Skip to main content

Part of the book series: Advances in Muscle Research ((ADMR,volume 3))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbott J, Holtzer H (1966) The loss of phenotypic traits by differentiated cells. 3. The reversible behavior of chondrocytes in primary cultures. J Cell Biol 28:473–487

    Article  PubMed  CAS  Google Scholar 

  • Bader D, Masaki T, Fischman DA (1982) Immunochemical analysis of myosin heavy chain during avian myogenesis in vivo and in vitro. J Cell Biol 95:763–770

    Article  PubMed  CAS  Google Scholar 

  • Bandman E (1985a) Continued expression of neonatal myosin heavy chain in adult dystrophic skeletal muscle. Science 227: 780–782

    Article  CAS  Google Scholar 

  • Bandman E (1985b) Myosin isoenzyme transitions in muscle development, maturation, and disease. Int Rev Cytol 97:97–131

    CAS  Google Scholar 

  • Bandman E, Matsuda R, Micou-Eastwood J, Strohman R (1981) In vitro translation of RNA from embryonic and from adult chicken pectoralis muscle produces different myosin heavy chains. FEBS Lett 136:301–305

    Article  PubMed  CAS  Google Scholar 

  • Bárány M (1967) ATPase activity of myosin correlated with speed of muscle shortening. J Gen Physiol Suppl 50:197–218

    Article  Google Scholar 

  • Bischoff R (1975) Regeneration of single skeletal muscle fibers in vitro. Anat Rec 182:215–35

    Article  PubMed  CAS  Google Scholar 

  • Blau HM, Hughes SM (1990) Cell lineage in vertebrate development. Curr Opin Cell Biol 2:981–985

    Article  PubMed  CAS  Google Scholar 

  • Carrel A, Burrows M (1911) Cultivation of tissues in vitro and its technique. J Exp Med 13:387–396

    Article  PubMed  Google Scholar 

  • Clark WE (1946) An experimental study of the regeneration of mammalian striped muscle. J Anat 80:24–36

    PubMed  CAS  Google Scholar 

  • Coleman JR, Coleman AW (1968) Muscle differentiation and macromolecular synthesis. J Cell Physiol 72:19–34

    Article  PubMed  CAS  Google Scholar 

  • Cooper G, Konigsberg I (1961) Dynamics of myogenesis in vitro. Anat Rec 140:195–205

    Article  PubMed  CAS  Google Scholar 

  • Coons AH, Kaplan MH (1950) Localization of antigen in tissue cells; improvements in a method for the detection of antigen by means of fluorescent antibody. J Exp Med 91:1–13

    Article  PubMed  CAS  Google Scholar 

  • Crow MT, Stockdale FE (1986a) Myosin expression and specialization among the earliest muscle fibers of the developing avian limb. Dev Biol 113:238–254

    Article  CAS  Google Scholar 

  • Crow MT, Stockdale FE (1986b) The developmental program of fast myosin heavy chain expression in avian skeletal muscles. Dev Biol 118:333–342

    Article  CAS  Google Scholar 

  • Devoto SH, Melançon E, Eisen JS, Westerfield M (1996) Identification of separate slow and fast muscle precursor cells in vivo, prior to somite formation. Development 122:3371–3380

    PubMed  CAS  Google Scholar 

  • DiMario JX, Stockdale FE (1997) Both myoblast lineage and innervation determine fiber type and are required for expression of the slow myosin heavy chain 2 gene. Dev Biol 188:167–80

    Article  PubMed  CAS  Google Scholar 

  • Dulbecco R (1952) Production of plagues in monolayer tissue culture by single particles of an animal virus. Proc Nat Acad Sci 38:747–752

    Article  PubMed  CAS  Google Scholar 

  • Düsterhoft S, Yablonka-Reuveni Z, Pette D (1990) Characterization of myosin isoforms in satellite cell cultures from adult rat diaphragm, soleus and tibialis anterior muscles. Differentiation 45:185–191

    Article  PubMed  Google Scholar 

  • Duxson MJ, Usson Y, Harris AJ (1989) The origin of secondary myotubes in mammalian skeletal muscles: ultrastructural studies. Development 107:743–750

    PubMed  CAS  Google Scholar 

  • Earle WR, Sanford KK, Evans VJ, Waltz HK, Shannon JE Jr (1951) The influence of inoculum size on proliferation in tissue cultures. J Natl Cancer Inst 12:133–53

    PubMed  CAS  Google Scholar 

  • Emerson CP Jr, Beckner SK (1975) Activation of myosin synthesis in fusing and mononucleated myoblasts. J Mol Biol 93: 431–447

    Article  PubMed  CAS  Google Scholar 

  • Evans V, Earle W, Sanford KK, Shannon JE, Waltz HK (1951) The preparation and handling of replicate tissue cultures for quantitative studies. J Natl Cancer Inst 11:907–927

    PubMed  CAS  Google Scholar 

  • Feldman JL, DiMario JX, Stockdale FE (1992) Developmental appearance of adult myoblasts (satellite cells): studies of adult myoblasts in culture and adult myoblast transfer into embryonic avian limbs. In: Limb Development & Regeneration, Part B. (Ed. J.A. Fallon, P.F. Goetinck, R.O. Kelly and D.L. Stocum). John Wiley & Sons, Inc., New York, NY 563–574

    Google Scholar 

  • Feldman JL, Stockdale FE (1988) Commitment to formation of distinct myotube types in chicken satellite cells. J Cell Bioch 12C:325

    Google Scholar 

  • Feldman JL, Stockdale FE (1990) Skeletal muscle satellite cell diversity: satellite cells form fibers of different types in cell culture. Dev Biol 143:320–334

    Article  Google Scholar 

  • Fell H (1972) Tissue culture and its contribution to biology and medicine. J Exp Biol 57:1–13

    PubMed  CAS  Google Scholar 

  • Finck H, Holtzer H, Marshall JM, Jr. (1956) An immunochemical study of the distribution of myosin in glycerol extracted muscle. J Biophys Biochem Cytol 2(Suppl 4):175–178

    PubMed  CAS  Google Scholar 

  • Gey GO (1954) Some aspects of the constitution and behavior of normal and malignant cells maintained in continuous culture. Harvey Lect 50:154–229

    PubMed  Google Scholar 

  • Ghosh S, Dhoot GK (1998a) Both avian and mammalian embryonic myoblasts are intrinsically heterogeneous. J Muscle Res Cell Motil 19:787–795

    Article  CAS  Google Scholar 

  • Ghosh S, Dhoot GK (1998b) Evidence for distinct fast and slow myogenic cell lineages in human foetal skeletal muscle. J Muscle Res Cell Motil 19:431–441

    Article  CAS  Google Scholar 

  • Gilbert RK, Hazard JB (1965) Regeneration in human skeletal muscle. J Pathol Bacteriol 89:503–512

    Article  PubMed  CAS  Google Scholar 

  • Glick D and Fisher EE (1945) Scientific apparatus and laboratory methods the histochemical localization of adenosinetriphosphatase in plant and animal tissues. Science 102:429–430

    Article  PubMed  CAS  Google Scholar 

  • Gorza L, Sartore S, Triban C, Schiaffino S (1983) Embryonic-like myosin heavy chains in regenerating chicken muscle. Exp Cell Res 143:395–403

    Article  PubMed  CAS  Google Scholar 

  • Grobstein C (1953) Morphogenetic interaction between embryonic mouse tissues separated by a membrane filter. Nature 172:869–870

    Article  PubMed  CAS  Google Scholar 

  • Ham RG (1965) Clonal growth of mammalian cells in a chemically defined, synthetic medium. Proc Natl Acad Sci U S A 53:288–293

    Article  PubMed  CAS  Google Scholar 

  • Harrison R (1907) Observations on the living developing nerve fibre. Proc Soc Exp Biol (N.Y.) 4:140–143

    Google Scholar 

  • Hauschka SD (1974) Clonal analysis of vertebrate myogenesis: III. Developmental changes in muscle-colony forming cells of the human fetal limb. Dev Biol 37:345–368

    Article  PubMed  CAS  Google Scholar 

  • Hoh JF, Hughes S (1988) Myogenic and neurogenic regulation of myosin gene expression in cat jaw-closing muscles regenerating in fast and slow limb muscle beds. J Muscle Res Cell Motil 9:59–72

    Article  PubMed  CAS  Google Scholar 

  • Hoh JFY, Hughes S (1991) Expression of superfast myosin in aneural regenerates of cat jaw muscle. Muscle Nerve 14:316–325

    Article  PubMed  CAS  Google Scholar 

  • Hoh JFY, McGrath PA, White RI (1976) Electrophoretic analysis of multiple forms of myosin in fast-twitch and slow-twitch muscles of the chick. Biochem J 157:87–95

    PubMed  CAS  Google Scholar 

  • Holtfreter J (1943) Properties and functions of the surface coat in amphibian embryos. J Exp Zool 93:251–323

    Article  Google Scholar 

  • Holtzer H, Abbott J, Lash J, Holtzer S (1960) The loss of phenotypic traits by differentiated cells in Vitro, I. Dedifferentiation of Cartilage Cells. Proc Natl Acad Sci U S A 46:1533–1542

    Article  PubMed  CAS  Google Scholar 

  • Holtzer H, Marshall JM, Finck H (1957) An analysis of myogenesis by the use of fluorescent antimyosin. J Biophysic Biochem Cytol 3:705–729

    Article  CAS  Google Scholar 

  • Kalhovde JM, Jerkovic R, Sefland I, Cordonnier C, Calabria E, Schiaffino S, Lomo T (2005) “Fast” and “slow” muscle fibres in hindlimb muscles of adult rats regenerate from intrinsically different satellite cells. J Physiol 562:847–57

    Article  PubMed  CAS  Google Scholar 

  • Kirby E (1892) Experimentelle Untersuchungen uber die Regeneration des quergestreiftem Muskelgewebes. Beit zur Pathol Anat und Allegem Pathol 11:302–119

    Google Scholar 

  • Konigsberg IR (1963) Clonal analysis of myogenesis. Science 140:1273–1284

    Article  PubMed  CAS  Google Scholar 

  • Konigsberg IR, McElvain N, Tootle M, Herrmann H (1960) The dissociability of deoxyribonucleic acid synthesis from the development of multinuclearity of muscle cells in culture. J Biophys Biochem Cytolo 8:333–343

    CAS  Google Scholar 

  • Konigsberg U, Lipton H, Konigsberg IR (1975) The regenerative response of single mature muscle fibers isolated in vitro. Dev Biol 45:260–275

    Article  PubMed  CAS  Google Scholar 

  • Lash J, Holtzer H, Swift H (1957) Regeneration of mature skeletal muscle. Anat Rec 128:679–697

    Article  PubMed  CAS  Google Scholar 

  • Lewis W, Lewis M. (1917) Behavior of cross striated muscle in tissue cultures. Amer J Anat 22:169–194

    Article  Google Scholar 

  • Locke FS (1895) Towards the ideal artificial circulating fluid for the isolated frog’s heart: preliminary communication. J Physiol 5: 332–333

    Google Scholar 

  • Marshall JM (1951) Localization of adrenocorticotropic hormone by histochemical and immunochemical methods. J Exp Med 94:21–30

    Article  PubMed  CAS  Google Scholar 

  • Matsuda R, Spector DH, Strohman RC (1983) Regenerating adult chicken skeletal muscle and satellite cell cultures express embryonic patterns of myosin and tropomysin isoforms. Dev Biol 100:478–488

    Article  PubMed  CAS  Google Scholar 

  • Mauro A (1961) Satellite cell of skeletal muscle. J Biophys Biochem Cytolo 9:493–495

    CAS  Google Scholar 

  • Miller JB, Crow MT, Stockdale FE (1985) Slow and fast myosin heavy chain content defines three types of myotubes in early muscle cell cultures. J Cell Biol 101:1643–1650

    Article  PubMed  CAS  Google Scholar 

  • Miller JB, Stockdale FE. (1986a) Developmental origins of skeletal muscle fibers: clonal analysis of myogenic cell lineages based on expression of fast and slow myosin heavy chains. Proc Natl Acad Sci U S A 83:3860–3864

    Article  CAS  Google Scholar 

  • Miller JB, Stockdale FE (1986b) Developmental regulation of the multiple myogenic cell lineages of the avian embryo. J Cell Biol 103:2197–2208

    Article  CAS  Google Scholar 

  • Mintz B, Baker WW (1967) Normal mammalian muscle differentiation and gene control of isocitrate dehydrogenase synthesis. Proc Natl Acad Sci U S A 58:592–598

    Article  PubMed  CAS  Google Scholar 

  • Moscona A (1951) Tissues from dissociated cells. Exp Cell Res 3:535–539

    Article  Google Scholar 

  • Nadal-Ginard B (1979) Most myosin heavy chain mRNA in L6E9 rat myotubes has a short poly (A) tail. Proc Natl Acad Sci U S A 76:1853–1857

    Article  PubMed  Google Scholar 

  • Partridge TA, Grounds M, Sloper JC (1978) Evidence of fusion between host and donor myoblasts in skeletal muscle grafts. Nature 273:306–308

    Article  PubMed  CAS  Google Scholar 

  • Paterson B, Strohman RC (1970) Myosin structure as revealed by simultaneous electrophoresis of heavy and light subunits. Biochemistry 9:4094–4105

    Article  PubMed  CAS  Google Scholar 

  • Paterson B, Strohman RC (1972) Myosin synthesis in cultures of differentiating chicken embryo skeletal muscle. Dev Biol 29:113–138

    Article  PubMed  CAS  Google Scholar 

  • Perry SV, Chappell JB (1957) The action of 2:4-dinitrophenol on myosin and mitochondrial adenosine triphosphatase systems. Biochem J 65:469–476

    PubMed  CAS  Google Scholar 

  • Pin CL, Hrycyshyn AW, Rogers KA, Rushlow WJ, Merrifield PA (2002) Embryonic and fetal rat myoblasts form different muscle fiber types in an ectopic in vivo environment. Dev Dyn 224:253–266

    Article  PubMed  Google Scholar 

  • Pin CL, Merrifield PA (1993) Embryonic and fetal rat myoblasts express different phenotypes following differentiation in vitro. Dev Genet 14:356–368

    Article  PubMed  CAS  Google Scholar 

  • Puck T, Marcus P (1955) A rapid method for viable cell titration and clone production with HELA cells in tissue culture: The use of X-irradiated cells to supply conditioning factors. Proc Natl Acad Sci U S A 41:432–437

    Article  PubMed  CAS  Google Scholar 

  • Puck TT, Marcus PI, Cieciura SJ (1956) Clonal growth of mammalian cells in vitro; growth characteristics of colonies from single HeLa cells with and without a feeder layer. J Exp Med 103:273–283

    Article  PubMed  CAS  Google Scholar 

  • Ringer S (1882) Regarding the action of hydrate of soda, hydrate of ammonia, and hydrate of potash on the ventricle of the Frog’s Heart. J Physiol 3:195–202

    PubMed  CAS  Google Scholar 

  • Rosenblatt J, Parry D, Partridge T (1996) Phenotype of adult mouse muscle myoblasts reflects their fiber type of origin. Differentiation 60:39–45

    Article  PubMed  CAS  Google Scholar 

  • Rous P, Jones FS (1916) A method for obtaining suspensions of living cells from the fixed tissues, and for the plating out of individual cells. J Exp Med 23: 549–555

    Article  PubMed  Google Scholar 

  • Rubinstein NA, Kelley AM (1978) Myogenic and neurogenic contributions to the development of fast and slow twitch muscles in rat. Dev Biol 62:473–485

    Article  PubMed  CAS  Google Scholar 

  • Rushbrook JI, Stracher A (1979) Comparison of adult, embryonic, and dystrophic myosin heavy chains form chicken muscle by sodium dodecyl sulfate/polyacrylamide gel electrophoresis and peptide mapping. Proc Natl Acad Sci U S A 76:4331–4334

    Article  PubMed  CAS  Google Scholar 

  • Sacks L, Cann G, Nikovits W, Conlon S, Espinoza N, Stockdale F (2003) Regulation of myosin expression during myotome formation. Development 130:3391–3402

    Article  PubMed  CAS  Google Scholar 

  • Sanford K, Earle W, Likely G (1948) The growth in vitro of single Tissue cells. J Natl Cancer Inst 9:229–246

    PubMed  CAS  Google Scholar 

  • Sartore S, Gorza L, Schiaffino S (1982) Fetal myosin heavy chains in regenerating muscle. Nature 298:294–296

    Article  PubMed  CAS  Google Scholar 

  • Saunders JH, Sissons HA (1953) The effect of denervation on the regeneration of skeletal muscle after injury. J Bone Joint Surg Br 35-B:113–24

    Google Scholar 

  • Schiff J (2002) Old Yale – An Unsung Hero of Medical Research. Yale Alumni Magazine Vol. 64, February

    Google Scholar 

  • Schwann T (1839) Mikroskopische Untersuchungen über die Übereinstimmung in der Struktur und dem Wachsthum der Thiere und Pflanzen. Berlin: Verlag der Sander’schen Buchhandlung

    Google Scholar 

  • Shainberg A, Yagil G, Yaffe D (1971) Alterations of enzymatic activities during muscle differentiation in vitro. Dev Biol 25:1–29

    Article  PubMed  CAS  Google Scholar 

  • Snow MH (1978) An autoradiographic study of satellite cell differentiation into regenerating myotubes following transplantation of muscles in young rats. Cell Tissue Res 186:535–540

    Article  PubMed  CAS  Google Scholar 

  • Stockdale FE, Holtzer H (1961) DNA synthesis and myogenesis. Exp Cell Res 24:508–520

    Article  PubMed  CAS  Google Scholar 

  • Stockdale FE, Miller JB (1987) The cellular basis of myosin heavy chain isoform expression during development of avian skeletal muscles. Dev Biol 123:1–9

    Article  PubMed  CAS  Google Scholar 

  • Stockdale FE, O’Neill MC (1972) DNA synthesis, mitosis, and skeletal muscle differentiation. In Vitro 8:212–227

    Article  PubMed  CAS  Google Scholar 

  • Strangeways T, Fell H (1926) Experimental studies on the differentiation of embryonic tissues growing in vivo and in vitro. Proc Royal Soc, London 99:340–366

    Google Scholar 

  • Taylor JH (1953) Intracellular localization of labeled nucleic acid determined with autoradiography. Science 118:555–557

    Article  PubMed  CAS  Google Scholar 

  • Taylor J, Woods P, Hughes W (1957) The organization and duplication of chromosomes as revealed by autoradiographic studies using tritium-labeled thymidine. Proc Natl Acad Sci U S A 43:122–128

    Article  PubMed  CAS  Google Scholar 

  • Waldeyer W (1865) Über die Veränderungen der quergestreiften Muskeln bei der Entzündung und dem Typhus – Prozess, sowie über die Regeneration derselben nach Substanzdefecten. Vircheress Arch path Anat Physiol 34:473–514

    Article  Google Scholar 

  • Whalen RG, Schwartz K, Bouveret P, Sell SM, Gros F (1979) Contractile protein synthesis in muscle development: Identification of an embryonic form of myosin heavy chain. Proc Natl Acad Sci U S A 76:5197–5201

    Article  PubMed  CAS  Google Scholar 

  • Whalen RG, Sell SM, Butler-Browne GS, Schwartz K, Bouveret P, Pinset-Harstrom I (1981) Three myosin heavy-chain isozymes appear sequentially in rat muscle development. Nature 292:805–809

    Article  PubMed  CAS  Google Scholar 

  • White NK, Bonner PH, Nelson DR, Hauschka SD (1975) Clonal analysis of vertebrate myogenesis. IV. Medium-dependent classification of colony-forming cells. Dev Biol 44:346–361

    Article  PubMed  CAS  Google Scholar 

  • White NK, Hauschka SD (1971) Muscle development in vitro: A new conditioned medium effect on colony differentiation. Exp Cell Res 67:479–482

    Article  PubMed  CAS  Google Scholar 

  • Yaffe D (1968) Retention of differentiation potentialities during prolonged cultivation of myogenic cells. Proc Natl Acad Sci U S A 61:477–483

    Article  PubMed  CAS  Google Scholar 

  • Yaffe D (1977) Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle. Nature 270:725–727

    Article  PubMed  CAS  Google Scholar 

  • Zwilling E (1954) Dissociation of chick embryo cells by means of a chelating compound. Science 120:219

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Stockdale, F.E. (2008). Myogenesis – The Early Years. In: Skeletal Muscle Repair and Regeneration. Advances in Muscle Research, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6768-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-6768-6_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-6767-9

  • Online ISBN: 978-1-4020-6768-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics