Skip to main content

Peroxynitrite: A Key Molecule in Skin Tissue Response to Different Types of Stress

  • Chapter
Oxidants in Biology

Skin, the largest tissue exposed to a variety of stresses demonstrates a common cellular biochemical response unrelated to the type of the stress allegedly. In this chapter we will describe a phenomenon in which different insults, unrelated to oxidative events to start with, resulted in an activation of common cellular biochemical pathways. These processes are similar to those evoked following exposure to stressors in which oxidants were shown to be the major metabolites involved in the mechanism of damage.

This chapter strengthen the hypothesis that peroxynitrite (ONOO) plays a key role in this common mechanism. Peroxynitrite, a product of the interaction of nitric oxide and superoxide radicals, is a potent and versatile oxidant that can attack a wide range of biological molecules. Therefore, tissue oxidative damage can be diminished by prevention of its production or decreasing its level in the different types of stress. The suggested mechanism of its production in the cell and the different metabolites derived from its decomposition are covered.

The literature describing the activation of xanthine oxidase (XO) and nitric oxide synthase (NOS) following exposure of the organism or cells to different types of stress is reviewed. It is suggested that following exposure to the different stressors there is an upregulation of pro-inflammatory cytokines (e.g. TNFα, IL-1β, IL-6 and INFγ). These cytokines may encourage the activation of XO and NOS leading to an enhanced production of peroxynitrite which in turn cause biological damage.

These biochemical changes can also be reflected in changes in the cellular redox state of which the total antioxidant capacity (TAC) is one of the major components. Therefore, alteration in TAC following exposure to stress is an important factor in the mechanism of damage.

We focus on stressors to skin such as: inflammatory process, exposure to ischemic conditions, diabetic conditions, malignancies, UV irradiation, stretch stress, and effect of drugs.

This chapter includes different topics supporting the common mechanism involved in a variety of unrelated stresses. It covers studies of cutaneous injuries in different models (in vivo, ex-vivo, in-vitro) that exhibit the markers mentioned above.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abd-El-Aleem, S. A., M. W. Ferguson, I. Appleton, S. Kairsingh, E. B. Jude, K. Jones, C. N. McCollum, and G. W. Ireland, 2000, Expression of nitric oxide synthase isoforms and arginase in normal human skin and chronic venous leg ulcers: J Pathol, v. 191, p. 434–442.

    Article  PubMed  CAS  Google Scholar 

  • Adachi, T., R. M. Weisbrod, D. R. Pimentel, J. Ying, V. S. Sharov, C. Schoneich, and R. A. Cohen, 2004, S-Glutathiolation by peroxynitrite activates SERCA during arterial relaxation by nitric oxide: Nat Med, v. 10, p. 1200–1207.

    Article  PubMed  CAS  Google Scholar 

  • Aliev, G., and G. Burnstock, 1998, Watanabe rabbits with heritable hypercholesterolaemia: a model of atherosclerosis: Histol Histopathol, v. 13, p. 797–817.

    PubMed  CAS  Google Scholar 

  • Alvarez, B., and R. Radi, 2003, Peroxynitrite reactivity with amino acids and proteins: Amino Acids, v. 25, p. 295–311.

    Article  PubMed  CAS  Google Scholar 

  • Alvarez, B., H. Rubbo, M. Kirk, S. Barnes, B. A. Freeman, and R. Radi, 1996, Peroxynitrite-dependent tryptophan nitration: Chem Res Toxicol, v. 9, p. 390–396.

    Article  PubMed  CAS  Google Scholar 

  • Arany, I., M. M. Brysk, H. Brysk, and S. K. Tyring, 1996, Regulation of inducible nitric oxide synthase mRNA levels by differentiation and cytokines in human keratinocytes: Biochem Biophys Res Commun, v. 220, p. 618–622.

    Article  PubMed  CAS  Google Scholar 

  • Baggiolini, M., A. Walz, and S. L. Kunkel, 1989, Neutrophil-activating peptide-1/interleukin 8, a novel cytokine that activates neutrophils: J Clin Invest, v. 84, p. 1045–1049.

    Article  PubMed  CAS  Google Scholar 

  • Beckman, J. S., 1996, Oxidative damage and tyrosine nitration from peroxynitrite: Chem Res Toxicol, v. 9, p. 836–844.

    Article  PubMed  CAS  Google Scholar 

  • Beckman, J. S., T. W. Beckman, J. Chen, P. A. Marshall, and B. A. Freeman, 1990, Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide: Proc Natl Acad Sci USA, v. 87, p. 1620–1624.

    Article  PubMed  CAS  Google Scholar 

  • Beckman, J. S., and W. H. Koppenol, 1996, Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly: Am J Physiol, v. 271, p. C1424–C1437.

    PubMed  CAS  Google Scholar 

  • Bellei, E., C. Rota, S. Bergamini, P. Manfredini, A. Albertazzi, A. Tomasi, and A. Iannone, 2004, Effect of alpha-tocopherol and N-acetylcysteine on benzoyl peroxide toxicity in human keratinocytes: J Biochem Mol Toxicol, v. 18, p. 107–114.

    Article  PubMed  CAS  Google Scholar 

  • Bruch-Gerharz, D., K. Fehsel, C. Suschek, G. Michel, T. Ruzicka, and V. Kolb-Bachofen, 1996, A proinflammatory activity of interleukin 8 in human skin: expression of the inducible nitric oxide synthase in psoriatic lesions and cultured keratinocytes: J Exp Med, v. 184, p. 2007–2012.

    Article  PubMed  CAS  Google Scholar 

  • Chang, H. R., D. A. Tsao, S. R. Wang, and H. S. Yu, 2003, Expression of nitric oxide synthases in keratinocytes after UVB irradiation: Arch Dermatol Res, v. 295, p. 293–296.

    Article  PubMed  CAS  Google Scholar 

  • Coopman, S. A., R. A. Johnson, R. Platt, and R. S. Stern, 1993, Cutaneous disease and drug reactions in HIV infection: N Engl J Med, v. 328, p. 1670–1674.

    Article  PubMed  CAS  Google Scholar 

  • Crow, J. P., and J. S. Beckman, 1995, The role of peroxynitrite in nitric oxide-mediated toxicity: Curr Top Microbiol Immunol, v. 196, p. 57–73.

    PubMed  CAS  Google Scholar 

  • Crow, J. P., and H. Ischiropoulos, 1996, Detection and quantitation of nitrotyrosine residues in proteins: in vivo marker of peroxynitrite: Methods Enzymol, v. 269, p. 185–194.

    Article  PubMed  CAS  Google Scholar 

  • Cuzzocrea, S., D. P. Riley, A. P. Caputi, and D. Salvemini, 2001, Antioxidant therapy: a new pharmacological approach in shock, inflammation, and ischemia/reperfusion injury: Pharmacol Rev, v. 53, p. 135–159.

    PubMed  CAS  Google Scholar 

  • Czapski, G., and S. Goldstein, 1995, The role of the reactions of.NO with superoxide and oxygen in biological systems: a kinetic approach: Free Radic Biol Med, v. 19, p. 785–794.

    Article  PubMed  CAS  Google Scholar 

  • Deliconstantinos, G., V. Villiotou, and J. C. Stavrides, 1996, Alterations of nitric oxide synthase and xanthine oxidase activities of human keratinocytes by ultraviolet B radiation. Potential role for peroxynitrite in skin inflammation: Biochem Pharmacol, v. 51, p. 1727–1738.

    Article  PubMed  CAS  Google Scholar 

  • Deliconstantinos, G., V. Villiotou, and J. C. Stravrides, 1995, Release by ultraviolet B (u.v.B) radiation of nitric oxide (NO) from human keratinocytes: a potential role for nitric oxide in erythema production: Br J Pharmacol, v. 114, p. 1257–1265.

    PubMed  CAS  Google Scholar 

  • Della Corte, E., and F. Stirpe, 1968, The regulation of rat-liver xanthine oxidase: Activation by proteolytic enzymes: FEBS Lett, v. 2, p. 83–84.

    Article  PubMed  CAS  Google Scholar 

  • Ellis, E. A., D. L. Guberski, B. Hutson, and M. B. Grant, 2002, Time course of NADH oxidase, inducible nitric oxide synthase and peroxynitrite in diabetic retinopathy in the BBZ/WOR rat: Nitric Oxide, v. 6, p. 295–304.

    Article  PubMed  CAS  Google Scholar 

  • Esposito, K., F. Nappo, R. Marfella, G. Giugliano, F. Giugliano, M. Ciotola, L. Quagliaro, A. Ceriello, and D. Giugliano, 2002, Inflammatory cytokine concentrations are acutely increased by hyperglycemia in humans: role of oxidative stress: Circulation, v. 106, p. 2067–2072.

    Article  PubMed  CAS  Google Scholar 

  • Ferdinandy, P., 2006, Peroxynitrite: just an oxidative/nitrosative stressor or a physiological regulator as well? Br J Pharmacol, v. 148, p. 1–3.

    Article  PubMed  CAS  Google Scholar 

  • Filep, J. G., C. Lapierre, S. Lachance, and J. S. Chan, 1997, Nitric oxide co-operates with hydrogen peroxide in inducing DNA fragmentation and cell lysis in murine lymphoma cells: Biochem J, 321 (Pt 3), 897–901.

    PubMed  CAS  Google Scholar 

  • Fuchs, J., T. M. Zollner, R. Kaufmann, and M. Podda, 2001, Redox-modulated pathways in inflammatory skin diseases: Free Radic Biol Med, v. 30, p. 337–353.

    Article  PubMed  CAS  Google Scholar 

  • Garasic, J. M., and M. A. Creager, 2001, Percutaneous interventions for lower-extremity peripheral atherosclerotic disease: Rev Cardiovasc Med, v. 2, p. 120–125.

    PubMed  CAS  Google Scholar 

  • Goldstein, S., and G. Czapski, 1995, The reaction of NO. with O2.- and HO2.: a pulse radiolysis study: Free Radic Biol Med, v. 19, p. 505–510.

    Article  PubMed  CAS  Google Scholar 

  • Gosset, P., B. Wallaert, A. B. Tonnel, and C. Fourneau, 1999, Thiol regulation of the production of TNF-alpha, IL-6 and IL-8 by human alveolar macrophages: Eur Respir J, v. 14, p. 98–105.

    Article  PubMed  CAS  Google Scholar 

  • Greenstein, A. J., H. D. Janowitz, and D. B. Sachar, 1976, The extra-intestinal complications of Crohn’s disease and ulcerative colitis: a study of 700 patients: Medicine (Baltimore), v. 55, p. 401–412.

    Article  CAS  Google Scholar 

  • Halliwell, B., Gutteride, JM, 1999, Free Radicals in Biology and Medicine: Avon, Oxford University Press.

    Google Scholar 

  • Harrison, R., 2002, Structure and function of xanthine oxidoreductase: where are we now? Free Radic Biol Med, v. 33, p. 774–797.

    Article  PubMed  CAS  Google Scholar 

  • Henry, Y., M. Lepoivre, J. C. Drapier, C. Ducrocq, J. L. Boucher, and A. Guissani, 1993, EPR characterization of molecular targets for NO in mammalian cells and organelles: Faseb J, v. 7, p. 1124–1134.

    PubMed  CAS  Google Scholar 

  • Herold, S., and A. Fago, 2005, Reactions of peroxynitrite with globin proteins and their possible physiological role: Comp Biochem Physiol A Mol Integr Physiol, 142, 124–129

    Article  PubMed  Google Scholar 

  • Hooper, D. C., S. Spitsin, R. B. Kean, J. M. Champion, G. M. Dickson, I. Chaudhry, and H. Koprowski, 1998, Uric acid, a natural scavenger of peroxynitrite, in experimental allergic encephalomyelitis and multiple sclerosis: Proc Natl Acad Sci USA, v. 95, p. 675–680.

    Article  PubMed  CAS  Google Scholar 

  • Huie, R. E., and S. Padmaja, 1993, The reaction of no with superoxide: Free Radic Res Commun, v. 18, p. 195–199.

    Article  PubMed  CAS  Google Scholar 

  • Hunt, J. V., R. T. Dean, and S. P. Wolff, 1988, Hydroxyl radical production and autoxidative glycosylation. Glucose autoxidation as the cause of protein damage in the experimental glycation model of diabetes mellitus and ageing: Biochem J, v. 256, p. 205–212.

    PubMed  CAS  Google Scholar 

  • Johanson, C. E., and M. W. Fischman, 1989, The pharmacology of cocaine related to its abuse: Pharmacol Rev, v. 41, p. 3–52.

    PubMed  CAS  Google Scholar 

  • Jones, D. P., J. L. Carlson, V. C. Mody, J. Cai, M. J. Lynn, and P. Sternberg, 2000, Redox state of glutathione in human plasma: Free Radic Biol Med, v. 28, p. 625–635.

    Article  PubMed  CAS  Google Scholar 

  • Kagoura, M., C. Matsui, M. Toyoda, and M. Morohashi, 2001, Immunohistochemical study of inducible nitric oxide synthase in skin cancers: J Cutan Pathol, v. 28, p. 476–481.

    Article  PubMed  CAS  Google Scholar 

  • Katiyar, S. K., F. Afaq, A. Perez, and H. Mukhtar, 2001, Green tea polyphenol (-)-epigallocatechin-3-gallate treatment of human skin inhibits ultraviolet radiation-induced oxidative stress: Carcinogenesis, v. 22, p. 287–294.

    Article  PubMed  CAS  Google Scholar 

  • Katiyar, S. K., A. Challa, T. S. McCormick, K. D. Cooper, and H. Mukhtar, 1999, Prevention of UVB-induced immunosuppression in mice by the green tea polyphenol (-)-epigallocatechin-3-gallate may be associated with alterations in IL-10 and IL-12 production: Carcinogenesis, v. 20, p. 2117–2124.

    Article  PubMed  CAS  Google Scholar 

  • Klotz, L. O., S. M. Schieke, H. Sies, and N. J. Holbrook, 2000, Peroxynitrite activates the phosphoinositide 3-kinase/Akt pathway in human skin primary fibroblasts: Biochem J, 352 Pt 1, 219–225.

    Article  PubMed  CAS  Google Scholar 

  • Kohen, R., and I. Gati, 2000, Skin low molecular weight antioxidants and their role in aging and in oxidative stress: Toxicology, v. 148, p. 149–157.

    Article  PubMed  CAS  Google Scholar 

  • Kohen, R., and A. Nyska, 2002, Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification: Toxicol Pathol, v. 30, p. 620–650.

    Article  PubMed  CAS  Google Scholar 

  • Koy., A., 1996, initiation of acute phase response and synthesise of cytokines: Biochim Biophys Acta, v. 1317, p. 84–94.

    Google Scholar 

  • Koyama, S., S. Fujii, and M. Aizawa, 2002, Post-transcriptional regulation of immunomodulatory cytokines production in human skin fibroblasts by intense mechanical stresses: J Biosci Bioeng, v. 93, p. 234–239.

    Article  PubMed  CAS  Google Scholar 

  • Kuo, Y. R., F. S. Wang, S. F. Jeng, B. S. Lutz, H. C. Huang, and K. D. Yang, 2004, Nitrosoglutathione improves blood perfusion and flap survival by suppressing iNOS but protecting eNOS expression in the flap vessels after ischemia/reperfusion injury: Surgery, v. 135, p. 437–446.

    Article  PubMed  Google Scholar 

  • Lee, S. C., J. W. Lee, J. E. Jung, H. W. Lee, S. D. Chun, I. K. Kang, Y. H. Won, and Y. P. Kim, 2000, Protective role of nitric oxide-mediated inflammatory response against lipid peroxidation in ultraviolet B-irradiated skin: Br J Dermatol, v. 142, p. 653–659.

    Article  PubMed  CAS  Google Scholar 

  • Marletta, M. A., 1994, Nitric oxide synthase: aspects concerning structure and catalysis: Cell, v. 78, p. 927–930.

    Article  PubMed  CAS  Google Scholar 

  • Matata, B. M., and M. Galinanes, 2002, Peroxynitrite is an essential component of cytokines production mechanism in human monocytes through modulation of nuclear factor-kappa B DNA binding activity: J Biol Chem, v. 277, p. 2330–2335.

    Article  PubMed  CAS  Google Scholar 

  • Merenyi, G., and J. Lind, 1998, Free radical formation in the peroxynitrous acid (ONOOH)/peroxynitrite (ONOO-) system: Chem Res Toxicol, v. 11, p. 243–246.

    Article  PubMed  CAS  Google Scholar 

  • Murakami, A., W. Kuki, Y. Takahashi, H. Yonei, Y. Nakamura, Y. Ohto, H. Ohigashi, and K. Koshimizu, 1997, Auraptene, a citrus coumarin, inhibits 12-O-tetradecanoylphorbol-13-acetate-induced tumor promotion in ICR mouse skin, possibly through suppression of superoxide generation in leukocytes: Jpn J Cancer Res, v. 88, p. 443–452.

    PubMed  CAS  Google Scholar 

  • Nachbar, F., and H. C. Korting, 1995, The role of vitamin E in normal and damaged skin: J Mol Med, v. 73, p. 7–17.

    Article  PubMed  CAS  Google Scholar 

  • Nakai, K., M. B. Kadiiska, J. J. Jiang, K. Stadler, and R. P. Mason, 2006, Free radical production requires both inducible nitric oxide synthase and xanthine oxidase in LPS-treated skin: Proc Natl Acad Sci USA, v. 103, p. 4616–4621.

    Article  PubMed  CAS  Google Scholar 

  • Nappi, A. J., and E. Vass, 1998, Hydroxyl radical formation resulting from the interaction of nitric oxide and hydrogen peroxide: Biochim Biophys Acta, v. 1380, p. 55–63.

    PubMed  CAS  Google Scholar 

  • Nathan, C., 1992, Nitric oxide as a secretory product of mammalian cells: Faseb J, v. 6, p. 3051–3064.

    PubMed  CAS  Google Scholar 

  • Nathan, C., and Q. W. Xie, 1994, Regulation of biosynthesis of nitric oxide: J Biol Chem, v. 269, p. 13725–13728.

    PubMed  CAS  Google Scholar 

  • Nishikawa, T., D. Edelstein, X. L. Du, S. Yamagishi, T. Matsumura, Y. Kaneda, M. A. Yorek, D. Beebe, P. J. Oates, H. P. Hammes, I. Giardino, and M. Brownlee, 2000, Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage: Nature, v. 404, p. 787–790.

    Article  PubMed  CAS  Google Scholar 

  • Nishino, T., 1994, The conversion of xanthine dehydrogenase to xanthine oxidase and the role of the enzyme in reperfusion injury: J Biochem (Tokyo), v. 116, p. 1–6.

    CAS  Google Scholar 

  • Pacher, P., I. G. Obrosova, J. G. Mabley, and C. Szabo, 2005, Role of nitrosative stress and peroxynitrite in the pathogenesis of diabetic complications. Emerging new therapeutical strategies: Curr Med Chem, v. 12, p. 267–275.

    PubMed  CAS  Google Scholar 

  • Pasquier, C., B. Pierce, R. L., Willson, 1989, Xanthine oxidase mediated free radical injury: Medical, Biochemical and Chemical Aspects of Free Radicals, Elsevier, Amsterdam, The Netherlands, 125–432.

    Google Scholar 

  • Perchellet, J. P., M. D. Owen, T. D. Posey, D. K. Orten, and B. A. Schneider, 1985, Inhibitory effects of glutathione level-raising agents and D-alpha-tocopherol on ornithine decarboxylase induction and mouse skin tumor promotion by 12-O-tetradecanoylphorbol-13-acetate: Carcinogenesis, v. 6, p. 567–573.

    Article  PubMed  CAS  Google Scholar 

  • Picardi, A., and D. Abeni, 2001, Stressful life events and skin diseases: disentangling evidence from myth: Psychother Psychosom, v. 70, p. 118–136.

    Article  PubMed  CAS  Google Scholar 

  • Pryor, W. A., and G. L. Squadrito, 1995, The chemistry of peroxynitrite: a product from the reaction of nitric oxide with superoxide: Am J Physiol, v. 268, p. L699–L722.

    PubMed  CAS  Google Scholar 

  • Qureshi, A. A., J. Hosoi, S. Xu, A. Takashima, R. D. Granstein, and E. A. Lerner, 1996, Langerhans cells express inducible nitric oxide synthase and produce nitric oxide: J Invest Dermatol, v. 107, p. 815–821.

    Article  PubMed  CAS  Google Scholar 

  • Radi, R., 1998, Peroxynitrite reactions and diffusion in biology: Chem Res Toxicol, v. 11, p. 720–721.

    Article  PubMed  CAS  Google Scholar 

  • Radi, R., J. S. Beckman, K. M. Bush, and B. A. Freeman, 1991a, Peroxynitrite-induced membrane lipid peroxidation: the cytotoxic potential of superoxide and nitric oxide: Arch Biochem Biophys, v. 288, p. 481–487.

    Article  PubMed  CAS  Google Scholar 

  • Radi, R., J. S. Beckman, K. M. Bush, and B. A. Freeman, 1991b, Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide: J Biol Chem, v. 266, p. 4244–4250.

    PubMed  CAS  Google Scholar 

  • Radi, R., G. Peluffo, M. N. Alvarez, M. Naviliat, and A. Cayota, 2001, Unraveling peroxynitrite formation in biological systems: Free Radic Biol Med, v. 30, p. 463–488.

    Article  PubMed  CAS  Google Scholar 

  • Ramsey, S. D., K. Newton, D. Blough, D. K. McCulloch, N. Sandhu, G. E. Reiber, and E. H. Wagner, 1999, Incidence, outcomes, and cost of foot ulcers in patients with diabetes: Diabetes Care, v. 22, p. 382–387.

    Article  PubMed  CAS  Google Scholar 

  • Rees, R., D. Smith, T. D. Li, B. Cashmer, W. Garner, J. Punch, and D. J. SmithJr., 1994, The role of xanthine oxidase and xanthine dehydrogenase in skin ischemia: J Surg Res, v. 56, p. 162–167.

    Article  PubMed  CAS  Google Scholar 

  • Regnier, M., A. Patwardhan, A. Scheynius, and R. Schmidt, 1998, Reconstructed human epidermis composed of keratinocytes, melanocytes and Langerhans cells: Med Biol Eng Comput, v. 36, p. 821–824.

    Article  PubMed  CAS  Google Scholar 

  • Richeson C.E., M. P., Bowry V.W., and Ingold K.U., 1998, The Complex Chemistry of Peroxynitrite decomposition: New Insight: J. Am. Chem., v. 120, p. 7211–7219.

    Article  CAS  Google Scholar 

  • Richey, M. L., H. K. Richey, and N. A. Fenske, 1988, Aging-related skin changes: development and clinical meaning: Geriatrics, 43, 49–52, 57–59, 63–64.

    PubMed  CAS  Google Scholar 

  • Rocha, I. M., and L. A. Guillo, 2001, Lipopolysaccharide and cytokines induce nitric oxide synthase and produce nitric oxide in cultured normal human melanocytes: Arch Dermatol Res, v. 293, p. 245–248.

    Article  PubMed  CAS  Google Scholar 

  • Rovin, B. H., J. A. Dickerson, L. C. Tan, and J. Fassler, 1997, Modulation of IL-1-induced chemokine expression in human mesangial cells through alterations in redox status: Cytokine, v. 9, p. 178–186.

    Article  PubMed  CAS  Google Scholar 

  • Salgo, M. G., E. Bermudez, G. L. Squadrito, and W. A. Pryor, 1995, Peroxynitrite causes DNA damage and oxidation of thiols in rat thymocytes [corrected]: Arch Biochem Biophys, v. 322, p. 500–505.

    Article  PubMed  CAS  Google Scholar 

  • Schafer, F. Q., and G. R. Buettner, 2001, Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple: Free Radic Biol Med, v. 30, p. 1191–1212.

    Article  PubMed  CAS  Google Scholar 

  • Scott, G. S., and D. C. Hooper, 2001, The role of uric acid in protection against peroxynitrite-mediated pathology: Med Hypotheses, v. 56, p. 95–100.

    Article  PubMed  CAS  Google Scholar 

  • Shohami, E., I. Gati, E. Beit-Yannai, V. Trembovler, and R. Kohen, 1999, Closed head injury in the rat induces whole body oxidative stress: overall reducing antioxidant profile: J Neurotrauma, v. 16, p. 365–376.

    Article  PubMed  CAS  Google Scholar 

  • Squadrito, G. L., and W. A. Pryor, 1998, Oxidative chemistry of nitric oxide: the roles of superoxide, peroxynitrite, and carbon dioxide: Free Radic Biol Med, v. 25, p. 392–403.

    Article  PubMed  CAS  Google Scholar 

  • Stamler, J. S., 1994, Redox signaling: nitrosylation and related target interactions of nitric oxide: Cell, v. 78, p. 931–936.

    Article  PubMed  CAS  Google Scholar 

  • Stirpe, F., and E. Della Corte, 1970, The regulation of rat liver xanthine oxidase: conversion of type D (dehydrogenase) into type O (oxidase) by a thermolabile factor, and reversibility by dithioerythritol: Biochim Biophys Acta, v. 212, p. 195–197.

    PubMed  CAS  Google Scholar 

  • Suarez-Pinzon, W. L., J. G. Mabley, K. Strynadka, R. F. Power, C. Szabo, and A. Rabinovitch, 2001, An inhibitor of inducible nitric oxide synthase and scavenger of peroxynitrite prevents diabetes development in NOD mice: J Autoimmun, v. 16, p. 449–455.

    Article  PubMed  CAS  Google Scholar 

  • Suganuma, M., S. Okabe, M. Kurusu, N. Iida, S. Ohshima, Y. Saeki, T. Kishimoto, and H. Fujiki, 2002, Discrete roles of cytokines, TNF-alpha, IL-1, IL-6 in tumor promotion and cell transformation: Int J Oncol, v. 20, p. 131–136.

    PubMed  CAS  Google Scholar 

  • Szabo, C., 2003, Multiple pathways of peroxynitrite cytotoxicity: Toxicol Lett, v. 140–141, 105–112.

    Article  PubMed  Google Scholar 

  • Tesfamariam, B., 1994, Free radicals in diabetic endothelial cell dysfunction: Free Radic Biol Med, v. 16, p. 383–391.

    Article  PubMed  CAS  Google Scholar 

  • Trenam, C. W., D. R. Blake, and C. J. Morris, 1992, Skin inflammation: reactive oxygen species and the role of iron: J Invest Dermatol, v. 99, p. 675–682.

    Article  PubMed  CAS  Google Scholar 

  • Trouba, K. J., H. K. Hamadeh, R. P. Amin, and D. R. Germolec, 2002, Oxidative stress and its role in skin disease: Antioxid Redox Signal, v. 4, p. 665–673.

    Article  PubMed  CAS  Google Scholar 

  • Valacchi, G., G. Rimbach, C. Saliou, S. U. Weber, and L. Packer, 2001, Effect of benzoyl peroxide on antioxidant status, NF-kappaB activity and interleukin-1alpha gene expression in human keratinocytes: Toxicology, v. 165, p. 225–234.

    Article  PubMed  CAS  Google Scholar 

  • Van den Enden, M. K., J. R. Nyengaard, E. Ostrow, J. H. Burgan, and J. R. Williamson, 1995, Elevated glucose levels increase retinal glycolysis and sorbitol pathway metabolism. Implications for diabetic retinopathy: Invest Ophthalmol Vis Sci, v. 36, p. 1675–1685.

    PubMed  Google Scholar 

  • Virag, L., E. Szabo, E. Bakondi, P. Bai, P. Gergely, J. Hunyadi, and C. Szabo, 2002, Nitric oxide-peroxynitrite-poly(ADP-ribose) polymerase pathway in the skin: Exp Dermatol, v. 11, p. 189–202.

    Article  PubMed  CAS  Google Scholar 

  • Wang, R., A. Ghahary, Y. J. Shen, P. G. Scott, and E. E. Tredget, 1996, Human dermal fibroblasts produce nitric oxide and express both constitutive and inducible nitric oxide synthase isoforms: J Invest Dermatol, v. 106, p. 419–427.

    Article  PubMed  CAS  Google Scholar 

  • Wheeler, L. A., A. Aswad, M. J. Connor, and N. Lowe, 1986, Depletion of cutaneous glutathione and the induction of inflammation by 8-methoxypsoralen plus UVA radiation: J Invest Dermatol, v. 87, p. 658–662.

    Article  PubMed  CAS  Google Scholar 

  • Whiteman, M., U. Ketsawatsakul, and B. Halliwell, 2002, A reassessment of the peroxynitrite scavenging activity of uric acid: Ann N Y Acad Sci, v. 962, p. 242–259.

    Article  PubMed  CAS  Google Scholar 

  • Wohlrab, J., D. Wohlrab, and F. Meiss, 2007, Skin diseases in diabetes mellitus: J Dtsch Dermatol Ges, v. 5, p. 37–53.

    Article  PubMed  Google Scholar 

  • Zhao, J., M. Lahiri-Chatterjee, Y. Sharma, and R. Agarwal, 2000, Inhibitory effect of a flavonoid antioxidant silymarin on benzoyl peroxide-induced tumor promotion, oxidative stress and inflammatory responses in SENCAR mouse skin: Carcinogenesis, v. 21, p. 811–816.

    Article  PubMed  CAS  Google Scholar 

  • Zouki, C., L. Jozsef, S. Ouellet, Y. Paquette, and J. G. Filep, 2001, Peroxynitrite mediates cytokine-induced IL-8 gene expression and production by human leukocytes: J Leukoc Biol, v. 69, p. 815–824.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Portugal, M., Kohen, R. (2008). Peroxynitrite: A Key Molecule in Skin Tissue Response to Different Types of Stress. In: Valacchi, G., Davis, P.A. (eds) Oxidants in Biology. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8399-0_2

Download citation

Publish with us

Policies and ethics