Skip to main content

Key Aspects for Achieving Hits by Virtual Screening Studies

  • Chapter
  • First Online:
Functional Properties of Advanced Engineering Materials and Biomolecules

Abstract

Virtual screening studies consists of applying successive filters to large groups of molecules, called virtual libraries, in order to obtain a small number of hits. These hits, after going through activity-proving studies, generally in vitro enzymatic activity assays, can be followed by optimization studies aiming to increase activity and generating lead compounds. Computational approaches used in virtual screening studies are based on previously reported information about ligand or macromolecular receptor structures, and thus are called Ligand or Structure-Based Drug Design, respectively. The starting point for a virtual screening study is to obtain and prepare the virtual library to be used. The number of compounds present in virtual libraries, which can reach hundreds of thousands, have different characteristics, and depend on the study to be performed. In order to have a good efficiency of a virtual screening study, the compounds of a library must follow the criteria of representativeness and diversity, since these studies aim not only to obtain compounds with biological activity, but also to broaden the knowledge of different chemical classes of compounds able of interacting with a given target. In this chapter, we will address the fundaments of virtual screening studies, as well as the emergence and how these studies are currently conducted. From the initial choice of strategies that can be adopted, followed by the choice and preparation of databases, techniques that can be adopted, and ending with studies of hits optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. Office, U. S. G. A. Drug Industry: Profits, Research and Development Spending, and Merger and Acquisition Deals. (2017)

    Google Scholar 

  2. Ledley, F.D., McCoy, S.S., Vaughan, G., Cleary, E.G.: Profitability of large pharmaceutical companies compared with other large public companies. JAMA-J. Am. Med. Assoc. 323, 834–843 (2020)

    Article  Google Scholar 

  3. Tay-Teo, K., Ilbawi, A., Hill, S.R.: Comparison of sales income and research and development costs for FDA-approved cancer drugs sold by originator drug companies. JAMA Netw. Open 2, e186875 (2019)

    Article  Google Scholar 

  4. DiMasi, J.A., Grabowski, H.G., Hansen, R.W.: Innovation in the pharmaceutical industry: new estimates of R&D costs. J. Health Econ. 47, 20–33 (2016)

    Article  Google Scholar 

  5. Costantini, S., Walensky, R.P.: The costs of drugs in infectious diseases: branded, generics, and why we should care. J. Infect. Dis. 221, (2019)

    Google Scholar 

  6. Tomar, V., Mazumder, M., Chandra, R., Yang, J., Sakharkar, M.K.: Small molecule drug design. Encycl. Bioinforma. Comput. Biol. 741–760 (2019). https://doi.org/10.1016/b978-0-12-809633-8.20157-x

  7. Issa, N.T., Badiavas, E.V., Schürer, S.: Research techniques made simple: molecular docking in dermatology—a foray into in silico drug discovery. J. Invest. Dermatol. 139, 2400-2408.e1 (2019)

    Article  CAS  Google Scholar 

  8. Lombardino, J.G., Lowe, J.A.: The role of the medicinal chemist in drug discovery--then and now. Nat. Rev. Drug Discov. 3, 853–62 (2004)

    Google Scholar 

  9. U. S. Food & Drug Administration. The Drug Development Process (2018). https://www.fda.gov/patients/learn-about-drug-and-device-approvals/drug-development-process

  10. Andricopulo, A., Salum, L., Abraham, D.: Structure-based drug design strategies in medicinal chemistry. Curr. Top. Med. Chem. 9, 771–790 (2009)

    Article  CAS  Google Scholar 

  11. Guido, R.V.C., Andricopulo, A.D., Oliva, G.: Biotecnologia e química medicinal: aplicações em doenças infecciosas. 24, 81–98 (2010)

    Google Scholar 

  12. Khurshid Ahmad, M.H.: Drug discovery and in silico techniques: a mini-review. Enzym. Eng. 04, 1–3 (2014)

    Google Scholar 

  13. Cronk, D.: High-throughput screening. Drug Discovery and Development: Technology in Transition. Elsevier Ltd, (2013). https://doi.org/10.1016/B978-0-7020-4299-7.00008-1

  14. Begley, T.P., Inglese, J., Auld, D.S.: High throughput screening (HTS) techniques: applications in chemical biology. Wiley Encycl. Chem. Biol. (2008). https://doi.org/10.1002/9780470048672.wecb223

    Article  Google Scholar 

  15. Cobb, K.: Dock this : insilico drug design feeds drug development. Biomed. Comput. Rev. 20–30 (2007)

    Google Scholar 

  16. Hillisch, A., Heinrich, N., Wild, H.: Computational chemistry in the pharmaceutical industry: from childhood to adolescence. ChemMedChem 10, 1958–1962 (2015)

    Article  CAS  Google Scholar 

  17. Jorgensen, W.L.: The many roles of computation in drug discovery. Science (80-. ). 303, 1813–1818 (2004)

    Google Scholar 

  18. Song, C.M., Lim, S.J., Tong, J.C.: Recent advances in computer-aided drug design. Brief. Bioinform. 10, 579–591 (2009)

    Article  CAS  Google Scholar 

  19. Baig, M.H., Ahmad, K., Rabbani, G., Danishuddin, M., Choi, I.: Computer aided drug design and its application to the development of potential drugs for neurodegenerative disorders. Curr. Neuropharmacol. 16, 740–748 (2017)

    Article  Google Scholar 

  20. Xiang, M., Cao, Y., Fan, W., Chen, L., Mo, Y.: Computer-aided drug design: lead discovery and optimization. Comb. Chem. High Throughput Screen. 15, 328–337 (2012)

    Article  CAS  Google Scholar 

  21. Chaudhary, K.K., Mishra, N.: A review on molecular docking : novel tool for drug discovery. JSM Chem. 4, 1–4 (2016)

    CAS  Google Scholar 

  22. Berman, H.M., et al.: The protein data bank. Nucleic. Acids Res. 28, 235–242 (2000)

    Article  CAS  Google Scholar 

  23. M.P., B., L.B., F., C.A., T., C.H.T, de P. da S.: Prediction of the three-dimensional structure of phosphate-6-mannose PMI present in the cell membrane of xanthomonas citri subsp. citri of interest for the citrus canker control. In: F., L. P., C., T. (eds.) Emerging Research in Science and Engineering Based on Advanced Experimental and Computational Strategies. Engineering Materials. pp. 259–276. Springer, Cham, (2020)

    Google Scholar 

  24. Anderson, A.C.: The process of structure-based drug design. Chem. Biol. 10, 787–797 (2003)

    Article  CAS  Google Scholar 

  25. Kalyaanamoorthy, S., Chen, Y.P.P.: Modelling and enhanced molecular dynamics to steer structure-based drug discovery. Prog. Biophys. Mol. Biol. 114, 123–136 (2014)

    Article  CAS  Google Scholar 

  26. Bacilieri, M., Moro, S.: Ligand-based drug design methodologies in drug discovery process: an overview. Curr. Drug Discov. Technol. 3, 155–165 (2007)

    Article  Google Scholar 

  27. Geppert, H., Vogt, M., Bajorath, J.: Current trends in ligand-based virtual screening: molecular representations, data mining methods new application areas, and performance evaluation. J. Chem. Inf. Model. 50, 205–216 (2010)

    Article  CAS  Google Scholar 

  28. Ou-Yang, S.-S., et al.: Computational drug discovery. Acta Pharmacol. Sin. 33, 1131–1140 (2012)

    Article  CAS  Google Scholar 

  29. Gimeno, A. et al.: The light and dark sides of virtual screening: what is there to know? Int. J. Mol. Sci. 20, (2019)

    Google Scholar 

  30. Mortenson, P.N., Erlanson, D.A., De Esch, I.J.P., Jahnke, W., Johnson, C.N.: Fragment-to-lead medicinal chemistry publications in 2017. J. Med. Chem. 62, 3857–3872 (2018)

    Article  CAS  Google Scholar 

  31. Gimeno, A., Tom, S.: In: The Light and Dark Sides of Virtual Screening : What Is There to Know ? (2019). https://doi.org/10.3390/ijms20061375

  32. Reddy, A.S., Pati, S.P., Kumar, P.P., Pradeep, H.N., Sastry, G.N.: Virtual screening in drug discovery—a computational perspective. Curr. Protein Pept. Sci. 8, 329–351 (2007)

    Article  CAS  Google Scholar 

  33. Kumar, A., Zhang, K.Y.J.: Hierarchical virtual screening approaches in small molecule drug discovery. Methods 71, 26–37 (2015)

    Article  CAS  Google Scholar 

  34. Ferreira, R.S., Oliva, G., Andricopulo, A.D.: Integrating virtual and high-throughput screening: Opportunities and challenges in drug research and development. Quim. Nova 34, 1770–1778 (2011)

    Article  CAS  Google Scholar 

  35. Tanrikulu, Y., Krüger, B., Proschak, E.: The holistic integration of virtual screening in drug discovery. Drug Discov. Today 18, 358–364 (2013)

    Article  Google Scholar 

  36. Irwin, J.J., Shoichet, B.K.: ZINC—a free database of commercially available compounds for virtual screening ZINC—a free database of commercially available compounds for virtual screening. J. Chem. Inf. Model. 45, 177–182 (2005)

    Article  CAS  Google Scholar 

  37. Sterling, T., Irwin, J.J.: ZINC 15-ligand discovery for everyone. J. Chem. Inf. Model. 55, 2324–2337 (2015)

    Article  CAS  Google Scholar 

  38. Ol\ugaç, A., Türe, A., Ol\ugaç, S., Möller, S.: Cloud-based high throughput virtual screening in novel drug discovery. In: Kołodziej, J., González-Vélez, H. (eds.) High-Performance Modelling and Simulation for Big Data Applications: Selected Results of the COST Action IC1406 cHiPSet, pp. 250–278. Springer International Publishing, (2019). https://doi.org/10.1007/978-3-030-16272-6_9

  39. McCarthy, A.: Drug discovery in the clouds. Chem. Biol. 19, 1–2 (2012)

    Article  CAS  Google Scholar 

  40. Grebner, C. et al.: Virtual screening in the cloud: how big is big enough? J. Chem. Inf. Model (2019).https://doi.org/10.1021/acs.jcim.9b00779

  41. Singh, N., Chaput, L., Villoutreix, B.O.: Virtual screening web servers: designing chemical probes and drug candidates in the cyberspace. Brief. Bioinform. 00, 1–29 (2020)

    Google Scholar 

  42. Artimo, P., et al.: ExPASy: SIB bioinformatics resource portal. Nucleic Acids Res. 40, 597–603 (2012)

    Article  CAS  Google Scholar 

  43. Shi, Y., von Itzstein, M.: How size matters: diversity for fragment library design. Molecules 24, 1–10 (2019)

    Article  CAS  Google Scholar 

  44. Kim, S.: Getting the most out of pubchem for virtual screening. Expert Opin Drug Discov 11, 843–855 (2016)

    Google Scholar 

  45. Pawar, G., Madden, J.C., Ebbrell, D., Firman, J.W., Cronin, M.T.D.: In silico toxicology data resources to support read-across and (Q)SAR. Front. Pharmacol. 10, 1–26 (2019)

    Article  CAS  Google Scholar 

  46. Lavecchia, A., Giovanni, C.D.: Virtual screening strategies in drug discovery: a critical review. Curr. Med. Chem. 20, 2839–2860 (2013)

    Google Scholar 

  47. Bohacek, R.S., McMartin, C., Guida, W.C.: The art and practice of structure-based drug design: a molecular modeling perspective. Med. Res. Rev. 16, 3–50 (1996)

    Article  CAS  Google Scholar 

  48. Odling-smee, L., Dobson, C.M.: Insight Chemical space and biology. 432, 824–828 (2004)

    Google Scholar 

  49. Shoichet, B.K.: Virtual screening of chemical libraries problems with virtual screening. Nature 432, 862–865 (2006)

    Article  CAS  Google Scholar 

  50. Lyu, J., et al.: Ultra-large library docking for discovering new chemotypes. Nature 566, 224–229 (2019)

    Article  CAS  Google Scholar 

  51. Wu, C., et al.: Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm. Sin. B (2020). https://doi.org/10.1016/j.apsb.2020.02.008

    Article  Google Scholar 

  52. Sheisi, F.L., Rocha, S., Olanda, C.G., Fokoue, H.H., Anna, C.M.R.S.: Virtual screening techniques in drug discovery: review and recent applications. 1751–1767 (2019). https://doi.org/10.2174/1568026619666190816101948

  53. Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity. Wiley (1990). https://doi.org/10.1002/jcc.540130415

    Article  Google Scholar 

  54. Ropp, P.J., et al.: Gypsum-DL: an open-source program for preparing small-molecule libraries for structure-based virtual screening. J. Cheminform. 11, 1–13 (2019)

    Article  CAS  Google Scholar 

  55. Hawkins, P.C.D., Nicholls, A.: Conformer generation with OMEGA: Learning from the data set and the analysis of failures. J. Chem. Inf. Model. 52, 2919–2936 (2012)

    Article  CAS  Google Scholar 

  56. Lagarde, N., et al.: A free web-based protocol to assist structure-based virtual screening experiments. Int. J. Mol. Sci. 20, 1–15 (2019)

    Article  CAS  Google Scholar 

  57. Lipinski, C.A., Lombardo, F., Dominy, B.W., Feeney, P.J.: Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 23, 3–25 (1997)

    Google Scholar 

  58. Lipinski, C.A., Lombardo, F., Dominy, B.W., Feeney, P.J.: Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings1. Adv. Drug Deliv. Rev. 46, 3–26 (2001)

    Article  CAS  Google Scholar 

  59. M, C., R, C., C, M., H, J. A ‘Rule of Three’ for fragment-based lead discovery? Drug Discov. Today 8, 876–7 (2003)

    Google Scholar 

  60. Tice, C.M.: Selecting the right compounds for screening: Does Lipinski’s rule of 5 for pharmaceuticals apply to agrochemicals? Pest Manag. Sci. 57, 3–16 (2001)

    Article  CAS  Google Scholar 

  61. Mysinger, M.M., Carchia, M., Irwin, J.J., Shoichet, B.K.: Directory of useful decoys enhanced (DUD-E): Better ligands and decoys for better benchmarking. J. Med. Chem. 55, 6582–6594 (2012)

    Article  CAS  Google Scholar 

  62. Cereto-Massagué, A., et al.: DecoyFinder: An easy-to-use python GUI application for building target-specific decoy sets. Bioinformatics 28, 1661–1662 (2012)

    Article  CAS  Google Scholar 

  63. Bertrand, H., Triballeau, N.: Virtual screening workflow development guided by the ROC curve approach . application to high-throughput docking on metabotropic glutamate receptor subtype 4 accepting the uncertainty ? Receptor 2534–2547 (2005)

    Google Scholar 

  64. Empereur-Mot, C., et al.: Predictiveness curves in virtual screening. J. Cheminform. 7, 1–17 (2015)

    Article  CAS  Google Scholar 

  65. Jain, A.N., Nicholls, A.: Recommendations for evaluation of computational methods. J. Comput. Aided. Mol. Des. 22, 133–139 (2008)

    Article  CAS  Google Scholar 

  66. Kim, R., Skolnick, J.: Assessment of programs for ligand binding affinity prediction. J. Comput. Chem. 29, 1316–1331 (2008)

    Article  CAS  Google Scholar 

  67. Koes, D.R., Baumgartner, M.P., Camacho, C.J.: Lessons learned in empirical scoring with smina from the CSAR 2011 benchmarking exercise. J. Chem. Inf. Model. 53, 1893–1904 (2013)

    Article  CAS  Google Scholar 

  68. Wierbowski, S.D., Camacho, C.J., Wingert, B.M., Zheng, J.: Cross-docking benchmark for automated pose and ranking prediction of ligand binding. 298–305 (2020). https://doi.org/10.1002/pro.3784

  69. Baumgartner, M.P., Camacho, C.J.: Choosing the optimal rigid receptor for docking and scoring in the CSAR 2013/2014 experiment. J. Chem. Inf. Model. 56, 1004–1012 (2016)

    Article  CAS  Google Scholar 

  70. Ye, Z., Baumgartner, M.P., Wingert, B.M., Camacho, C.J.: Optimal strategies for virtual screening of induced-fit and flexible target in the 2015 D3R grand challenge. J. Comput. Aided. Mol. Des. 30, 695–706 (2016)

    Article  CAS  Google Scholar 

  71. Wingert, B.M., Oerlemans, R., Camacho, C.J.: Optimal affinity ranking for automated virtual screening validated in prospective D3R grand challenges. J. Comput. Aided. Mol. Des. 32, 287–297 (2018)

    Article  CAS  Google Scholar 

  72. Shamsara, J.: CrossDocker : a tool for performing cross-docking using Autodock Vina. Springerplus 0–4 (2016). https://doi.org/10.1186/s40064-016-1972-4

  73. Kavitha, R., Karunagaran, S., Subhash, S., Woo, K., Meganathan, C.: BioSystems Pharmacophore modeling, virtual screening, molecular docking studies and density functional theory approaches to identify novel ketohexokinase ( KHK ) inhibitors. BioSystems 138, 39–52 (2015)

    Article  CAS  Google Scholar 

  74. Ece, A., Sevin, F.: Chemistry The discovery of potential cyclin A / CDK2 inhibitors : a combination of 3D QSAR pharmacophore modeling virtual screening and molecular docking studies. (2013). https://doi.org/10.1007/s00044-013-0571-y

  75. Tai, W., Lu, T., Yuan, H.: Pharmacophore modeling and virtual screening studies to identify new c-Met inhibitors. 3087–3100 (2012). https://doi.org/10.1007/s00894-011-1328-5

  76. John, S., Thangapandian, S., Arooj, M., Hong, J.C., Kim, K.D.: Development evaluation and application of 3D QSAR Pharmacophore model in the discovery of potential human renin inhibitors. 12, (2011)

    Google Scholar 

  77. Screening, L.V., Himmat, M., Salim, N., Al-dabbagh, M.M., Saeed, F.: Adapting document similarity measures for ligand-based virtual screening. 1–13 (2016). https://doi.org/10.3390/molecules21040476

  78. Koshland, D.E.: Application of a theory of enzyme specificity to protein synthesis. Proc. Natl. Acad. Sci. 44, 98–104 (1958)

    Article  CAS  Google Scholar 

  79. Eckert, H., Bajorath, J.: Molecular similarity analysis in virtual screening: foundations, limitations and novel approaches. Drug Discov. Today 12, 225–233 (2007)

    Article  CAS  Google Scholar 

  80. Fischer, E.: Einfiuss der Configuration aUf die Wirkung der Enzyme. Ber Dtsch. Chem Gesellschaft 3479–3483 (1898)

    Google Scholar 

  81. Willett, P.: Similarity-based virtual screening using 2D fingerprints. Drug Discov. Today 11, 1046–1053 (2006)

    Article  CAS  Google Scholar 

  82. Bero, S.A., Muda, A.K., Choo, Y.H., Muda, N.A., Pratama, S.F.: Similarity measure for molecular structure: a brief review. J. Phys. Conf. Ser. 892, (2017)

    Google Scholar 

  83. Cereto-Massagué, A., et al.: Molecular fingerprint similarity search in virtual screening. Methods 71, 58–63 (2015)

    Article  CAS  Google Scholar 

  84. Hu, G., et al.: Performance evaluation of 2D fingerprint and 3D shape similarity methods in virtual screening. J. Chem. Inf. Model. 52, 1103–1113 (2012)

    Article  CAS  Google Scholar 

  85. Sastry, M., Lowrie, J.F., Dixon, S.L., Sherman, W.: Large-scale systematic analysis of 2D fingerprint methods and parameters to improve virtual screening enrichments. J. Chem. Inf. Model. 50, 771–784 (2010)

    Article  CAS  Google Scholar 

  86. Almeida, D. et al.: Artigo Estratégias de Triagem Virtual no Planejamento de Fármacos Estratégias de Triagem Virtual no Planejamento de Fármacos. 4, 739–776 (2012)

    Google Scholar 

  87. Muegge, I., Mukherjee, P.: An overview of molecular fingerprint similarity search in virtual screening. Expert Opin. Drug Discov. 11, 137–148 (2016)

    Article  CAS  Google Scholar 

  88. Miyao, T., Jasial, S., Bajorath, J., Funatsu, K.: Evaluation of different virtual screening strategies on the basis of compound sets with characteristic core distributions and dissimilarity relationships. J. Comput. Aided. Mol. Des. (2019). https://doi.org/10.1007/s10822-019-00218-8

    Article  Google Scholar 

  89. Performance, H.: A review of ligand-based virtual screening web tools and screening algorithms in large molecular databases in the age of big data. 10, 2641–2658 (2018)

    Google Scholar 

  90. Kumar, A., Zhang, K.Y.J.: Advances in the development of shape similarity methods and their application in drug discovery. 6, 1–21 (2018)

    Google Scholar 

  91. Ballester, P.J., Finn, P.W., Richards, W.G.: Ultrafast shape recognition : Evaluating a new ligand-based virtual screening technology. J. Molecular Graph. Modell. 27, 836–845 (2009)

    Google Scholar 

  92. Ballester, P.J. et al.: Ultrafast shape recognition in molecular databases. 463, 1307–1321 (2014)

    Google Scholar 

  93. Kumari, V., Tripathi, R., Patel, S., Raj, U., Varadwaj, P.K.: DUSR ( Distributed Ultrafast Shape Recognition ): a Hadoop based tool to identify similar shaped ligand molecules. 51, 6–9 (2017)

    Google Scholar 

  94. Kerezsi, C.R.: Prospective virtual screening for novel p53–MDM2 inhibitors using ultrafast shape recognition. pp. 89–97 (2014). https://doi.org/10.1007/s10822-014-9732-4

  95. Bommu, U.D., Konidala, K.K., Pabbaraju, N.: Ligand-based virtual screening , molecular docking , QSAR and pharmacophore analysis of quercetin- associated potential novel analogs against epidermal growth factor receptor. 9893, (2017)

    Google Scholar 

  96. Friedrich, L., Byrne, R., Treder, A., Singh, I., Bauer, C.: Shape similarity by fractal dimensionality : an application in the de novo design of ( À ) -englerin A mimetics. 1–6 (2020). https://doi.org/10.1002/cmdc.202000017

  97. Li, H., Leung, K., Wong, M., Ballester, P.J.: USR-VS : a web server for large-scale prospective virtual screening using ultrafast shape recognition techniques. 2, 1–6 (2016)

    Google Scholar 

  98. Finn, P.W., Morris, G.M.: Shape-based similarity searching in chemical databases. 00, 1–16 (2012)

    Google Scholar 

  99. Venhorst, J., Núñez, S., Terpstra, J.W., Kruse, C.G.: Assessment of scaffold hopping efficiency by use of molecular interaction fingerprints. J. Med. Chem. 51, 3222–3229 (2008)

    Article  CAS  Google Scholar 

  100. Hawkins, P.C.D., Skillman, A.G., Nicholls, A.: Comparison of shape-matching and docking as virtual screening tools. J. Med. Chem. 50, 74–82 (2007)

    Article  CAS  Google Scholar 

  101. Marín, R.M., Aguirre, N.F., Daza, E.E.: Graph theoretical similarity approach to compare molecular electrostatic potentials. J. Chem. Inf. Model. 48, 109–118 (2008)

    Article  CAS  Google Scholar 

  102. Puertas-Martín, S., Redondo, J.L., Pérez-Sánchez, H,. Ortigosa, P.M.: Multi-objective evolutionary algorithm for evaluation of shape and electrostatic similarity. In: AIP Conference Proceedings 2070, (2019)

    Google Scholar 

  103. Borges, N.M., et al.: Similarity search combined with docking and molecular dynamics for novel hAChE inhibitor scaffolds. J. Mol. Model. 24, 41 (2018)

    Article  CAS  Google Scholar 

  104. Wiggers, H.J., Rocha, J.R., Cheleski, J., Montanari, C.A.: Integration of ligand- and target-based virtual screening for the discovery of cruzain inhibitors. 565–578 (2011). https://doi.org/10.1002/minf.201000146

  105. Simo, C.J.V., Mukherjee, T., Brito, R.M.M., Jackson, R.M.: Toward the discovery of functional transthyretin amyloid inhibitors : application of virtual screening methods. 1806–1820 (2010)

    Google Scholar 

  106. Tresadern, G., Bemporad, D., Howe, T.: A comparison of ligand based virtual screening methods and application to corticotropin releasing factor 1 receptor. J. Mol. Graph. Model. 27, 860–870 (2009)

    Article  CAS  Google Scholar 

  107. Omprakash, T.K., Selvan, A.T., Hameed, A.S., Geetha, S.P.: Identification of novel human immunodeficiency virus-1 integrase inhibitors by shape-based virtual screening. 1, 151–156 (2010)

    Google Scholar 

  108. Silva, R.A.Í.C., Poiani, J.G.C., Ramos, R.S., Costa, J.S.: Ligand- and structure-based virtual screening of 16- (( diiso- a compound with potential anti-prostate cancer activity. 83, 2018–2019 (2019)

    Google Scholar 

  109. Yang, S.-Y.: Pharmacophore modeling and applications in drug discovery: challenges and recent advances. Drug Discov. Today 15, 444–450 (2010)

    Article  CAS  Google Scholar 

  110. Wermuth, C.G., Ganellin, C.R., Lindberg, P., Mitscher, L.A.: Glossary of terms used in medicinal chemistry (IUPAC Recommendations 1998). Pure Appl. Chem. (1998).https://doi.org/10.1351/pac199870051129

  111. Leach, A.R., Gillet, V.J., Lewis, R.A., Taylor, R.: Three-dimensional pharmacophore methods in drug discovery. J. Med. Chem. 53, 539–58 (2010)

    Google Scholar 

  112. Dror, O., Shulman-Peleg, A., Nussinov, R., Wolfson, H.J:. Predicting molecular interactions in silico: I. a guide to pharmacophore identification and its applications to drug design. Curr. Med. Chem. 11, 71–90 (2004)

    Google Scholar 

  113. Langer, T., Hoffmann, R.D.: In: Pharmacophores and Pharmacophore Searches (2006)

    Google Scholar 

  114. Drive, H.R.: Automated chemical hypothesis generation and database searching with Catalyst ®. 3, (1995)

    Google Scholar 

  115. Tintori, C., Corradi, V., Magnani, M., Manetti, F., Botta, M.: Targets looking for drugs: a multistep computational protocol for the development of structure-based pharmacophores and their applications for hit discovery. J. Chem. Inf. Model. 48, 2166–2179 (2008)

    Article  CAS  Google Scholar 

  116. Langer, T., Wolber, G.: Pharmacophore definition and 3D searches. Drug Discov. Today Technol. 1, 203–207 (2004)

    Article  CAS  Google Scholar 

  117. Schaller, D. et al.: Next generation 3D pharmacophore modeling. Wiley Interdiscip. Rev. Comput. Mol. Sci. 1–20 (2020). https://doi.org/10.1002/wcms.1468.

  118. Ma, Y., et al.: 3D QSAR Pharmacophore based virtual screening for identification of potential inhibitors for CDC25B. Comput. Biol. Chem. 73, 1–12 (2018)

    Article  CAS  Google Scholar 

  119. Güner, O., Clement, O., Kurogi, Y.: Pharmacophore modeling and three dimensional database searching for drug design using catalyst: recent advances. Curr. Med. Chem. 11, 2991–3005 (2004)

    Article  Google Scholar 

  120. Sutter, J., et al.: New features that improve the pharmacophore tools from accelrys. Curr. Comput. Aided-Drug Des. 7, 173–180 (2011)

    Article  CAS  Google Scholar 

  121. Dassault Systèmes BIOVIA. Discovery Studio Modeling Environment (2016)

    Google Scholar 

  122. Dixon, S.L. et al. PHASE: a new engine for pharmacophore perception, 3D QSAR model development, and 3D database screening: 1. Methodology and preliminary results. J. Comput. Aided. Mol. Des. 20, 647–671 (2006)

    Google Scholar 

  123. Wolber, G., Langer, T.: LigandScout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters. J. Chem. Inf. Model. 45, 160–169 (2005)

    Article  CAS  Google Scholar 

  124. Searls, D.B.: Data integration: challenges for drug discovery. Nat. Rev. Drug Discov. 4, 45–58 (2005)

    Article  CAS  Google Scholar 

  125. Lionta, E., Spyrou, G., Vassilatis, D. K., Cournia, Z.: Structure-based virtual screening for drug discovery : principles. Appl. Recent Adv. 1923–1938 (2014)

    Google Scholar 

  126. Swinney, D.C., Anthony, J.: How were new medicines discovered? Nat. Rev. Drug Discov. 10, 507–519 (2011)

    Article  CAS  Google Scholar 

  127. Anderson, A.C.: The process of structure-based drug design. 10, 787–797 (2003)

    Google Scholar 

  128. Dixon, S.J., Stockwell, B.R.: Identifying druggable disease-modifying gene products. Curr. Opin. Chem. Biol. 13, 549–555 (2009)

    Article  CAS  Google Scholar 

  129. Rollinger, B.J.M., Stuppner, H., Hofbauergasse, C.M.: Virtual screening for the discovery of bioactive natural products. 65, (2008)

    Google Scholar 

  130. Kahsai, A.W., et al.: Multiple ligand-specific conformations of the β2-adrenergic receptor. Nat. Chem. Biol. 7, 692–700 (2011)

    Article  CAS  Google Scholar 

  131. Waring, M.J., et al.: An analysis of the attrition of drug candidates from four major pharmaceutical companies. Nat. Rev. Drug Discov. 14, 475–486 (2015)

    Article  CAS  Google Scholar 

  132. Kontoyianni, M.: Docking and virtual screening in drug discovery. 1647, 255–266 (2017)

    Google Scholar 

  133. Barcelos, M.P., Federico, L.B., Taft, C.A., de Paula da Silva, C.H.T.: Prediction of the three-dimensional structure of Phosphate-6-mannose PMI present in the cell membrane of Xanthomonas citri subsp. Citri of Interest for the Citrus Canker Control. in 259–276 (2020). https://doi.org/10.1007/978-3-030-31403-3_10

  134. Stahura, F., Bajorath, J.: New methodologies for ligand-based virtual screening. Curr. Pharm. Des. 11, 1189–1202 (2005)

    Article  CAS  Google Scholar 

  135. Meng, X.-Y., Zhang, H.-X., Mezei, M., Cui, M.: Molecular docking: a powerful approach for structure-based drug discovery. Curr. Comput. Aided-Drug Des. 7, 146–157 (2011)

    Article  CAS  Google Scholar 

  136. Li, Q., Shah, S.: Structure-based virtual screening. In: Wu, C.H., Arighi, C.N., Ross, K.E. (eds.) Protein Bioinformatics: From Protein Modifications and Networks to Proteomics, vol. 1558, pp. 111–124. Springer, New York, (2017)

    Google Scholar 

  137. Moitessier, N., Englebienne, P., Lee, D., Lawandi, J., Corbeil, C.R.: Towards the development of universal, fast and highly accurate docking/scoring methods: a long way to go. Br. J. Pharmacol. 153, S7–S26 (2009)

    Article  CAS  Google Scholar 

  138. Huang, S.-Y., Grinter, S.Z., Zou, X.: Scoring functions and their evaluation methods for protein–ligand docking: recent advances and future directions. Phys. Chem. Chem. Phys. 12, 12899 (2010)

    Article  CAS  Google Scholar 

  139. Schneider, G.: Virtual screening: an endless staircase? Nat. Rev. Drug Discov. 9, 273–276 (2010)

    Article  CAS  Google Scholar 

  140. Kuntz, I.D., Blaney, J.M., Oatley, S.J., Langridge, R., Ferrin, T.E.: A Geometric approach to macromolecule-ligand interactions. J. Mol. Biol. 161, 269–288 (1982)

    Article  CAS  Google Scholar 

  141. Siavoush, D., Maryam Hamzeh-Mivehroud, B.S.: In: Applied Case Studies and Solutions in Molecular Docking-based Drug Design. IGI Global, (2016)

    Google Scholar 

  142. Sousa, S.F., Fernandes, P.A., Ramos, M.J.: Protein-ligand docking: current status and future challenges. Proteins Struct. Funct. Bioinforma. 65, 15–26 (2006)

    Article  CAS  Google Scholar 

  143. Rarey, M., Kramer, B., Lengauer, T., Klebe, G.: A fast flexible docking method using an incremental construction algorithm. J. Mol. Biol. 261, 470–489 (1996)

    Article  CAS  Google Scholar 

  144. Dias, R., de Azevedo Jr., W.: Molecular docking algorithms. Curr. Drug Targets 9, 1040–1047 (2008)

    Google Scholar 

  145. Zsoldos, Z., Reid, D., Simon, A., Sadjad, S.B., Johnson, A.P.: eHiTS: A new fast, exhaustive flexible ligand docking system. J. Mol. Graph. Model. 26, 198–212 (2007)

    Article  CAS  Google Scholar 

  146. Gorelik, B., Goldblum, A.: High quality binding modes in docking ligands to proteins. Proteins Struct. Funct. Bioinforma. 71, 1373–1386 (2007)

    Article  CAS  Google Scholar 

  147. Oshiro, C.M., Kuntz, I.D., Dixon, J.S.: Flexible ligand docking using a genetic algorithm. J. Comput. Aided. Mol. Des. 9, 113–130 (1995)

    Article  CAS  Google Scholar 

  148. Hart, T.N., Read, R.J.: A multiple-start Monte Carlo docking method. Proteins Struct. Funct. Genet. 13, 206–222 (1992)

    Article  CAS  Google Scholar 

  149. Batool, M., Ahmad, B., Choi, S.A.: In: Structure-Based Drug Discovery Paradigm (2019)

    Google Scholar 

  150. Jain, A.N.: In: Scoring Functions for Protein-Ligand Docking. pp. 407–420. (2006)

    Google Scholar 

  151. Ain, Q.U., Aleksandrova, A., Roessler, F.D., Ballester, P.J.: Machine-learning scoring functions to improve structure-based binding affinity prediction and virtual screening. Wiley Interdiscip. Rev. Comput. Mol. Sci. 5, 405–424 (2015)

    Article  CAS  Google Scholar 

  152. Guedes, I.A., Pereira, F.S.S., Dardenne, L.E.: Empirical scoring functions for structure-based virtual screening: applications, critical aspects, and challenges. Front. Pharmacol. 9, (2018)

    Google Scholar 

  153. Ferreira, L.G., Santos, R.N., Oliva, G., Andricopulo, A.D.: Molecular docking and structure-based drug design strategies. (2015)https://doi.org/10.3390/molecules200713384

  154. Ponder, J.W., Case, D.A.: In: Force Fields for Protein Simulations. pp. 27–85. (2003). https://doi.org/10.1016/S0065-3233(03)66002-X

  155. Kitchen, D.B., Decornez, H., Furr, J.R., Bajorath, J.: Docking and scoring in virtual screening for drug discovery: methods and applications. Nat. Rev. Drug Discov. 3, 935–949 (2004)

    Article  CAS  Google Scholar 

  156. Muegge, I.: PMF Scoring revisited. J. Med. Chem. 49, 5895–5902 (2006)

    Article  CAS  Google Scholar 

  157. Gohlke, H., Hendlich, M., Klebe, G.: Knowledge-based scoring function to predict protein-ligand interactions. J. Mol. Biol. 295, 337–356 (2000)

    Article  CAS  Google Scholar 

  158. Li, H., et al.: The impact of protein structure and sequence similarity on the accuracy of machine-learning scoring functions for binding affinity prediction. Biomolecules 8, 12 (2018)

    Article  CAS  Google Scholar 

  159. Hecht, D., Fogel, G.: Computational intelligence methods for docking scores. Curr. Comput. Aided-Drug Des. 5, 56–68 (2009)

    Article  CAS  Google Scholar 

  160. Cheng, T., Li, Q., Zhou, Z., Wang, Y., Bryant, S.H.: Structure-based virtual screening for drug discovery : a problem-centric review. 14, (2012)

    Google Scholar 

  161. Mysinger, M.M., Shoichet, B.K.: Rapid context-dependent ligand desolvation in molecular docking. J. Chem. Inf. Model. 50, 1561–1573 (2010)

    Article  CAS  Google Scholar 

  162. Ruvinsky, A.M.: Role of binding entropy in the refinement of protein-ligand docking predictions: analysis based on the use of 11 scoring functions. J. Comput. Chem. 28, 1364–1372 (2007)

    Article  CAS  Google Scholar 

  163. Charifson, P.S., Corkery, J.J., Murcko, M.A., Walters, W.P.: Consensus scoring: a method for obtaining improved hit rates from docking databases of three-dimensional structures into proteins. J. Med. Chem. 42, 5100–5109 (1999)

    Article  CAS  Google Scholar 

  164. Feher, M.: Consensus scoring for protein-ligand interactions. Drug Discov. Today 11, 421–428 (2006)

    Article  CAS  Google Scholar 

  165. Wang, R., Wang, S.: How does consensus scoring work for virtual library screening? an idealized computer experiment. J. Chem. Inf. Comput. Sci. 41, 1422–1426 (2001)

    Article  CAS  Google Scholar 

  166. Lagorce, D. et al.: In Silico ADME/Tox Predictions. ADMET Med. Chem. A Pract. Guid. 29–124 (2010). https://doi.org/10.1002/9780470915110.ch2

  167. Ren, H.C., Sai, Y., Chen, T.: Evaluation of generic methods to predict human pharmacokinetics using physiologically based pharmacokinetic model for early drug discovery of tyrosine kinase inhibitors. Eur. J. Drug Metab. Pharmacokinet. 44, 121–132 (2019)

    Article  CAS  Google Scholar 

  168. Alqahtani, S.: In silico ADME-Tox modeling: progress and prospects. Expert Opin. Drug Metab. Toxicol. (2017)

    Google Scholar 

  169. Amashita, F.Y., Ashida, M.H.: Review in silico approaches for predicting ADME properties of drugs. 19, 327–338 (2004)

    Google Scholar 

  170. Daina, A., Michielin, O., Zoete, V.: SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 7, 1–13 (2017)

    Article  Google Scholar 

  171. Paul Gleeson, M., Hersey, A., Hannongbua, S.: In-Silico ADME Models: a general assessment of their utility in drug discovery applications. Curr. Top. Med. Chem. 11, 358–381 (2011)

    Google Scholar 

  172. Hosea, N.A., Jones, H.M.: Predicting pharmacokinetic profiles using in silico derived parameters. Mol. Pharm. 10, 1207–1215 (2013)

    Google Scholar 

  173. Lu, J.J., et al.: Influence of molecular flexibility and polar surface area metrics on oral bioavailability in the rat. J. Med. Chem. 47, 6104–6107 (2004)

    Article  CAS  Google Scholar 

  174. Teague, S.J., Davis, A.M., Leeson, P.D., Oprea, T.: The design of leadlike combinatorial libraries. Angew. Chemie-Int. Ed. 38, 3743–3748 (1999)

    Article  CAS  Google Scholar 

  175. Martin, Y.C.: A bioavailability score. J. Med. Chem. 48, 3164–3170 (2005)

    Article  CAS  Google Scholar 

  176. Veber, D.F., et al.: Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 45, 2615–2623 (2002)

    Article  CAS  Google Scholar 

  177. Makara, G.M.: On sampling of fragment space. J. Med. Chem. 50, 3214–3221 (2007)

    Article  CAS  Google Scholar 

  178. Piccirillo, E., Do Amaral, A.T.: Virtual screening of bioactive compounds: concepts and aplications. Quim. Nova41, 662–677 (2018)

    Google Scholar 

  179. Sotriffer, C., Mannhold, R., Kubinyi, H., Folkers, G.: Virtual Screening: Principles, Challenges, and Practical Guidelines. Wiley, 2011

    Google Scholar 

  180. Dean, J., Ghemawat, S.: MapReduce: Simplified data processing on large clusters. In: OSDI 2004-6th Symposium Operations Systems Design Implement 51, 137–149 (2004)

    Google Scholar 

  181. Apache Software Foundation. Hadoop.

    Google Scholar 

  182. Zaharia, M., et al.: Apache spark: a unified engine for big data processing. Commun. ACM 59, 56–65 (2016)

    Article  Google Scholar 

  183. Ahmed, L., Edlund, A., Laure, E., Spjuth, O.: Using iterative MapReduce for parallel virtual screening. In: Proceedings International Conference Cloud Computing Technology Science CloudCom vol. 2, pp. 27–32. (2013)

    Google Scholar 

  184. Zhao, J., Zhang, R., Zhao, Z., Chen, D., Hou, L.: Hadoop mapreduce framework to implement molecular docking of large-scale virtual screening. In: Proceedings-2012 IEEE Asia-Pacific Services Computing Conference APSCC 2012, pp. 350–353 (2012). https://doi.org/10.1109/APSCC.2012.67

  185. Sid, K., Batouche, M.C.: Big data analytics techniques in virtual screening for drug discovery. In: ACM Interantional Conference Proceeding Series Part F1294 (2017)

    Google Scholar 

  186. Ellingson, S.R., Baudry, J.: High-throughput virtual molecular docking: hadoop implementation of AutoDock4 on a private cloud. In: ECMLS’11-Proceedings 2nd International Working Emerging Computing Methods Life Science pp. 33–38 (2011). https://doi.org/10.1145/1996023.1996028.

  187. Capuccini, M., Ahmed, L., Schaal, W., Laure, E., Spjuth, O.: Large-scale virtual screening on public cloud resources with Apache spark. J. Cheminform. 9, 4–9 (2017)

    Article  Google Scholar 

  188. Kainrad, T., Hunold, S., Seidel, T., Langer, T.: LigandScout remote: a new user-friendly interface for HPC and cloud resources. J. Chem. Inf. Model. 59, 31–37 (2019)

    Article  CAS  Google Scholar 

  189. Orion. https://www.eyesopen.com/orion (2020)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Henrique Tomich de Paula da Silva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Federico, L.B., Barcelos, M.P., Silva, G.M., Francischini, I.A.G., Taft, C.A., da Silva, C.H.T.d. (2021). Key Aspects for Achieving Hits by Virtual Screening Studies. In: La Porta, F.A., Taft, C.A. (eds) Functional Properties of Advanced Engineering Materials and Biomolecules. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-62226-8_16

Download citation

Publish with us

Policies and ethics