Skip to main content

Comparative Genomic Hybridization and Array Based CGH in Cancer

  • Chapter
Molecular Testing in Cancer

Abstract

Genomic instability is a key feature of cancer. Chromosomal rearrangements and segmental DNA copy-number alterations in the tumor genome lead to aberrant gene expression pattern. Array-based comparative genomic hybridization (aCGH) is a molecular cytogenetic technique designed to measure DNA copy-number status and identify segmental dosage alterations. The emergence of aCGH technology is placed into context in the evolution of molecular cytogenetics. The defining characteristics of contemporary genomic array platforms are reviewed, and the material considerations for using these platforms are explained. This chapter describes the development and current knowledge on aCGH technology and its role in cancer research and clinical diagnostics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74. PubMed PMID: 21376230. Epub 2011/03/08. eng.

    Article  CAS  PubMed  Google Scholar 

  2. Pikor L, Thu K, Vucic E, Lam W. The detection and implication of genome instability in cancer. Cancer metastasis reviews. 2013;32(3-4):341-52. Epub 2013/05/02.

    Google Scholar 

  3. Aguilera A, Garcia-Muse T. Causes of genome instability. Annual review of genetics. 2013;47:1–32. Epub 2013/08/06.

    Google Scholar 

  4. Gordon DJ, Resio B, Pellman D. Causes and consequences of aneuploidy in cancer. Nat Rev Genet. 2012;13(3):189–203. PubMed PMID: 22269907. Epub 2012/01/25. eng.

    CAS  PubMed  Google Scholar 

  5. Iskow RC, Gokcumen O, Lee C. Exploring the role of copy number variants in human adaptation. Trends Genet. 2012;28(6):245–57. PubMed PMID: 22483647. Pubmed Central PMCID: 3533238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Quinlan AR, Hall IM. Characterizing complex structural variation in germline and somatic genomes. Trends Genet. 2012;28(1):43–53. PubMed PMID: 22094265. Pubmed Central PMCID: 3249479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Greenman C, Stephens P, Smith R, Dalgliesh GL, Hunter C, Bignell G, et al. Patterns of somatic mutation in human cancer genomes. Nature. 2007;446(7132):153–8. PubMed PMID: 17344846. Pubmed Central PMCID: 2712719. Epub 2007/03/09. eng.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kumar N, Cai H, von Mering C, Baudis M. Specific genomic regions are differentially affected by copy number alterations across distinct cancer types, in aggregated cytogenetic data. PLoS One. 2012;7(8):e43689. PubMed PMID: 22937079. Pubmed Central PMCID: 3427184. Epub 2012/09/01. eng.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li Y, Zhang L, Ball RL, Liang X, Li J, Lin Z, et al. Comparative analysis of somatic copy-number alterations across different human cancer types reveals two distinct classes of breakpoint hotspots. Hum Mol Genet. 2012;21(22):4957–65. PubMed PMID: 22899649. Pubmed Central PMCID: 3607479. Epub 2012/08/18. eng.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lockwood WW, Wilson IM, Coe BP, Chari R, Pikor LA, Thu KL, et al. Divergent genomic and epigenomic landscapes of lung cancer subtypes underscore the selection of different oncogenic pathways during tumor development. PLoS One. 2012;7(5):e37775. PubMed PMID: 22629454. Pubmed Central PMCID: 3357406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mitelman F, Johansson B, Mertens F. Mitelman database of chromosome aberrations and gene fusions in cancer. 2013. http://cgap.nci.nih.gov/Chromosomes/Mitelman.

  12. Seabright M. A rapid banding technique for human chromosomes. Lancet. 1971;2(7731):971–2. PubMed PMID: 4107917. Epub 1971/10/30. eng.

    Article  CAS  PubMed  Google Scholar 

  13. Van Prooijen-Knegt AC, Van Hoek JF, Bauman JG, Van Duijn P, Wool IG, Van der Ploeg M. In situ hybridization of DNA sequences in human metaphase chromosomes visualized by an indirect fluorescent immunocytochemical procedure. Exp Cell Res. 1982;141(2):397–407. PubMed PMID: 6754395. Epub 1982/10/01. eng.

    Article  PubMed  Google Scholar 

  14. Bayani J, Squire J. Multi-color FISH techniques. Curr Protoc Cell Biol. 2004;Chapter 22:Unit 22.5. PubMed PMID: 18228456.

    Google Scholar 

  15. Bayani JM, Squire JA. Applications of SKY in cancer cytogenetics. Cancer Invest. 2002;20(3):373–86. PubMed PMID: 12025233.

    Article  PubMed  Google Scholar 

  16. Schrock E, du Manoir S, Veldman T, Schoell B, Wienberg J, Ferguson-Smith MA, et al. Multicolor spectral karyotyping of human chromosomes. Science. 1996;273(5274):494–7. PubMed PMID: 8662537. Epub 1996/07/26. eng.

    Article  CAS  PubMed  Google Scholar 

  17. Albertson DG, Pinkel D. Genomic microarrays in human genetic disease and cancer. Hum Mol Genet. 2003;12 Spec No 2:R145–52. PubMed PMID: 12915456.

    Google Scholar 

  18. Pinkel D, Albertson DG. Array comparative genomic hybridization and its applications in cancer. Nat Genet. 2005;37(Suppl):S11–7. PubMed PMID: 15920524.

    Article  CAS  PubMed  Google Scholar 

  19. Lockwood WW, Chari R, Chi B, Lam WL. Recent advances in array comparative genomic hybridization technologies and their applications in human genetics. Eur J Hum Genet. 2006;14(2):139–48. PubMed PMID: 16288307.

    Article  CAS  PubMed  Google Scholar 

  20. Kallioniemi A, Kallioniemi OP, Sudar D, Rutovitz D, Gray JW, Waldman F, et al. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science. 1992;258(5083):818–21. PubMed PMID: 1359641.

    Article  CAS  PubMed  Google Scholar 

  21. Pollack JR, Perou CM, Alizadeh AA, Eisen MB, Pergamenschikov A, Williams CF, et al. Genome-wide analysis of DNA copy-number changes using cDNA microarrays. Nat Genet. 1999;23(1):41–6. PubMed PMID: 10471496. Epub 1999/09/02. eng.

    Article  CAS  PubMed  Google Scholar 

  22. Snijders AM, Nowak N, Segraves R, Blackwood S, Brown N, Conroy J, et al. Assembly of microarrays for genome-wide measurement of DNA copy number. Nat Genet. 2001;29(3):263–4. PubMed PMID: 11687795. Epub 2001/11/01. eng.

    Article  CAS  PubMed  Google Scholar 

  23. Ishkanian AS, Malloff CA, Watson SK, DeLeeuw RJ, Chi B, Coe BP, et al. A tiling resolution DNA microarray with complete coverage of the human genome. Nat Genet. 2004;36(3):299–303. PubMed PMID: 14981516. Epub 2004/02/26. eng.

    Article  CAS  PubMed  Google Scholar 

  24. Coe BP, Ylstra B, Carvalho B, Meijer GA, Macaulay C, Lam WL. Resolving the resolution of array CGH. Genomics. 2007;89(5):647–53. PubMed PMID: 17276656. Epub 2007/02/06. eng.

    Article  CAS  PubMed  Google Scholar 

  25. Corver WE, Middeldorp A, ter Haar NT, Jordanova ES, van Puijenbroek M, van Eijk R, et al. Genome-wide allelic state analysis on flow-sorted tumor fractions provides an accurate measure of chromosomal aberrations. Cancer Res. 2008;68(24):10333–40. PubMed PMID: 19074902. Epub 2008/12/17. eng.

    Article  CAS  PubMed  Google Scholar 

  26. Shchepinov MS, Case-Green SC, Southern EM. Steric factors influencing hybridisation of nucleic acids to oligonucleotide arrays. Nucleic Acids Res. 1997;25(6):1155–61. PubMed PMID: 9092624. Pubmed Central PMCID: 146580. Epub 1997/03/15. eng.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hughes TR, Mao M, Jones AR, Burchard J, Marton MJ, Shannon KW, et al. Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer. Nat Biotechnol. 2001;19(4):342–7. PubMed PMID: 11283592. Epub 2001/04/03. eng.

    Article  CAS  PubMed  Google Scholar 

  28. Thiel A, Beier M, Ingenhag D, Servan K, Hein M, Moeller V, et al. Comprehensive array CGH of normal karyotype myelodysplastic syndromes reveals hidden recurrent and individual genomic copy number alterations with prognostic relevance. Leukemia. 2011;25(3):387–99. PubMed PMID: 21274003. Epub 2011/01/29. eng.

    Article  CAS  PubMed  Google Scholar 

  29. Starczynowski DT, Vercauteren S, Sung S, Brooks-Wilson A, Lam WL, Karsan A. Copy number alterations at polymorphic loci may be acquired somatically in patients with myelodysplastic syndromes. Leuk Res. 2011;35(4):444–7. PubMed PMID: 20801506. Epub 2010/08/31. eng.

    Article  CAS  PubMed  Google Scholar 

  30. Starczynowski DT, Kuchenbauer F, Argiropoulos B, Sung S, Morin R, Muranyi A, et al. Identification of miR-145 and miR-146a as mediators of the 5q- syndrome phenotype. Nat Med. 2010;16(1):49–58. PubMed PMID: 19898489. Epub 2009/11/10. eng.

    Article  CAS  PubMed  Google Scholar 

  31. Starczynowski DT, Vercauteren S, Telenius A, Sung S, Tohyama K, Brooks-Wilson A, et al. High-resolution whole genome tiling path array CGH analysis of CD34+ cells from patients with low-risk myelodysplastic syndromes reveals cryptic copy number alterations and predicts overall and leukemia-free survival. Blood. 2008;112(8):3412–24. PubMed PMID: 18663149. Epub 2008/07/30. eng.

    Article  CAS  PubMed  Google Scholar 

  32. Evers C, Beier M, Poelitz A, Hildebrandt B, Servan K, Drechsler M, et al. Molecular definition of chromosome arm 5q deletion end points and detection of hidden aberrations in patients with myelodysplastic syndromes and isolated del(5q) using oligonucleotide array CGH. Genes Chromosomes Cancer. 2007;46(12):1119–28. PubMed PMID: 17823930. Epub 2007/09/08. eng.

    Article  CAS  PubMed  Google Scholar 

  33. Braggio E, Kay NE, VanWier S, Tschumper RC, Smoley S, Eckel-Passow JE, et al. Longitudinal genome-wide analysis of patients with chronic lymphocytic leukemia reveals complex evolution of clonal architecture at disease progression and at the time of relapse. Leukemia. 2012;26(7):1698–701. PubMed PMID: 22261920. Epub 2012/01/21. eng.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Knight SJ, Yau C, Clifford R, Timbs AT, Sadighi Akha E, Dreau HM, et al. Quantification of subclonal distributions of recurrent genomic aberrations in paired pre-treatment and relapse samples from patients with B-cell chronic lymphocytic leukemia. Leukemia. 2012;26(7):1564–75. PubMed PMID: 22258401. Pubmed Central PMCID: 3505832. Epub 2012/01/20. eng.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Umino A, Nakagawa M, Utsunomiya A, Tsukasaki K, Taira N, Katayama N, et al. Clonal evolution of adult T-cell leukemia/lymphoma takes place in the lymph nodes. Blood. 2011;117(20):5473–8. PubMed PMID: 21447829. Epub 2011/03/31. eng.

    Article  CAS  PubMed  Google Scholar 

  36. Liu F, Yoshida N, Suguro M, Kato H, Karube K, Arita K, et al. Clonal heterogeneity of mantle cell lymphoma revealed by array comparative genomic hybridization. Eur J Haematol. 2013;90(1):51–8. PubMed PMID: 23110670. Epub 2012/11/01. eng.

    Article  CAS  PubMed  Google Scholar 

  37. Barretina J, Taylor BS, Banerji S, Ramos AH, Lagos-Quintana M, Decarolis PL, et al. Subtype-specific genomic alterations define new targets for soft-tissue sarcoma therapy. Nat Genet. 2010;42(8):715–21. PubMed PMID: 20601955. Pubmed Central PMCID: 2911503. Epub 2010/07/06. eng.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Silveira SM, Villacis RA, Marchi FA, Barros Filho Mde C, Drigo SA, Neto CS, et al. Genomic signatures predict poor outcome in undifferentiated pleomorphic sarcomas and leiomyosarcomas. PLoS One. 2013;8(6):e67643. PubMed PMID: 23825676. Pubmed Central PMCID: 3692486. Epub 2013/07/05. Eng.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chibon F, Lagarde P, Salas S, Perot G, Brouste V, Tirode F, et al. Validated prediction of clinical outcome in sarcomas and multiple types of cancer on the basis of a gene expression signature related to genome complexity. Nat Med. 2010;16(7):781–7. PubMed PMID: 20581836. Epub 2010/06/29. eng.

    Article  CAS  PubMed  Google Scholar 

  40. Kwei KA, Kim YH, Girard L, Kao J, Pacyna-Gengelbach M, Salari K, et al. Genomic profiling identifies TITF1 as a lineage-specific oncogene amplified in lung cancer. Oncogene. 2008;27(25):3635–40. PubMed PMID: 18212743. Pubmed Central PMCID: 2903002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cabarcas S, Schramm L. RNA polymerase III transcription in cancer: the BRF2 connection. Mol Cancer. 2011;10:47. PubMed PMID: 21518452. Pubmed Central PMCID: 3098206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Winslow MM, Dayton TL, Verhaak RG, Kim-Kiselak C, Snyder EL, Feldser DM, et al. Suppression of lung adenocarcinoma progression by Nkx2-1. Nature. 2011;473(7345):101–4. PubMed PMID: 21471965. Pubmed Central PMCID: 3088778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wilbertz T, Wagner P, Petersen K, Stiedl AC, Scheble VJ, Maier S, et al. SOX2 gene amplification and protein overexpression are associated with better outcome in squamous cell lung cancer. Mod Pathol. 2011;24(7):944–53. PubMed PMID: 21460799.

    Article  CAS  PubMed  Google Scholar 

  44. Bass AJ, Watanabe H, Mermel CH, Yu S, Perner S, Verhaak RG, et al. SOX2 is an amplified lineage-survival oncogene in lung and esophageal squamous cell carcinomas. Nat Genet. 2009;41(11):1238–42. PubMed PMID: 19801978. Pubmed Central PMCID: 2783775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Weir BA, Woo MS, Getz G, Perner S, Ding L, Beroukhim R, et al. Characterizing the cancer genome in lung adenocarcinoma. Nature. 2007;450(7171):893–8. PubMed PMID: 17982442. Pubmed Central PMCID: 2538683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lockwood WW, Chari R, Coe BP, Thu KL, Garnis C, Malloff CA, et al. Integrative genomic analyses identify BRF2 as a novel lineage-specific oncogene in lung squamous cell carcinoma. PLoS Med. 2010;7(7):e1000315. PubMed PMID: 20668658. Pubmed Central PMCID: 2910599. Epub 2010/07/30. eng.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Thu KL, Pikor LA, Chari R, Wilson IM, Macaulay CE, English JC, et al. Genetic disruption of KEAP1/CUL3 E3 ubiquitin ligase complex components is a key mechanism of NF-kappaB pathway activation in lung cancer. J Thorac Oncol. 2011;6(9):1521–9. PubMed PMID: 21795997. Pubmed Central PMCID: 3164321.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Cappuzzo F, Hirsch FR, Rossi E, Bartolini S, Ceresoli GL, Bemis L, et al. Epidermal growth factor receptor gene and protein and gefitinib sensitivity in non-small-cell lung cancer. J Natl Cancer Inst. 2005;97(9):643–55. PubMed PMID: 15870435. Epub 2005/05/05. eng.

    Article  CAS  PubMed  Google Scholar 

  49. Heitzer E, Auer M, Gasch C, Pichler M, Ulz P, Hoffmann EM, et al. Complex tumor genomes inferred from single circulating tumor cells by array-CGH and next-generation sequencing. Cancer Res. 2013;73(10):2965–75. PubMed PMID: 23471846. Epub 2013/03/09. eng.

    Article  CAS  PubMed  Google Scholar 

  50. Pokholok DK, Le JM, Steemers FJ, Ronaghi M, Gunderson KL. Analysis of restored FFPE samples on high-density SNP arrays. In: Proceedings of the 101st annual meeting of the American Association for cancer research, Apr 17–21. Washington, DC; 2010. Abstract nr LB-34.

    Google Scholar 

  51. Salawu A, Ul-Hassan A, Hammond D, Fernando M, Reed M, Sisley K. High quality genomic copy number data from archival formalin-fixed paraffin-embedded leiomyosarcoma: optimisation of universal linkage system labelling. PLoS One. 2012;7(11):e50415. PubMed PMID: 23209738. Pubmed Central PMCID: 3510175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. van Essen HF, Ylstra B. High-resolution copy number profiling by array CGH using DNA isolated from formalin-fixed, paraffin-embedded tissues. Methods Mol Biol. 2012;838:329–41. PubMed PMID: 22228020.

    Article  PubMed  Google Scholar 

  53. Krijgsman O, Israeli D, Haan JC, van Essen HF, Smeets SJ, Eijk PP, et al. CGH arrays compared for DNA isolated from formalin-fixed, paraffin-embedded material. Genes Chromosomes Cancer. 2012;51(4):344–52. PubMed PMID: 22162309.

    Article  CAS  PubMed  Google Scholar 

  54. Pikor LA, Enfield KS, Cameron H, Lam WL. DNA extraction from paraffin embedded material for genetic and epigenetic analyses. J Vis Exp. 2011;(49). pii: 2763. PubMed PMID: 21490570. Pubmed Central PMCID: 3197328.

    Google Scholar 

  55. Hostetter G, Kim SY, Savage S, Gooden GC, Barrett M, Zhang J, et al. Random DNA fragmentation allows detection of single-copy, single-exon alterations of copy number by oligonucleotide array CGH in clinical FFPE samples. Nucleic Acids Res. 2010;38(2):e9. PubMed PMID: 19875416. Pubmed Central PMCID: 2811007.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Ylstra B, van den Ijssel P, Carvalho B, Brakenhoff RH, Meijer GA. BAC to the future! or oligonucleotides: a perspective for micro array comparative genomic hybridization (array CGH). Nucleic Acids Res. 2006;34(2):445–50. PubMed PMID: 16439806. Pubmed Central PMCID: 1356528. Epub 2006/01/28. eng.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kreatech. ULSâ„¢ (Universal Linkage System) technology. 2013. http://www.kreatech.com/products/universal-linkage-systemtm-labeling-kits/the-ulstm-labeling-technology.html

  58. Wang Y, Cottman M, Schiffman JD. Molecular inversion probes: a novel microarray technology and its application in cancer research. Cancer Genet. 2012;205(7–8):341–55. PubMed PMID: 22867995. Epub 2012/08/08. eng.

    Article  CAS  PubMed  Google Scholar 

  59. Gilbert I, Scantland S, Dufort I, Gordynska O, Labbe A, Sirard MA, et al. Real-time monitoring of aRNA production during T7 amplification to prevent the loss of sample representation during microarray hybridization sample preparation. Nucleic Acids Res. 2009;37(8):e65. PubMed PMID: 19336411. Pubmed Central PMCID: 2677895. Epub 2009/04/02. eng.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Hormozdiari F, Alkan C, Eichler EE, Sahinalp SC. Combinatorial algorithms for structural variation detection in high-throughput sequenced genomes. Genome Res. 2009;19(7):1270–8. PubMed PMID: 19447966. Pubmed Central PMCID: 2704429. Epub 2009/05/19. eng.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Korbel JO, Urban AE, Affourtit JP, Godwin B, Grubert F, Simons JF, et al. Paired-end mapping reveals extensive structural variation in the human genome. Science. 2007;318(5849):420–6. PubMed PMID: 17901297. Pubmed Central PMCID: 2674581. Epub 2007/09/29. eng.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Xie C, Tammi MT. CNV-seq, a new method to detect copy number variation using high-throughput sequencing. BMC Bioinformatics. 2009;10:80. PubMed PMID: 19267900. Pubmed Central PMCID: 2667514. Epub 2009/03/10. eng.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Grossmann V, Kohlmann A, Klein HU, Schindela S, Schnittger S, Dicker F, et al. Targeted next-generation sequencing detects point mutations, insertions, deletions and balanced chromosomal rearrangements as well as identifies novel leukemia-specific fusion genes in a single procedure. Leukemia. 2011;25(4):671–80. PubMed PMID: 21252984. Epub 2011/01/22. eng.

    Article  CAS  PubMed  Google Scholar 

  64. Grimm D, Hagmann J, Koenig D, Weigel D, Borgwardt K. Accurate indel prediction using paired-end short reads. BMC Genomics. 2013;14:132. PubMed PMID: 23442375. Pubmed Central PMCID: 3614465. Epub 2013/02/28. eng.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Mills RE, Luttig CT, Larkins CE, Beauchamp A, Tsui C, Pittard WS, et al. An initial map of insertion and deletion (INDEL) variation in the human genome. Genome Res. 2006;16(9):1182–90. PubMed PMID: 16902084. Pubmed Central PMCID: 1557762. Epub 2006/08/12. eng.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sobreira NL, Gnanakkan V, Walsh M, Marosy B, Wohler E, Thomas G, et al. Characterization of complex chromosomal rearrangements by targeted capture and next-generation sequencing. Genome Res. 2011;21(10):1720–7. PubMed PMID: 21890680. Pubmed Central PMCID: 3202288. Epub 2011/09/06. eng.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Miller DT, Adam MP, Aradhya S, Biesecker LG, Brothman AR, Carter NP, et al. Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am J Hum Genet. 2010;86(5):749–64. PubMed PMID: 20466091. Pubmed Central PMCID: 2869000. Epub 2010/05/15. eng.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor D. Martinez Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hubaux, R., Martinez, V.D., Rowbotham, D., Lam, W.L. (2014). Comparative Genomic Hybridization and Array Based CGH in Cancer. In: Yousef, G., Jothy, S. (eds) Molecular Testing in Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4899-8050-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-8050-2_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4899-8049-6

  • Online ISBN: 978-1-4899-8050-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics