Skip to main content

Plant Myosins VIII, XI, And XIII

  • Chapter
Myosins

Part of the book series: Proteins and Cell Regulation ((PROR,volume 7))

Abstract

There are three classes of myosins in plants: myosins VIII, XI, and XIII. Myosins VIII and XI are widely distributed and found not only in higher plants, but also in Chlamydomonas, while myosin XIII is found only in Acetabularia. Biochemical studies have been done mainly on myosin XI, which is the most abundantly expressed myosin in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Awata, J., Kashiyama, T., Ito, K., and Yamamoto, K. (2003). Some motile properties of fast Characean myosin. J. Mol. Biol. 326, 659–663.

    Article  PubMed  CAS  Google Scholar 

  • Awata, J., Saitoh, K., Shimada, K., Kashiyama, T., and Yamamoto, K. (2001). Effects of $Ca2 +$ and calmodulin on the motile activity of characean myosin in vitro. Plant Cell Physiol. 42, 828–34.

    Article  PubMed  CAS  Google Scholar 

  • Baluska, F, Cvrckova, F., Kendrick-Jones, J., and Volkmann, D. (2001). Sink plasmodesmata as gateway for phloem unloading. Myosin VIII and calreticulin as molecular determinants of sink strength? Plant Physiol. 126, 39–46.

    CAS  Google Scholar 

  • Baskin, T. I. and Bivens, N. J. (1995). Stimulation of radial expansion in Arabidopsis roots by inhibitors of actomyosin and vesicle secretion but not by various inhibitors of metabolism. Planta 197:514–521.

    Article  PubMed  CAS  Google Scholar 

  • Bouma, T. J. (2005). Understanding Plant Respiration: Separating Respiratory Components versus a Process-Based Approach. Plant Respiration pp 177–194. H. Lambers and M. Ribas-Carbo Eds. Advances in Photosynthesis and Respiration Vol 18. Springer, Netherlands.

    Google Scholar 

  • Chen, J. C. W. and Kamiya, N. (1975). Localization of myosin in the internodal cell of Nitella as suggested by differential treatment with N-ethylmaleimide. Cell Struct. Funct 1, 1–9.

    Article  CAS  Google Scholar 

  • Cheney, E. R., O’Shea, M. K., Heuser, J. E., Coelho, M. V., Wolenski, J. S., Espreafico, E. M., Forscher, P., Larson, R. E., and Mooseker, M. S. (1993). Brain myosin-V is a two-headed unconventional myosin with motor activity. Cell 75, 13–23.

    PubMed  CAS  Google Scholar 

  • Cleland, R. E., Fujiwara, T. and Lucas, W. J. (1994). Plasmodesmal-mediated cell-to-cell transport in wheat roots is modulated by anaerobic stress. Protoplasma 178, 81–85.

    Article  PubMed  CAS  Google Scholar 

  • Cope, M. J. T. V., Whisstock, J., Rayment, I. and Kendrick-Jones, J. (1996). Conservation within the myosin motor domain – implication for structure and function. Structure 4, 969–987.

    Google Scholar 

  • Cramer, L. P. and Mitchison, T. J. (1995). Myosin is involved in postmitotic cell spreading. J. Cell Biol. 131:179–189.

    Google Scholar 

  • Ding, B., Kwon, M-O, Warnberg, L. (1996). Evidence that actin filaments are involved in controlling the permeability of plasmodesmata in tobacco mesophyll. Plant J. 10, 157–164.

    Article  Google Scholar 

  • Donaldson, I. G. (1972). The estimation of the motive force for protoplasmic streaming in Nitella. Protoplasma 74, 329–344.

    Article  Google Scholar 

  • Finer, J., Simmons, R. M. and Spudich, J. A. (1994). Single myosin molecule mechanics: piconewton force and nanometer steps. Nature 368, 113–119.

    Article  PubMed  CAS  Google Scholar 

  • Funaki, K., Nagata, A., Akimoto, Y., Shimada, K., Ito, K., and Yamamoto, K. (2004). The motility of Chara corallina myosin was inhibited reversibly by 2,3-butanedione monoxime (BDM).. Plant Cell Physiol. 45, 1342–1345.

    Article  PubMed  CAS  Google Scholar 

  • Grabski, S., Arnoys, E., Busch, B., and Schindler, M. (1998). Regulation of actin tension in plant cells by kinases and phosphatases. Plant Physiol. 116, 279–290.

    Article  CAS  Google Scholar 

  • Grolig, F., Schroder, J., Sawitzky, H., and Lange, U. (1996). Partial characterization of a putative 110 kDa myosin from the green alga Chara corallina by in vitro binding og fluorescent F-actin. Cell Biol. Int. 20, 365–373.

    Article  PubMed  CAS  Google Scholar 

  • Grolig, F., Williamson, R. E., Parke, J., Miller, C., and Anderton, B. H. (1988). Myosin and $Ca2 +$-sensitive streaming in the alga Chara: Detection of two polypeptides reacting with a monoclonal anti-myosin and their localization in the streaming endoplasm. Eur. J. Cell Biol. 47, 22–31.

    PubMed  CAS  Google Scholar 

  • Hashimoto, K., Igarashi, H., Nishimura, M., Shimmen, T., and Yokota, E. (2005). Peroxisomal localization of a myosin XI isoform in Arabidopsis thaliana. Plant Cell Physiol. 46, 782–789.

    Article  PubMed  CAS  Google Scholar 

  • Hammer, J. A., Jung, G. and Korn, E. D. (1986). Genetic evidence that Acanthamoeba myosin I is a true myosin. Proc. Natl. Acad. Sci. USA 83, 4655–4659.

    Article  PubMed  CAS  Google Scholar 

  • Herrmann, C., Wray, J., Travers, F., and T. Barman. (1992). Effect of 2,3-butanedione monoxime on myosin and myofibrillar ATPase. An example of an uncompetitive inhibitor. Biochemistry 31, 12227–12232.

    Google Scholar 

  • Heslop-Harrison, J. and Heslop-Harrison, Y. (1989). Myosin associated with the surfaces of organelles, vegetative nuclei and generative cells in angiosperm pollen grains and tubes. J. Cell Sci. 94, 319–325.

    Google Scholar 

  • Higashi-Fujime, S., Ishikawa, R., Iwasawa, H., Kagami, O., Kurimoto, E., Kohama, K., and Hozumi, T. (1995). The fast actin-based motor protein from the green algae, Chara, and its distinct mode of interaction with actin. FEBS Letters 375, 151–154.

    Article  PubMed  CAS  Google Scholar 

  • Higuchi, H. and Takemori, S., (1989). Butanedione monoxime suppresses contraction and ATPase activity of rabbit skeletal muscle. J. Biochem. 105, 638–643.

    PubMed  CAS  Google Scholar 

  • Holdaway-Clarke, T. L., Walker, N. A., Hepler, P. K., and Overall, R. L. (2000). Physiological elevations in cytoplasmic free calcium by cold or injection result in transient closure of higher plant plasmodesmata. Plant 210, 329–335.

    Article  CAS  Google Scholar 

  • Holweg, C. and Nick, P. (2004). Arabidopsis myosin XI mutant is defective in organelle movement and polar auxin transport. Proc. Natl. Acad. Sci. USA 101, 10488–10493.

    Article  PubMed  CAS  Google Scholar 

  • Horiuti, K., Higuchi, H., Umazume, Y., Konishi, M., Okazaki, O., and Kurihara, S. (1988). Mechanism of action of 2,3-butanedione 2-monoxime on contraction of frog skeletal muscle fibres. J. Muscle Res. Cell Motil. 9, 156–164.

    Article  PubMed  CAS  Google Scholar 

  • Ishijima, A., Harada, Y., Kojima, H., Funatsu, T., Higuchi, H., and Yanagida, T. (1994). Single-molecule analysis of the actomyosin motor using nano-manipulation. Biochem. Biophys. Res. Commun. 199, 1057–1063.

    Article  PubMed  CAS  Google Scholar 

  • Ito, K., Ikebe, M., Kashiyama, T., Mogami, T., Kon, T., and Yamamoto, K. (2007). Kinetic mechanism of the fastest motor protein, Chara myosin. J. Biol. Chem 282, 19534–19545.

    Google Scholar 

  • Ito, K., Kashiyama, T., Shimada, K., Yamaguchi, A., Awata, J., Hachikubo, Y., Manstein, D. J., and Yamamoto, K. (2003). Recombinant motor domain constructs of Chara corallina myosin display fast motility and high ATPase activity. Biochem. Biophys. Res. Commun. 312, 958–964.

    Article  PubMed  CAS  Google Scholar 

  • Jiang, S. Y. and Ramachandran, S. (2004). Identification and molecular characterization of myosin gene family in Oryza sativa genome. Plant Cell Physiol. 45, 590–599.

    Article  PubMed  CAS  Google Scholar 

  • Kamitsubo, E. (1966). Motile protoplasmic fibrils in cells of Characeae. II. Linear fibrillar structure and its bearing on protoplasmic streaming. Proc. Jpn Acad. 42, 640–643.

    Google Scholar 

  • Kamiya, N. and Kuroda, K. (1956). Velocity distribution of the protoplasmic streaming in Nitella cells. Bot. Mag. Tokyo 69, 544–554.

    Google Scholar 

  • Kamiya, N. and Kuroda, K. (1958). Measurement of motive force of the protoplasmic rotation in Nitella. Protoplasma 50, 144–148.

    Article  Google Scholar 

  • Kamiya, N. and Kuroda, K. (1973). Dynamics of cytoplasmic streaming in a plant cell. Biorheology 10, 179–187.

    PubMed  CAS  Google Scholar 

  • Kashiyama, T., Kimura, N., Mimura, T., and Yamamoto, K. (2000). Cloning and characterization of a myosin from characean alga, the fastest motor protein in the world. J. Biochem. 127, 1065–1070.

    PubMed  CAS  Google Scholar 

  • Kato, T. and Tonomura, Y. (1977). Identification of myosin in Nitella flexilis. J. Biochem. 82, 777–782.

    PubMed  CAS  Google Scholar 

  • Kikuyama, M. and Tazawa, M. (1982). $Ca2 +$ ion reversibly inhibits the cytoplasmic streaming of Nitella. Protoplasma 113, 241–243.

    Google Scholar 

  • Kinkema, M. and Schiefelbein, J. (1994). A myosin from a higher plant has structural similarities to class V myosins.

    Google Scholar 

  • Knight, A. E. and Kendrick-Jones, J. (1993). A myosin-like protein from a higher plant. J. Mol. Biol. 231, 148–154.

    Google Scholar 

  • Liebe, S. and Menzel, D. (1995). Actomyosin-based motility of endoplasmic reticulum and chloroplasts in Vallisneria mesophyll cells. Biol. Cell 85, 207–222.

    Article  PubMed  CAS  Google Scholar 

  • Liu, B., Zhou, J. and Pesacreta, T. (2001). Maize myosins: diversity, localization, and function. Cell Motil. Cytoskeleton 48, 130–148.

    Article  PubMed  CAS  Google Scholar 

  • Maita, T., Yajima, E., Nagata, S., Miyanishi, T., Nakayama, S., and Matsuda, G. (1991). The primary structure of skeletal muscle myosin heavy chain: VI Sequence of the rod, and the complete 1938-residue sequence of the heavy chain. J. Biochem. 110, 75–87.

    PubMed  CAS  Google Scholar 

  • Matsuzaki, M. et al. (2004). Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature 428, 653–657.

    Article  PubMed  CAS  Google Scholar 

  • McCurdy, DW. (1999). Is 2,3-butanedione monoxime an effective inhibitor of myosin-based activities in plant cells? Protoplasma 209, 120–125.

    Google Scholar 

  • Miller, D., Scordilis, S. P., and Hepler, P. K. (1995). Identification and localization of three classes of myosins in pollen tubes of Lilium longiflorum and Nicotiana alata. J. Cell Sci. 108, 2549–2563.

    PubMed  CAS  Google Scholar 

  • Molchan, T. M., Valster, A. H., and Hepler, P. K. (2002). Actomyosin promotes cell plate alignment and late lateral expansion in Tradescantia stamen hair cells. Planta 214, 683–693.

    Article  PubMed  CAS  Google Scholar 

  • Morimatsu, M., Hasegawa, S., and Higashi-Fujime, S. (2002). Protein phosphorylation regulates actomyosin-driven vesicle movement in cell extracts isolated from the green algae, Chara corallina. Cell Motil. Cytoskel. 53, 66–76.

    Google Scholar 

  • Morimatsu, M., Nakamura, A., Sumiyoshi, H., Sakaba, N., Taniguchi, H., Kohama, K., and Higashi-Fujime, S. (2000). The molecular structure of the fastest myosin from green algae, Chara. Biochem. Biophys. Res. Commun. 270, 147–152.

    Google Scholar 

  • Nagai, R. and Rebhun, L. I. (1966). Cytoplasmic microfilaments in streaming Nitella cells. J. Ultrastruct. Res. 14, 571–589.

    Article  PubMed  CAS  Google Scholar 

  • Nebenfuhr, A. Gallagher, L. A., Dunahay, T. G. Frohlick, J.A., Mazurkiewicz, A. M., Meehl, J. B., and Staehelin, L. A. (1999). Stop-and-go movements of plant Golgi stacks are mediated by the acto-myosin system. Plant Physiol. 121, 1127–1142.

    Article  PubMed  CAS  Google Scholar 

  • Nishii, I. and Ogiwara, S. (1999). Actomyosin contraction of the posterior hemisphere is required for inversion of the Volvox embryo. Development 126, 2117–2127.

    PubMed  CAS  Google Scholar 

  • Nothnagel, E. A. and Webb, W. W. (1982). Hydrodynamic models of viscous coupling between motile myosin and endoplasm in characean algae. J. Cell Biol. 94, 444–454.

    Article  PubMed  CAS  Google Scholar 

  • Ostap, E. M. (2002). 2,3-Butanedione monoxime (BDM). as a myosin inhibitor. J. Muscle. Res. Cell Motil. 23, 305–308.

    Google Scholar 

  • Palevitz, B. A., Ash, J. F, and Hepler, P. K. (1974). Actin in the green alga, Nitella Proc.Natl.Acad.Sci. USA 71: 363–366.

    Article  CAS  Google Scholar 

  • Parke, J., Miller, C., and Anderton, B. H. (1986). Higher plant myosin heavy–chain identified using monoclonal antibody. Eur. J. Cell Biol.

    Google Scholar 

  • Pollard, T. D and Korn, E. D. (1973). Acanthamoeba myosin. I. Isolation from Acanthamoeba castellanii of an enzyme similar to muscle myosin. J. Biol. Chem. 248, 4682–4690.

    PubMed  CAS  Google Scholar 

  • Qiao, L., Grolig, F., Jablonsky, P. P. and Williamson, R. E. (1989). Myosin heavy chains: Detection by immunoblotting in higher plants and localization by immunofluorescence in the alga Chara. Cell Biol. Int. Rep. 13, 107–117.

    Article  Google Scholar 

  • Radford, J. E. and White, R. G. (1998). Localization of a myosin-like protein to plasmodesmata. Plant J. 14, 743–750.

    Article  PubMed  CAS  Google Scholar 

  • Reddy A. S. N. and Day, I. S. (2001). Analysis of the myosins encoded in the recently completed Arabidopsis thaliana genome sequence. Genome Biol. 2, RESEARCH 0024.

    Google Scholar 

  • Richards, T. A. and Cavalier-Smith, T. (2005). Myosin domain evolution and the primary divergence of eukaryotes. Nature 436, 1113–1118.

    Google Scholar 

  • Rivolta, M. N., Urrutia, R., and Kachar, B. (1995). A soluble motor from alga Nitella supports fast movement of actin filaments in vitro. Biochem. Biophys. Acta Bio-Energ. 1232, 1–4.

    Article  Google Scholar 

  • Samaj, J., Peters, M., Volkmann, D. and Baluska, F. (2000). Effects of myosin ATPase inhibitor 2,3-butanedione 2-monoxime on distributions of myosins, F-actin, microtubules and cortical endoplasmic reticulum in maize root apices. Plant Cell Physiol. 41, 571–582.

    PubMed  CAS  Google Scholar 

  • Sato, Y., Kadota, A., and Wada, M (1999). Mechanically induced avoidance response of chloroplast in fern protonemal cells. Plant Physiol. 121, 37–44.

    Google Scholar 

  • Seki, M., Awata, J., Shimada, K., Kashiyama, T., Ito, K. and Yamamoto, K. (2003). Susceptibility of Chara Myosin to SH Reagents. Plant cell Physiol. 44, 201–205.

    Article  PubMed  CAS  Google Scholar 

  • Sekine, T. and Kielly, W. W. (1964). The enzymic properties of N-ethylmaleimide modified myosin. Biochim. Biophys. Acta 81, 336–345.

    CAS  Google Scholar 

  • Shimmen, T. and Yokota, E. (2004). Cytoplasmic streaming in plants. Current Opinion in Cell Biology 16, 68–72

    Google Scholar 

  • Takamori, K., Ando-Kato, K., and Sekine, T. (1976). Thiols of myosin IV. Abnormal reactivity of S1 thiol and the conformational changes around S2 thiol. J. Biochem. 80, 101–110.

    CAS  Google Scholar 

  • Tang, X., Hepler, P. K., and Scordilis, S. P. (1989). Immunochemical and immunocytochemical identification of a myosin heavy chain polypeptide in Nicotiana pollen tubes. J. Cell Sci. 92, 569–574.

    PubMed  CAS  Google Scholar 

  • Tazawa, M. (1968). Motive Force of the Cytoplasmic streaming in Nitella. Protoplasma 65, 207–222.

    Article  PubMed  CAS  Google Scholar 

  • Tominaga, M., Kojima, H., Yokota, E., Orii, H., Nakamori, R., Katayama, E., Anson, M., Shimmen, T., and Oiwa, K. (2003). higher plant myosin XI moves processively on actin with 35 nm steps at high velocity. EMBO J. 22, 1263–1272.

    Article  PubMed  CAS  Google Scholar 

  • Tominaga, M., Yokota, E., Sonobe, S. and Shimmen, T. (2000). Mechanism of inhibition of cytoplasmic streaming by a myosin inhibitor, 2,3-butanedione monoxime. Protoplasma 213, 46–54.

    Article  CAS  Google Scholar 

  • Tominaga, Y., Wayne, R., Tung, H. Y. L., and Tazawa, M. (1987). Phosphorylation-dephosphorylation is involved in $Ca2 +$-controlled cytoplasmic streaming of characean Cells. Protoplasma 136, 161–169.

    Article  CAS  Google Scholar 

  • Vahey, M. and Scordilis S. P. (1980). Contractile proteins from the tomato. Can. J. Bot. 58, 797–801.

    Google Scholar 

  • Vugrek, O., Sawitzky, H., and Menzel D. (2003). Class XIII myosins from the green alga Acetabularia: driving force in organelle transport and tip growth? J. Muscle Res. Cell Motil. 24, 87–97.

    Google Scholar 

  • Wang, Z. and Pesacrete, T. C. (2004). A subclass of myosin XI is associated with mitochondria, plastids, and the molecular chaperone subunit TCP-alpha in maize. Cell Motil. Cytoskeleton 57, 218–232.

    Article  PubMed  CAS  Google Scholar 

  • Williamson, R. E. (1974). Actin in the Chara corallina. Nature 248, 801–802.

    Article  PubMed  CAS  Google Scholar 

  • Williamson, R. E. and Ashley, C. C. (1982). Free $Ca2 +$ and cytoplasmic streaming in the alga Chara. Nature 296, 647–651.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto, K., Kikuyama, M., Sutoh-Yamamoto, N., and Kamitsubo, E. (1994). Purification of actin based motor protein from Chara corallina. Proc. Jpn. Acad. 70, 175–180.

    Article  CAS  Google Scholar 

  • Yamamoto, K., Shimada, K., Ito, K., Hamada, S., Ishijima, A., Tsuchiya, T., and Tazawa, M. (2006). Chara myosin and the energy of cytoplasmic streaming. Plant Cell Physiol. 47, 1427–1431.

    Article  PubMed  CAS  Google Scholar 

  • Yamashita, T., Soma, Y., Kobayashi, S., and Sekine, T. (1974). The amino acid sequence of SH-peptide involved in the active site of myosin A. J. Biochem. 75, 447–453.

    PubMed  CAS  Google Scholar 

  • Yokota, E., Imaichi, N., Tominaga, M., and Shimmen, T. (2000). Actin cytoskeleton is responsible for the change of cytoplasmic organization in root hair cells induced by a protein phosphatase inhibitor, calyculin A. Protoplasma 213, 184–193.

    Article  CAS  Google Scholar 

  • Yokota, E., McDonald, A. R., Liu, B., Shimmen, T. and Palevitz B. A. (1995a). Localization of a 170 kDa myosin heavy chain in plant cells. Protoplasma 185, 178–187.

    Article  CAS  Google Scholar 

  • Yokota, E., Mimura, T., and Shimmen, T., (1995b). Biochemical, immunochemical and immunohistochemical identification of myosin heavy chains in cultured cells of Catharanthus roseus. Plant Cell Physiol. 36, 1541–1547.

    CAS  Google Scholar 

  • Yokota, E., Muto, S., and Shimmen, T. (1999a). Inhibitory regulation of higher-plant myosin by Ca2 + ions. Plant Physiol. 119, 231–239.

    Article  CAS  Google Scholar 

  • Yokota, E. and Shimmen, T. (1994). Isolation and characterization of plant myosin from pollen tubes of lily. Protoplasma 177, 153–162.

    Article  CAS  Google Scholar 

  • Yokota, E., Yukawa, C., Muto, S., Sonobe, S., and Shimmen, T. (1999b). Biochemical and immunocytochemical characterization of two types of myosins in cultured tobacco bright yellow-2 Cells. Plant Physiol. 121, 525–534.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Yamamoto, K. (2008). Plant Myosins VIII, XI, And XIII. In: Myosins. Proteins and Cell Regulation, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6519-4_12

Download citation

Publish with us

Policies and ethics