mitelman, F. 2000. Recurrent chromosome aberrations in cancer. Mutat. Res. 462: 247–253

    Article  PubMed  CAS  Google Scholar 

  • Paris, P.L., Albertson, D.G., Alers, J.C., Andaya, A., Carroll, P., Fridlyand, J., Jain, A.N., Kamkar, S., Kowbel, D., Krijtenburg, P.J., Pinkel, D., Schroder, F.H., Vissers, K.J., Watson, V.J., Wildhagen, M.F., Collins, C., and Van Dekken, H. 2003. High-resolution analysis of paraffin-embedded and formalin-fixed prostate tumors using comparative genomic hybridization to genomic microar-rays. Am. J. Pathol. 162: 763–770

    CAS  Google Scholar 

  • Paris, P.L., Andaya, A., Fridlyand, J., Jain, A.N., Weinberg, V., Kowbel, D., Brebner, J.H., Simko, J., Watson, J.E., Volik, S., Albertson, D.G., Pinkel, D., Alers, J.C., van der Kwast, T.H., Vissers, K.J., Schroder, F.H., Wildhagen, M.F., Febbo, P.G., Chinnaiyan, A.M., Pienta, K.J., Carroll, P.R., Rubin, M.A., Collins, C., and Van Dekken, H. 2004. Whole genome scanning identifies genotypes associated with recurrence and metastasis in prostate tumors. Hum. Mol. Genet. 13: 1303–1313

    Article  PubMed  CAS  Google Scholar 

  • Perner, S., Demichelis, F., Beroukhim, R., Schmidt, F.H., Mosquera, J.M., Setlur, S., Tchinda, J., Tomlins, S.A., Hofer, M.D., Pienta, K.G., Kuefer, R., Vessella, R., Sun, X.W., Meyerson, M., Lee, C., Sellers, W.R., Chinnaiyan, A.M., and Rubin, M.A. 2006. TMPRSS2:ERG fusion-associated deletions provide insight into the heterogeneity of prostate cancer. Cancer Res. 66: 8337–8341

    Article  PubMed  CAS  Google Scholar 

  • Perner, S., Mosquera, J.M., Demichelis, F., Hofer, M.D., Paris, P.L., Simko, J., Collins, C., Bismar, T.A., Chinnaiyan, A.M., De Marzo, A.M., and Rubin, M.A. 2007. TMPRSS2-ERG fusion prostate cancer: an early molecular event associated with invasion. Am. J. Surg. Pathol. 31: 882–888

    Article  PubMed  Google Scholar 

  • Pinkel, D., Segraves, R., Sudar, D., Clark, S., Poole, I., Kowbel, D., Collins, C., Kuo, W.L., Chen, C., Zhai, Y., Dairkee, S.H., Ljung, B.M., Gray, J.W., and Albertson, D.G. 1998. High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat. Genet. 20: 207–211

    Article  PubMed  CAS  Google Scholar 

  • Pollack, J.R., Perou, C.M., Alizadeh, A.A., Eisen, M.B., Pergamenschikov, A., Williams, C.F., Jeffrey, S.S., Botstein, D., and Brown, P.O. 1999. Genome-wide analysis of DNA copy-number changes using cDNA microarrays. Nat. Genet. 23: 41–46

    Article  PubMed  CAS  Google Scholar 

  • Ribeiro, F.R., Diep, C.B., Jeronimo, C., Henrique, R., Lopes, C., Eknaes, M., Lingjaerde, O.C., Lothe, R.A., and Teixeira, M.R. 2006a. Statistical dissection of genetic pathways involved in prostate carcinogenesis. Genes Chromosomes Cancer 45: 154–163

    Article  CAS  Google Scholar 

  • Ribeiro, F.R., Jerónimo, C., Henrique, R., Fonseca, D., Oliveira, J., Lothe, R.A., and Teixeira, M.R. 2006b. 8q gain is an independent predictor of poor survival in diagnostic needle biopsies from prostate cancer suspects. Clin. Cancer Res. 12: 3961–3970

    Article  CAS  Google Scholar 

  • Ribeiro, F.R., Henrique, R., Hektoen, M., Berg, M., Jerónimo, C., Teixeira, M.R., and Lothe, R.A. 2006c. Comparison of chromosomal and array-based comparative genomic hybridization for the detection of genomic imbalances in primary prostate carcinomas. Mol. Cancer 5: 33

    Article  Google Scholar 

  • Saramaki, O., and Visakorpi, T. 2007. Chromosomal aberrations in prostate cancer. Front. Biosci. 12: 3287–3301

    Article  PubMed  CAS  Google Scholar 

  • Saramaki, O.R., Porkka, K.P., Vessella, R.L., and Visakorpi, T. 2006. Genetic aberrations in prostate cancer by microarray analysis. Int. J. Cancer 119: 1322–1329

    Article  PubMed  CAS  Google Scholar 

  • Seth, A., and Watson, D.K. 2005. ETS transcription factors and their emerging roles in human cancer. Eur. J. Cancer 41: 2462–2478

    Article  PubMed  CAS  Google Scholar 

  • Solinas-Toldo, S., Lampel, S., Stilgenbauer, S., Nickolenko, J., Benner, A., Döhner, H., Cremer, T., and Lichter, P. 1997. Matrix-based compara-tive genomic hybridization: biochips to screen for genomic imbalances. Genes Chromosomes Cancer 20: 399–407

    Article  PubMed  CAS  Google Scholar 

  • Tan, D.S., Lambros, M.B., Natrajan, R., and Reis-Filho, J.S. 2007. Getting it right: designing microarray (and not ‘microawry’) comparative genomic hybridization studies for cancer research. Lab. Invest. 87: 737–754

    Article  PubMed  CAS  Google Scholar 

  • Teixeira, M.R., Ribeiro, F.R., Eknaes, M., Waehre, H., Stenwig, A.E., Giercksky, K.E., Heim, S., and Lothe, R.A. 2004. Genomic analysis of prostate carcinoma specimens obtained via ultrasound-guided needle biopsy may be of use in preopera-tive decision-making. Cancer 101: 1786–1793

    Article  PubMed  CAS  Google Scholar 

  • Tomlins, S.A., Rhodes, D.R., Perner, S., Dhanasekaran, S.M., Mehra, R., Sun, X.W., Varambally, S., Cao, X., Tchinda, J., Kuefer, R., Lee, C., Montie, J.E., Shah, R.B., Pienta, K.J., Rubin, M.A., and Chinnaiyan, A.M. 2005. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310: 644–648

    Article  PubMed  CAS  Google Scholar 

  • Torring, N., Borre, M., Sorensen, K.D., Andersen, C.L., Wiuf, C., and Orntoft, T.F. 2007. Genome-wide analysis of allelic imbalance in prostate cancer using the Affymetrix 50K SNP mapping array. Br. J. Cancer 96: 499–506

    Article  PubMed  CAS  Google Scholar 

  • Van Dekken, H., Paris, P.L., Albertson, D.G., Alers, J.C., Andaya, A., Kowbel, D., van der Kwast, T.H., Pinkel, D., Schroder, F.H., Vissers, K.J., Wildhagen, M.F., and Collins, C. 2004. Evaluation of genetic patterns in different tumor areas of intermediate-grade prostatic adenocarcinomas by high-resolution genomic array analysis. Genes Chromosomes Cancer 39: 249–256

    Article  PubMed  Google Scholar 

  • van Duin, M., van Marion, R., Vissers, K., Watson, J.E., van Weerden, W.M., Schroder, F.H., Hop, W.C., van der Kwast, T.H., Collins, C., and Van Dekken, H. 2005. High-resolution array comparative genomic hybridization of chromosome arm 8q: evaluation of genetic progression markers for prostate cancer. Genes Chromosomes Cancer 44: 438–449

    Article  PubMed  Google Scholar 

  • Verhagen, P.C., van Duijn, P.W., Hermans, K.G., Looijenga, L.H., van Gurp, R.J., Stoop, H., van der Kwast, T.H., and Trapman, J. 2006. The PTEN gene in locally progressive prostate cancer is preferentially inactivated by bi-allelic gene deletion. J. Pathol. 208: 699–707

    Article  PubMed  CAS  Google Scholar 

  • Vijayakumar, S., Hall, D.C., Reveles, X.T., Troyer, D.A., Thompson, I.M., Garcia, D., Xiang, R., Leach, R.J., Johnson-Pais, T.L., and Naylor, S.L. 2006. Detection of recurrent copy number loss at Yp11.2 involving TSPY gene cluster in prostate cancer using array-based comparative genomic hybridization. Cancer Res. 66: 4055–4064

    Article  PubMed  CAS  Google Scholar 

  • Wang, J., Cai, Y., Ren, C., and Ittmann, M. 2006. Expression of variant TMPRSS2/ERG fusion messenger RNAs is associated with aggressive prostate cancer. Cancer Res. 66: 8347–8351

    Article  PubMed  CAS  Google Scholar 

  • Watson, J.E., Doggett, N.A., Albertson, D.G., Andaya, A., Chinnaiyan, A., Van Dekken, H., Ginzinger, D., Haqq, C., James, K., Kamkar, S., Kowbel, D., Pinkel, D., Schmitt, L., Simko, J.P., Volik, S., Weinberg, V.K., Paris, P.L., and Collins, C. 2004. Integration of high-resolution array comparative genomic hybridization analysis of chromosome 16q with expression array data refines common regions of loss at 16q23-qter and identifies underlying candidate tumor suppressor genes in prostate cancer. Oncogene 23: 3487–3494

    Article  PubMed  CAS  Google Scholar 

  • Watson, S.K., deLeeuw, R.J., Horsman, D.E., Squire, J.A., and Lam, W.L. 2007. Cytogenetically balanced translocations are associated with focal copy number alterations. Hum. Genet. 120: 795–805

    Article  PubMed  Google Scholar 

  • Wicker, N., Carles, A., Mills, I.G., Wolf, M., Veerakumarasivam, A., Edgren, H., Boileau, F., Wasylyk, B., Schalken, J.A., Neal, D.E., Kallioniemi, O., and Poch, O. 2007. A new look towards BAC-based array CGH through a comprehensive comparison with oligo-based array CGH. B.M.C. Genomics 8: 84

    Article  Google Scholar 

  • Wolf, M., Mousses, S., Hautaniemi, S., Karhu, R., Huusko, P., Allinen, M., Elkahloun, A., Monni, O., Chen, Y., Kallioniemi, A., and Kallioniemi, O.P. 2004. High-resolution analysis of gene copy number alterations in human prostate cancer using CGH on cDNA microar-rays: impact of copy number on gene expression. Neoplasia 6: 240–247

    Article  PubMed  CAS  Google Scholar 

  • Ylstra, B., van den Ijssel, P., Carvalho, B., Brakenhoff, R.H., and Meijer, G.A. 2006. BAC to the future! or oligonucleotides: a perspective for microarray comparative genomic hybridization (array CGH). Nucleic Acids Res. 34: 445–450

    Article  PubMed  CAS  Google Scholar 

  • Zhao, H., Kim, Y., Wang, P., Lapointe, J., Tibshirani, R., Pollack, J.R., and Brooks, J.D. 2005. Genome-wide characterization of gene expression variations and DNA copy number changes in prostate cancer cell lines. Prostate 63: 187–197

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franclim R. Ribeiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Ribeiro, F.R., Skotheim, R.I., Henrique, R., Teixeira, M.R. (2008). Array-Based Comparative Genomic Hybridization in Prostate Cancer: Research and Clinical Applications. In: Hayat, M.A. (eds) General Methods and Overviews, Lung Carcinoma and Prostate Carcinoma. Methods of Cancer Diagnosis, Therapy, and Prognosis, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8442-3_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-8442-3_30

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-8441-6

  • Online ISBN: 978-1-4020-8442-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics