Skip to main content

Virtual Ligand Screening: A Method to Discover New Drug Leads

  • Chapter
Supramolecular Structure and Function 9
  • 577 Accesses

In Virtual Ligand Screening (VS) lead compounds are selected, in contrast to High-Throughput Screening (HTS), by predicting their binding mode to a particular target receptor under consideration on the computer. Key prerequisite is the knowledge about the spatial and energetic criteria responsible for protein-ligand binding. The concepts and prerequisites to perform VS are summarized, given limitations are analyzes and explanations are sought for why we still face these limitations. Target selection, analysis and preparation are discussed, followed by considerations about the compilation of candidate ligand libraries. Then the tools and strategies of a VS campaign are reflected, along with the accuracy of scoring and ranking of the screening results.

Keywords: Leads Compound Discovery, Screening Technologies, Protein Ligand Interactions, Docking, Scoring, Affinity Prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abagyan, R., Totrov, M. (2001) High-throughput docking for lead generation. Curr. Opin. Chem. Biol. 5: 375-382.

    Article  Google Scholar 

  • Barril, X., Morley, S.D. (2005) Unveiling the Full Potential of Flexible Receptor Docking Using Multiple Crystallographic Structures. J. Med. Chem. 48: 4432-4443.

    Article  Google Scholar 

  • Barril, X., Hubbard, R.E., Morley, S.D. (2004) Virtual Screening in Structure-Based Drug Design. Mini-Rev. Med. Chem. 4: 779-791.

    Google Scholar 

  • Baurin, N., Baker, R., Richardson, C., Chen, I., Foloppe, N., Potter, A., Jordan, A., Roughley, S., Parratt, M., Greaney, P., Morley, D., Hubbard, R.E. (2004) Drug-like annotation and duplicate analysis of a 23-supplier chemical database totalling 2.7 million compounds. J. Chem. Inf. Comput. Sci. 44: 643-651.

    Google Scholar 

  • Bissantz, C., Bernard, P., Hibert, M., Rognan, D. (2003) Protein-based virtual screening of chemical databases. II. Are homology models of G-Protein Coupled Receptors suitable targets? Proteins 50: 5-25.

    Article  Google Scholar 

  • Bohacek, R.S., McMartin, C., Guida, W.C. (1996) The art and practice of structure-based drug design: a molecular modelling perspective. Med. Res. Rev. 16: 3-50.

    Article  Google Scholar 

  • Bolten, B.M., DeGregorio, T. (2002) Trends in development cycles. Nat. Rev. Drug Discov. 1: 335-336.

    Article  Google Scholar 

  • Brenk, R., Meyer, E., Reuter, K., Stubbs, M.T., Garcia, G.A., Diederich, F., Klebe, G. (2004) Crystallographic study of inhibitors of tRNA-guanine transglycosylase suggests a new structure-based pharmacophore for virtual screening J. Mol. Biol. 338: 55-75.

    Article  Google Scholar 

  • Brenk, R., Naerum, L., Gradler, U., Gerber, H.D., Garcia, G.A., Reuter, K., Stubbs, M.T., Klebe, G. (2003) Virtual screening for submicromolar leads of tRNA-guanine transglycosylase based on a new unexpected binding mode detected by crystal structure analysis. J. Med. Chem. 46: 1133-1143.

    Article  Google Scholar 

  • Brooijmans, N., Kuntz, I.D. (2003) Molecular recognition and docking algorithms. Annu. Rev. Biophys. Biomol. Struct. 32: 335-373.

    Article  Google Scholar 

  • Carlson, H.A., McCammon, J.A. (2000) Accommodating protein flexibility in computational drug design. Mol. Pharmacol. 57: 213-218.

    Google Scholar 

  • Charifson, P.S., Corkery, J.J., Murcko, M.A., Walters, W.P. (1999) Consensus scoring: A method for obtaining improved hit rates from docking databases of three-dimensional structures into proteins. J. Med. Chem. 42: 5100-5109.

    Article  Google Scholar 

  • Charifson, P.S., Corkery, J.J., Murcko, M.A., Walters, W.P., Morley, S.D., Afshar, M. (2004) Validation of an empirical RNA-ligand scoring function for fast flexible docking using RiboDock. J. Comput.-Aided Mol. Des. 18: 189-208.

    Article  Google Scholar 

  • Claussen, H., Buning, C., Rarey, M., Lengauer, T. (2001) FlexE: efficient molecular docking considering protein structure variations. J. Mol. Biol. 308: 377-395.

    Article  Google Scholar 

  • Convreve, M. et al. (2003) A rule-of-three for fragment-based lead discovery. Drug Discov. Today 8: 876-877.

    Article  Google Scholar 

  • Cummings, M.D., DesJarlais R.L., Gibbs, A.C., Mohan, V., Jaeger E.P. (2005) Comparison of Automated Docking Programs as Virtual Screening Tools, J. Med. Chem. 48: 962-976.

    Article  Google Scholar 

  • Czodrowski, P., Dramburg, I., Sotriffer, C.A., Klebe, G. (2006) Development of a generally applicable charge model for the calculation of protonation states in proteins and proteinligand complexes. Proteins, Structure, Functions and Bioinformatics 65: 424-437.

    Article  Google Scholar 

  • Czodrowski, P., Sotriffer, C.A., Klebe, G. (2006) Protonation changes upon ligand binding to trypsin and thrombin: Structural interpretation based on pKa calculations and ITC experiments. J. Mol. Biol. in press.

    Google Scholar 

  • DesJarlais, R.L., Seibel, G.L., Kuntz, I.D., Furth, P.S., Alvarez, J.C., Ortiz de Montellano, P.R., DeCamp, D.L., Babé, L.M., Craik, C.S. (1990) Structure-based design of nonpeptide inhibitors specific for the human immunodeficiency virus 1 protease. Proc. Natl. Acad. Sci. USA 87: 6644-6648.

    Article  ADS  Google Scholar 

  • DesJarlais, R.L., Sheridan, R.P., Dixon, J.S., Kuntz, I.D., Venkataraghavan, R. (1986) Docking flexible ligands to macromolecular receptors by molecular shape. J. Med. Chem. 29: 2149-2153.

    Article  Google Scholar 

  • Dixon, J.S. (1997) Evaluation of the CASP2 Docking Section. Proteins, Suppl. 198-204.

    Google Scholar 

  • Erlanson, D.A. et al. (2004) Fragment-based drug discovery. J. Med. Chem. 47: 3465-3482.

    Article  Google Scholar 

  • Evers, A., Gohlke, H., Klebe, G. (2003) Ligand-supported homology modelling of protein binding sites using knowledge-based potentials. J. Mol. Biol. 334: 327-345.

    Article  Google Scholar 

  • Evers, A., Klabunde T. (2005) Structure-based Drug Discovery Using GPCR Homology Modeling: Successful Virtual Screening for Antagonists of the Alpha1A Adrenergic Receptor. J. Med. Chem. 48: 1088-1097.

    Article  Google Scholar 

  • Evers, A., Klebe, G. (2004) Successful virtual screening for a submicromolar antagonist of the neurokinin-1 receptor based on a ligand-supported homology model. J. Med. Chem. 47: 5381-5392.

    Article  Google Scholar 

  • Ferrara, P., Gohlke, H., Price, D.J., Klebe, G., Brooks, C.L., III (2004) Assessing scoring functions for protein-ligand interactions. J. Med. Chem. 47: 3032-3047.

    Article  Google Scholar 

  • Filikov, A.V., Mohan, V., Vickers, T.A., Griffey, R.H., Cook, P.D., Abagyan, R.A., James T.L. (2000) Identification of ligands for RNA targets via structure-based virtual screening: HIV-1 TAR. J Comput.-Aided Mol. Design 14: 593-610.

    Article  Google Scholar 

  • Fink, T., Bruggesser, H., Reymond, J.L. (2005) Virtual Exploration of the Small-Molecule Chemical Universe below 160 Daltons, Angew. Chem. Int. Ed. 44: 1504-1508.

    Article  Google Scholar 

  • Fiser, A., Sali, A. (2003) Comparative protein structure modelling. In: Chasman D., ed., Protein Structure, Marcel Dekker, Inc. New York, pp. 167-206.

    Chapter  Google Scholar 

  • Fishman, M.C., Porter, J.A. (2005) A new grammar for drug discovery. Nature 437: 491-493.

    Article  ADS  Google Scholar 

  • Fradera, X., Knegtel, R.M., Mestres, J. (2002) Similarity-driven flexible ligand docking. Proteins 40: 623-636.

    Article  Google Scholar 

  • Friesner, R.A., Banks, J.L., Murphy, R.B., Halgren, T.A., Klicic, J.J. et al. (2004) Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem. 47: 1739-1749.

    Article  Google Scholar 

  • Gerlach, C., Velec, H., Smolinski, M., Hangauer, D., Heine A., Klebe, G. (2005) Library design based on privileged scaffolds through docking and direct design in the protein binding pocket. Abstracts of Papers, 230th ACS National Meeting, Washington DC, United States, Aug. 28- Sept. 1, COMP-185.

    Google Scholar 

  • Gohlke, H., Hendlich, M., Klebe, G. (2000) Knowledge-based scoring function to predict protein-ligand interactions. J. Mol. Biol. 295: 337-356.

    Article  Google Scholar 

  • Gohlke, H., Hendlich, M., Klebe, G. (2000) Predicting binding modes, binding affinities and “hot spots” for protein-ligand complexes using a knowledge-based scoring function. Perspect. Drug Discovery Des. 20: 115-144.

    Article  Google Scholar 

  • Gohlke, H., Klebe G. (2002) Approaches to the Description and Prediction of Binding Affinity of Small-Molecule Ligands to Macromolecular Receptors. Angew. Chemie, Int. Ed. Engl. 41: 2644-2676.

    Article  Google Scholar 

  • Gohlke, H., Klebe, G. (2002) DrugScore meets CoMFA: Adaptation of fields for molecular comparison (AFMoC) or how to tailor knowledge-based pair-potentials to a particular protein. J. Med. Chem. 45: 4153-4170.

    Article  Google Scholar 

  • Goodford, P.J. (1985) A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. J. Med. Chem. 28: 849-857.

    Article  Google Scholar 

  • Graves, A.P., Brenk, R., Shoichet, B.K. (2005) Decoys for Docking. J. Med. Chem. 48: 3714-3728.

    Article  Google Scholar 

  • Grüneberg, S., Stubbs, M.T., Klebe, G. (2002) Successful virtual screening for novel inhibitors of human carbonic anhydrase: strategy and experimental confirmation. J. Med. Chem. 45: 3588-3602.

    Article  Google Scholar 

  • Günther, J., Bergner, A., Hendlich, M., Klebe, G. (2003) Utilising structural knowledge in drug design strategies: applications using Relibase. J. Mol. Biol. 326: 621-636.

    Article  Google Scholar 

  • Hajduk, P.J., Huth, J.R., Fesik, S.W. (2005) Druggability Indices for Protein Targets Derived from NMR-Based Screening Data, J. Med. Chem. 48: 2518-2525.

    Article  Google Scholar 

  • Halperin, I., Ma, B., Wolfson, H., Nussinov, R. (2002) Principles of docking: an overview of search algorithms and a guide to scoring functions. Proteins 47: 409-443.

    Article  Google Scholar 

  • Hendlich, M., Bergner, A., Günther, J., Klebe, G. (2003) Relibase: design and development of a database for comprehensive analysis of protein-ligand interactions. J. Mol. Biol, 326: 607-620.

    Article  Google Scholar 

  • Hillisch, A., Pineda, L.F., Hilgenfeld, R. (2004) Utility of homology models in the drug discovery process. Drug Discovery Today 9: 659-669.

    Article  Google Scholar 

  • Hindle, S.A., Rarey, M., Buning, C., Lengauer, T. (2002) Flexible docking under pharmacophore type constraints. J. Comput. Aided Mol. Des. 16: 129-149.

    Article  Google Scholar 

  • Hopkins, A.L., Groom, C.R. (2002) The druggable genome. Nat. Rev. Drug Discov. 1: 727-730.

    Article  Google Scholar 

  • Irwin, J.J. and Shoichet, B.K. (2005) ZINC - a free database of commercially available compounds for virtual screening. J. Chem. Inf. Model. 45: 177-182.

    Article  Google Scholar 

  • Jain, A.N. (2004) Virtual screening in lead discovery and optimization. Curr. Opin. Drug Discov. Devel. 7: 396-403.

    Google Scholar 

  • Jelesarov, I., Bosshard, H.R. (1999) Isothermal titration calorimetry and differential scanning calorimetry as complementary tools to investigate the energetics of biomolecular recognition. J. Mol. Recognit. 2: 3-18.

    Article  Google Scholar 

  • Jones, G., Willett, P., Glen, R.C., Leach, A.R., Taylor, R. (1997) Development and validation of a genetic algorithm for flexible docking. J. Mol. Biol. 267: 727-748.

    Article  Google Scholar 

  • Joseph-McCarthy, D., Thomas, B.E.T., Belmarsh, M., Moustakas, D., Alvarez, J.C. (2003) Pharmacophore-based molecular docking to account for ligand flexibility. Proteins 51: 172-188.

    Article  Google Scholar 

  • Kellenberger, E., Rodrigo, J., Muller, P., Rognan, D. (2004) Comparative evaluation of eight docking tools for docking and virtual screening accuracy. Proteins 57: 225-242.

    Article  Google Scholar 

  • Kitchen, D.B., Decornez, H., Furr, J.R., Bajorath, J. (2004) Docking and scoring in virtual screening for drug discovery: methods and applications. Nature Rev. Drug Discov. 3: 935-949.

    Article  Google Scholar 

  • Knegtel, R.M., Kuntz, I.D., Oshiro, C.M. (1997) Molecular docking to ensembles of protein structures. J. Mol. Biol. 266: 424-440.

    Article  Google Scholar 

  • Kubinyi, H. (2006) Success Stories of Computer-Aided Design. In: Ekins, S., ed., Computer Applications in Pharmaceutical Research and Development, in press.

    Google Scholar 

  • Kuntz, I.D., Blaney, J.M., Oatley, S.J., Langridge, R., Ferrin, T.E. (1982) A geometric approach to macromolecule-ligand interactions. J. Mol. Biol. 161: 269-288.

    Article  Google Scholar 

  • Lahana, R. (1999) How many leads from HTS? Drug Discovery Today 4: 447-448.

    Article  Google Scholar 

  • Lam, P.Y., Jadhav, P.K., Eyermann, C.J., Hodge, C.N., Ru, Y. et al. (1994) Rational design of potent, bioavailable, nonpeptide cyclic ureas as HIV protease inhibitors. Science 263: 380-384.

    Article  ADS  Google Scholar 

  • Langer, T., Krovat, E.M. (2003) Chemical feature-based pharmacophores and virtual library screening for discovery of new leads. Curr. Opin. Drug Discov. Devel. 6: 370-376.

    Google Scholar 

  • Leach, A.R. Ligand docking to proteins with discrete side-chain flexibility (1994) J. Mol. Biol. 235: 345-356.

    Google Scholar 

  • Lipinski, C.A., Lombardo, F., Dominy, B.W., Feeney, P.J. (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 23: 3-25.

    Article  Google Scholar 

  • Luque, I., Freire, E. (2002) Structural parameterization of the binding enthalpy of small ligands. Proteins 49: 181-190.

    Article  Google Scholar 

  • Lyne, P.D. (2002) Structure-based virtual screening: an overview. Drug Discovery Today 7: 1047-1055.

    Article  Google Scholar 

  • Martin, Y.C., (2005) A Bioavailability Score, J. Med. Chem. 48: 3164-3170.

    Article  Google Scholar 

  • McGovern, S.L., Shoichet, B.K. (2003) Information decay in molecular docking screens against holo, apo, and modeled conformations of enzymes. J. Med. Chem. 46: 2895-2907.

    Article  Google Scholar 

  • Moebius, F.F., Bermoser, K., Reiter, R.J., Hanner, M., Glossmann Kurogi, Y., Guner, O.F. (2001) Pharmacophore modeling and threedimensional database searching for drug design using Catalyst. Curr. Med. Chem. 8: 1035-1055.

    Google Scholar 

  • Morris, G.M., Goodsell, D.S., Halliday, R.S., Huey, R., Hart, W.E., Belew, R.K., Olson, A.J. (1998) Automated Docking Using a Lamarckian Genetic Algorithm and an Empirical Binding Free Energy Function. J. Comput. Chem. 19: 1639-1662.

    Article  Google Scholar 

  • Morris, G.M., Goosell, D.S., Huey, R., Hart, W.E., Belew, R., Friesner, R.A., Banks, J.L., Murphy, R.B., Halgren, T.A., Klicic, J.J., et al. (2004) Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem. 47: 1739-1749.

    Article  Google Scholar 

  • Muegge, I., Rarey, M. Small Molecule Docking and Scoring. (2001) Reviews in Computational Chemistry, Wiley-VCH, New York, pp. 1-60.

    Google Scholar 

  • Oprea, T.I. (2002) Current trends in lead discovery: are we looking for the appropriate properties? J. Comput.-Aided Mol. Design. 16: 325-334.

    Article  Google Scholar 

  • Österberg, F., Morris, G.M., Sanner, M.F., Olson, A.J., Goodsell, D.S. (2002) Automated docking to multiple target structures: incorporation of protein mobility and structural water heterogeneity in AutoDock. Proteins 46: 34-40.

    Article  Google Scholar 

  • Owens, J. (2003) Chris Lipinski discusses life and chemistry after the Rule of Five. Drug Discov. Today 8: 12-16.

    Article  Google Scholar 

  • Perola, E., Walters, W.P., Charifson, P.S. (2004) A detailed comparison of current docking and scoring methods on systems of pharmaceutical relevance. Proteins 56: 235-249.

    Article  Google Scholar 

  • Radestock, S., Böhm, M., Gohlke H. (2005) Improving Binding Mode Predictions by Docking into Protein-Specifically Adapted Potential Fields, J. Med. Chem. 48: 5466-5479.

    Article  Google Scholar 

  • Raha, K., Merz K.M., Jr. (2005) Large-Scale Validation of a Quantum Mechanics Based Scoring Function: Predicting the Binding Affinity and the Binding Mode of a Diverse Set of Protein-Ligand Complexes, J. Med. Chem. 48: 4558-4575.

    Article  Google Scholar 

  • Ramesha, C.S. (2000) Comment: How many leads from HTS? Drug Discovery Today 5: 43-44.

    Article  Google Scholar 

  • Rarey, M., Dixon, J.S. (1998) J. Comput. Aided Mol. Des. 12: 471-90.

    Article  Google Scholar 

  • Rarey, M., Kramer, B., Lengauer, T. (1999) The particle concept: placing discrete water molecules during protein-ligand docking predictions. Proteins: Struct. Funct. Genet. 34: 17-28.

    Article  Google Scholar 

  • Rarey, M., Kramer, B., Lengauer, T., Klebe, G. (1996) A fast flexible docking method using an incremental construction algorithm. J. Mol. Biol. 261: 470-489.

    Article  Google Scholar 

  • Rauh D., Klebe G., Stubbs M.T. (2003) Understanding protein-ligand interactions: The price of protein flexibility J. Mol. Biol. 335: 1325-1341.

    Article  Google Scholar 

  • Rauh, D., Klebe G., Stürzebecher J., Stubbs M.T. (2003) ZZ Made EZ: Influence of Inhibitor Configuration on Enzyme Selectivity. J. Mol. Biol. 330: 761-770.

    Article  Google Scholar 

  • Rees, C.D., Congreve, M., Murray, C.W., Carr, R. (2004) Fragment-based lead discovery, Nat. Reviews Drug Discov. 3: 660-672.

    Article  Google Scholar 

  • Reyda, S., Sohn, C., Klebe, G., Rall, K., Ullmann, D., Jakubke, H.D., Stubbs, M.T. (2003) Reconstructing the binding site of factor Xa in trypsin reveals ligand-induced structural plasticity. J. Mol. Biol. 325: 963-977.

    Article  Google Scholar 

  • Rutenber, E, Fauman, E.B., Keenan, R.J., Ortiz de Montellano, P.R., Meng, E., Kuntz, I.D., DeCamp, D.L., Salto, R., Rosé, J.R., Craik, C.S., Stroud, R.M. (1993) Structure of a nonpeptide inhibitor complexed with HIV-1 protease. Developing a cycle of structurebased drug design. J. Biol. Chem. 268: 15343-15346.

    Google Scholar 

  • Schafferhans, A., Klebe, G. (2001) Docking ligands onto binding site representations derived from proteins built by homology modelling. J. Mol. Biol. 307: 407-427.

    Article  Google Scholar 

  • Schnecke, V., Kuhn, L.A. (1999) Virtual screening with solvation and ligand-induced complementarity. Persp. Drug Discov. Des. 20: 171-190.

    Article  Google Scholar 

  • Schulz-Gasch, T., Stahl, M. (2003) Binding site characteristics in structure-based vistual screening: evaluation of current docking tools. J. Mol. Model. 9: 47-57.

    Google Scholar 

  • Shoichet, B.K., McGovern, S.L., Wei, B., Irwin, J.J. (2002) Lead discovery using molecular docking. Curr. Opin. Chem. Biol. 6: 439-446.

    Article  Google Scholar 

  • Shoichet, B.K. (2004) Virtual screening of chemical libraries. Nature 432: 862-865.

    Article  ADS  Google Scholar 

  • Sotriffer, C.A., Krämer, O., Klebe, G. (2004) Probing Flexibility and “Induced-Fit” Phenomena in Aldose Reductase by Comparative Crystal Structure Analysis and Molecular Dynamics Simulations, Proteins 56:52-66.

    Article  Google Scholar 

  • Sotriffer, C.A., Gohlke, H., Klebe, G. (2002) Docking into knowledge-based potential fields: a comparative evaluation of DrugScore. J Med Chem. 45: 1967-1970.

    Article  Google Scholar 

  • Sotriffer, C.A., Winger, R.H., Liedl, K.R., Rode, B.M., Varga, J.M. (1996) Comparative docking studies on ligand binding to the multispecific antibodies IgE-La2 and IgE-Lb4. J Comput.- Aided Mol. Des. 10: 305-320.

    Article  ADS  Google Scholar 

  • Stahl, M., Rarey, M. (2001) Detailed analysis of scoring functions for virtual screening. J. Med. Chem., 44: 1035-1042.

    Article  Google Scholar 

  • Steuber, H., Czodrowski, P., Sotriffer, C.A., Klebe, G. (2006a) Assignment of Superimposed Proton Steps as a Prerequisite to Factorize Thermodynamic Inhibitor Binding Data to Aldose Reductase, J. Mol. Biol. submitted.

    Google Scholar 

  • Steuber, H., Zentgraf M., Gerlach C., Sotriffer C.A., Heine A., Klebe G. (2006b) Expect the Unexpected or Caveat for Drug Designers: Multiple Structure Determinations Using Aldose Reductase Crystals Treated under varying Conditions. J. Mol. Biol. submitted.

    Google Scholar 

  • Stubbs, M.T., Reyda, S., Dullweber, F., Moller, M., Klebe, G., Dorsch, D., Mederski, W.W., Wurziger, H. (2002) PH-dependent binding modes observed in trypsin crystals: lessons for structure-based drug design. Chembiochem 3: 246-249.

    Article  Google Scholar 

  • Teague, S.J. (2003) Implications of protein flexibility for drug discovery. Nat. Rev. Drug Discovery 2: 527-541.

    Article  Google Scholar 

  • Velec, H.F.G, Gohlke, H., Klebe, G. (2005) DrugScoreCSDsKnowledge-Based Scoring Function Derived from Small Molecule Crystal Data with Superior Recognition Rate of Near-Native Ligand Poses and Better Affinity Prediction, J. Med. Chem., 48: 6296-6303.

    Article  Google Scholar 

  • Verdonk, M.L., Berdini, V., Hartshorn, M.J., Mooij, W.T., Murray, C.W. et al. (2004) Virtual screening using protein-ligand docking: avoiding artificial enrichment. J. Chem. Inf. Comput. Sci. 44: 793-806.

    Google Scholar 

  • Verdonk, M.L., Cole, J.C., Taylor, R. (1999) SuperStar: A knowledge based approach for identifying interaction sites in proteins. J. Mol. Biol. 289: 1093-1108.

    Article  Google Scholar 

  • Verdonk, M.L., Chessari, G., Cole J.C., Hartshorn, M.J., Murray, C.W., Nissink, J.W.M., Taylor, R.D., Taylor, R. (2005) Modeling water molecules in protein-ligand docking using GOLD. J. Med. Chem. 48: 6504-6515.

    Article  Google Scholar 

  • Wallner, B., Elofsson, A. (2005) All are not equal: a benchmark of different homology modelling programs. Protein Sci. 14: 1315-1327.

    Article  Google Scholar 

  • Wang, R., Lu, Y., Wang, S. (2003) Comparative evaluation of 11 scoring functions for molecular docking. J. Med. Chem. 46: 2287-2303.

    Article  Google Scholar 

  • Wang, R., Wang, S. (2001) How does consensus scoring work for virtual library screening? An idealized computer experiment. J. Chem. Inf. Comput. Sci. 41: 1422-1426.

    Google Scholar 

  • Wei, B.Q., Weaver, L.H., Ferrari, A.M., Matthews, B.W., Shoichet, B.K. (2004) Testing a flexible-receptor docking algorithm in a model binding site. J. Mol. Biol. 337: 1161-1182.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Klebe, G. (2007). Virtual Ligand Screening: A Method to Discover New Drug Leads. In: Pifat-Mrzljak, G. (eds) Supramolecular Structure and Function 9. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6466-1_12

Download citation

Publish with us

Policies and ethics