Skip to main content

Stem Cell System of Sponge

  • Chapter
Stem Cells

The stem cell system is one of the unique systems that have evolved in multicellular, but not unicellular, organisms. To understand the principle stem cell system in metazoans, it is important to discover the molecular and cellular mechanisms of the stem cell system in sponges (Porifera), the evolutionarily oldest living multicellular organisms. The pluripotency of sponge cells called archeocytes is suggested by basic histological studies and it is generally accepted that archeocytes are the stem cells in sponges. Germ cells are reported to originate from archeocytes or choanocytes, suggesting that choanocytes maintain pluripotency even after they have fully differentiated to have a collar, flagellum and the function of nutrient entrapment. Recently, increasing molecular biological studies of sponges have been reported, including the identification of lineage-specific molecular markers. The stem cell system of sponge is discussed here based on both histological and molecular biological studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Borojevic R (1966) Étude expérimentale de la différentiation des cellules de l’éponge au cours de son dévelopement. Dev. Biol. 14:130–153.

    Article  PubMed  CAS  Google Scholar 

  • Borojevic R (1970) Différentiation cellulaire dans l’embryogénèse et al morphogénèse chez les spongiaires. Sym. Zool. Soc. Lond., 25:467–490.

    Google Scholar 

  • Bosch TC (2007) Why polyps regenerate and we don’t: towards a cellular and molecular framework for Hydra regeneration. Dev. Biol. 303:421–433.

    Article  PubMed  CAS  Google Scholar 

  • Boury-Esnault N (1970) Un phénomène de bourgeonnement externe chez l’eponge Axinella damicornis (Esper.). Cah. Biol. Mar. 11:491–496.

    Google Scholar 

  • Boury-Esnault N (2006) Systematics and evolution of Demospongiae. Can. J. Zool. 84:205–224.

    Article  Google Scholar 

  • Brien P (1976) La croissance des spongillidae. Formation des choanocytes et des spicules. Bull. Biol. France Belg. 110:211–252.

    Google Scholar 

  • Buscema M, Van de Vyver G (1979) Étude ultrastructurale de l’aggrégation des cellules dissociées de l’éponge Ephydatia fluviatilis. Colloq. Internat. C.N.R.S., Paris 291:225–231.

    Google Scholar 

  • Buscema M, De Sutter D, Van de Vyver G (1980) Ultrastructural study of differentiation processes during aggregation of purified sponge archaeocytes. Roux’s Arch. Dev. Biol. 188:45–53.

    Google Scholar 

  • Cha JN, Shimizu K, Zhou Y, Christiansen SC, Chmelka BF, Stucky GD, Morse DE (1999) Silicatein filaments and subunits from a marine sponge direct the polymerization of silica and silicones in vitro. Proc. Natl. Acad. Sci. U S A 96:361–365.

    Article  PubMed  CAS  Google Scholar 

  • Connes R (1967) Structure et développement des bourgeons chez l’éponge siliceuse Tethya lyncurium Lamark. Arch. Zool. Exp.Gén. 108:157–195.

    Google Scholar 

  • Connes R (1968) Étude histologique, cytologique et expérimentale de la régénération et de la reproduction asexuée chez Tethya lyncurium Lamarck (=T. aurantium Pallas) (Demosponges). Thèse. Univ. Montpellier, pp. 1–193.

    Google Scholar 

  • Connes R (1977) Contribution a l’étude de la gemmulogenèse chez la démosponge marine Suberites domuncula (Olivi) Nardo. Arch. Zool. Exp.Gén. 118:391–407.

    Google Scholar 

  • Connes R, Paris J, Artiges JM (1974) L’origine des cellules blastogenetiques chez Suberites domuncula Nardo. L’équilibre choanocytes-archeocytes chez les spontiaires. Ann. Sci. Natur. Zool. (Paris) 16:111–118.

    Google Scholar 

  • Custodio MR, Prokic I, Steffen R, Koziol C, Borojevic R, Brummer F, Nickel M, Müller WE (1998) Primmorphs generated from dissociated cells of the sponge Suberites domuncula: a model system for studies of cell proliferation and cell death. Mech. Ageing Dev. 105:45–59.

    Article  PubMed  CAS  Google Scholar 

  • De Sutter D, Tulip A (1981) A method for large scale sponge cell separation: 1 g sedimentation (Cellular composition of the fractions obtained). Biol. Cell. 40:63–68.

    Google Scholar 

  • De Sutter D, Van de Vyver G (1977) Aggregative properties of different cell types of the fresh-water sponge Ephydatia fluviatilis isolated on ficoll gradients. Roux’s Arch. Dev. Biol. 183:151–161.

    Google Scholar 

  • De Sutter D, Van de Vyver G (1979) Cell recognition properties of isolated sponge cell fractions. Colloq. Internat. C.N.R.S., Paris, 291:217–224.

    Google Scholar 

  • De Vos L (1971) Étude ultrastructurale de la gemmulogenèse chez Ephydatia fluviatilis. J. Micros. 10:283–304.

    CAS  Google Scholar 

  • De Vos L (1977) Morphogenesis of the collagenous shell of the gemmules of a fresh-water sponge Ephydatia fluviaitlis. Arch. Biol. 88:479–494.

    Google Scholar 

  • Diaz JP (1977) Transformation histologiques et cytologiques post-traumatiques chez la demosponge Suberites massa Nardo. Zoologie 308:375–796.

    Google Scholar 

  • Diaz J-P (1979) Variations, differenciations et fonctions des categories cellulaire de la demosponge d’eau saumaitres, Suberites massa Nardo, au cours du cycle biologique annuel et dans des conditions experimentales. Thèse. Univ. Sci. Tech. Languedoc., pp. 1–332.

    Google Scholar 

  • Diaz J-P, Connes R, Paris J (1973) Origine de la lignée germinale chez une démosponge de l’etang de Thau: Suberites massa Nardo. C.R. Acad. Sci., Paris 277:661–663.

    Google Scholar 

  • Diaz J-P, Connes R, Paris J (1975) Étude ultrastructurale de l’ovogenése d’une demosponge: Suberites massa Nardo. J. Micros. 24:105–116.

    Google Scholar 

  • Efremova SM (1970) Proliferation activity and synthesis of protein in the cells of fresh-water sponges during development after dissociation. In: W.G. Fry (ed.). Sym. Zool. Soc. Lond., 25:399–413.

    Google Scholar 

  • Ereskovsky AV (1999) Development of sponges of the order Haplosclerida. Russ. J. Mar. Biol. 25:361–371.

    Google Scholar 

  • Franzen W (1988) Oogenesis and larval development of Scypha ciliata (Porifera, Calcarea). Zoomorphology (Berl.). 107:349–457.

    Article  Google Scholar 

  • Funayama N, Nakatsukasa M, Kuraku S, Takechi K, Dohi M, Iwabe N, Miyata T, Agata K (2005a) Isolation of Ef silicatein and Ef lectin as molecular markers for sclerocytes and cells involved in innate immunity in the freshwater sponge, Ephydatia fluviatilis. Zool. Sci. 22:1113–1122.

    Article  PubMed  CAS  Google Scholar 

  • Funayama N, Nakatsukasa M, Hayashi T, Agata K (2005b) Isolation of the choanocyte in the freshwater sponge, Ephydatia fluviatilis and its lineage marker, Ef annexin. Dev. Growth Differ. 47:243–253.

    Article  PubMed  CAS  Google Scholar 

  • Gallissian M (1981) Étude ultrastructural de la l’ovogenèse chez quelques éponges calcaires (Porifera, Calcarea). Arch. Zool. Exp.Gén. 122:329–340.

    Google Scholar 

  • Harrison FW (1974) Histology and histochemistry of developing outgrowths of Corvameyenia carolinensis Harrison (Porifera: Spongillidae). J. Morph. 144:185–194.

    Article  Google Scholar 

  • Herlant-Meewis H (1948) La gemmulation chez Suberites domuncula. Arch. Anat. Micros. 37:289–322.

    Google Scholar 

  • Höhr D (1977) Differenzierungavorgange in der keimenden gemmula von Ephydatia fluviatilis. Wilhelm Roux’s Arch. 182:329–346.

    Article  Google Scholar 

  • Krasko A, Lorenz B, Batel R, Schroder HC, Müller IM, Müller WE (2000) Expression of silicatein and collagen genes in the marine sponge Suberites domuncula is controlled by silicate and myotrophin. Eur. J. Biochem. 267:4878–4887.

    Article  PubMed  CAS  Google Scholar 

  • Krasko A, Schroder HC, Batel R, Grebenjuk VA, Steffen R, Müller IM, Müller WE (2002) Iron induces proliferation and morphogenesis in primmorphs from the marine sponge Suberites domuncula. DNA Cell Biol. 21:67–80.

    Article  PubMed  CAS  Google Scholar 

  • Langenbruch PF (1981) Zur entstehung der gemmulae bei Ephydatia fluviatilis L. (Porifera). Zoomorphology 97:263–284.

    Article  Google Scholar 

  • Leveaux M (1941) Contribution à l’étude histologique de l’ovogénèse et de la spermatogénèse des spongillidae. Ann. Soc. Roy. Zool. Belg. 72:251–269.

    Google Scholar 

  • Leys SP, Ereskovsky AV (2006) Embryogenesis and larval differentiation in sponges. Can. J. Zool. 84:262–287.

    Article  Google Scholar 

  • Leys SP, Mackie GO, Reiswig HM (2007) The biology of glass sponges. Adv. Mar. Biol. 52:1–145.

    Article  PubMed  CAS  Google Scholar 

  • Lin H (2007) piRNAs in the germ line. Science 316:397.

    Article  PubMed  CAS  Google Scholar 

  • Megosh, H. B., Cox, D. N., Campbell, C., Lin, H. (2006) The role of PIWI and the miRNA machinery in Drosophila germline determination Curr. Biol. 16: 1884–1894.

    CAS  Google Scholar 

  • Mohri K, Nakatsukasa M, Masuda Y, Agata K, Funayama N, Towards understanding the morphogenesis of siliceous spicules in freshwater sponge: Differential expression of spicule-type specific silicatein genes in Ephydatia Fluviatilis Dev. Dyn. under revision.

    Google Scholar 

  • Müller WE (2006) The stem cell concept in sponges (Porifera): Metazoan traits. Semin Cell Dev. Biol. 17:481–491.

    Article  PubMed  Google Scholar 

  • Müller WE, Wiens M, Müller IM, Schröder HC (2004) The chemokine networks in sponges: potential roles in morphogenesis, immunity and stem cell formation. Prog. Mol. Subcell. Biol. 34:103–143.

    PubMed  Google Scholar 

  • O’Donnell KA, Boeke JD (2007) Mighty Piwis defend the germline against genome intruders. Cell 129:37–44.

    Article  PubMed  CAS  Google Scholar 

  • Paulus W (1989) Ultrastructural investigation of spermatogenesis in Spongilla lacustris and Ephydatia fluviatilis (Porifera, Spongillidae). Zoomorphology 109:123–130.

    Article  Google Scholar 

  • Paulus W, Weissenfels N (1986) The spermatogenesis of Ephydatia fluviatilis (Porifera). Zoomorphology 106:155–162.

    Article  Google Scholar 

  • Perovic S, Schroder HC, Sudek S, Grebenjuk VA, Batel R, Stifanic M, Müller IM, Müller WE (2003) Expression of one sponge Iroquois homeobox gene in primmorphs from Suberites domuncula during canal formation. Evol. Dev. 5:240–250.

    Article  PubMed  CAS  Google Scholar 

  • Perovic-Ottstadt S, Cetkovic H, Gamulin V, Schroder HC, Kropf K, Moss C, Korzhev M, Diehl-Seifert B, Müller IM, Müller WE (2004) Molecular markers for germ cell differentiation in the demosponge Suberites domuncula. Int. J. Dev. Biol. 48:293–305.

    Article  PubMed  CAS  Google Scholar 

  • Rasmont R (1956) La gemmulation des spongillides. IV. Morphologie de la gemmulation chez Ephydatia fluviatilis et Spongilla lacustris. Ann. Soc. Roy. Zool. Belg. 253–262.

    Google Scholar 

  • Rasmont R (1974) Stimulation of cell aggregation by theophylline in the asexual reproduction of fresh-water sponges (Ephydatia fluviatilis). Experientia 30:792–794.

    Article  PubMed  CAS  Google Scholar 

  • Rasmont R, De Vos L (1974) Étude cinématographique de la gemmulation d’une éponge d’eau douse: Ephydatia fluviatilis. Arch. Biol. 85:329–341.

    Google Scholar 

  • Sara M (1974) Sexuality in the Porifera. Boll. Zool. 41:327–348.

    Google Scholar 

  • Scadden DT (2006) The stem-cell niche as an entity of action. Nature 441:1075–1079.

    Article  PubMed  CAS  Google Scholar 

  • Schröder HC, Krasko A, Le Pennec G, Adell T, Wiens M, Hassanein H, Müller IM, Müller WE (2003) Silicase, an enzyme which degrades biogenous amorphous silica: contribution to the metabolism of silica deposition in the demosponge Suberites domuncula. Prog. Mol. Subcell. Biol. 33:249–268.

    PubMed  Google Scholar 

  • Seto AG, Kingston RE, Lau NC (2007) The coming of age for Piwi proteins. Mol. Cell 26:603–609.

    Article  PubMed  CAS  Google Scholar 

  • Seydoux G, Braun RE (2006) Pathway to totipotency: lessons from germ cells. Cell 127:891–904.

    Article  PubMed  CAS  Google Scholar 

  • Shimizu K, Cha J, Stucky GD, Morse DE (1998) Silicatein alpha: cathepsin L-like protein in sponge biosilica. Proc. Natl. Acad. Sci. U S A 95:6234–6238.

    Article  PubMed  CAS  Google Scholar 

  • Simpson TL (1984) The Cell Biology of Sponges. Springer-Verlag, New York.

    Google Scholar 

  • Tuzet O, Garrone, R., and Pavans de Ceccatty, M. (1970a) Origine choancytaire de la lignée germinale mâle chez la démospongie Aplysilla rosea Schulze (Dendroceratide). C. R. Acad.Sc. Paris 270:955–957.

    Google Scholar 

  • Tuzet O, Garrone, R., and Pavans de Ceccatty, M. (1970b) Observations ultrastructurales sur la demosponge Aplysilla rosea Schulze (Dendroceratide): Une metaplasie exemplaire. Ann. Sci. Nature. Zool., Paris 12:27–50.

    Google Scholar 

  • Uriz MJ (2006) Mineral skeletogenesis in sponges. Can. J. Zool. 84:322–356.

    Article  CAS  Google Scholar 

  • Van de Vyver G (1975) Phenomena of cellular recognition in sponges. Curr. Top. Dev. Biol. 10:123–140.

    Article  PubMed  Google Scholar 

  • Wilson HV (1907) On some phenomena of coalescence and regeneration in sponges. J Exp. Zool. 5:245–258.

    Article  Google Scholar 

  • Xie T, Li L (2007) Stem cells and their niche: an inseparable relationship. Development 134:2001–2006.

    Article  PubMed  CAS  Google Scholar 

  • Zhou Y, Shimizu K, Cha JN, Stucky GD, Morse DE (1999) Efficient catalysis of polysiloxane synthesis by silicatein r requires specific hydroxy and imidazole functionalities. Angew. Chem. Int. Ed. 38:780–782.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Funayama, N. (2008). Stem Cell System of Sponge. In: Bosch, T.C.G. (eds) Stem Cells. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8274-0_2

Download citation

Publish with us

Policies and ethics