Skip to main content

Genomics of Wheat Domestication

  • Chapter
Genomics-Assisted Crop Improvement

Abstract

The review covers several issues concerning the state of molecular knowledge of the effects induced by domestication and breeding on the wheat crop. Genes at the root of the domestication syndrome are currently the focus of an active research which frequently uses comparative genomics approaches. Conclusions drawn on available data indicate that the domestication syndrome is originated by “sudden” genetic events, controlled by few major pleiotropic genes. These events were followed by the accumulation of a larger set of minor mutations, having a multifactorial mode of inheritance. Moreover the organization of nucleotide variability enables the detection of domestication-related molecular footprints, suggesting that the genomic regions more responsible for genetic variation and more related to domestication are reduced when compared to the whole genome size. The polyploidy history of the domesticated wheats is presented, making a specific mention to the origin of the wheat A, B, D and G genomes and to the molecular control of chromosome pairing in polyploids. A general presentation is also provided on the genomic changes which have accompanied the emergence of domesticated wheats. What follows is a molecular information on: i) the wheat adaptation to the environment (genomics of photoperiod, vernalization, heading date, plant height, and erect plant type); ii) the effect of domestication on seed-related yield components (genomics of seed size, grain hardness, and tillering); iii) modification of traits affecting harvestability (emergence of free-threshing seeds, rachis toughness, and presence of ear awns). Genetic bottlenecks which have been associated to wheat domestication and breeding are considered in a final section. The relatively young history of the wheat crop, the presumably small founder population of this gene pool, and the intensive long-term selection for agronomic traits did set the basis for a reduced genetic variability of the genus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akhunov ED, Goodyear JA, Geng S, Qi L-L, Echalier B et al (2003) The organization and rate of evolution of the wheat genomes are correlated with recombination rates along chromosome arms. Genome Res 13:753–763

    Article  PubMed  CAS  Google Scholar 

  • Akhunov ED, Akhunova AR, Anderson OD, Anderson JA, Blake N et al (2006) SNP discovery and deployment in polyploid wheat. Paper presented at the Plant Animal Genome XIV, San. Diego, CA

    Google Scholar 

  • Aragon-Alcaide L, reader S, Miller T, Moore G (1997) Centromeric behaviour in wheat with high and low homologous chromosomal pairing. Chromosoma 106:327–333

    Article  PubMed  CAS  Google Scholar 

  • Araki E, Miura H, Sawada S (1999) Identification of genetic loci affecting amylose content and agronomic traits on chromosome 4A of wheat. Theor Appl Genet 98:977–984

    Article  CAS  Google Scholar 

  • Atsmon D, Jacobs E (1977) A newly bred ‘Gigas’ form of bread wheat (Triticum aestivum L.): morphological features and thermo-photoperiodic responses. Crop Sci 17:31–35

    Article  Google Scholar 

  • Babb S, Muehlbauer GJ (2003) Genetic and morphological characterization of the barley uniculm2 (cul2) mutant. Theor Appl Genet 106:846–857

    PubMed  CAS  Google Scholar 

  • Barton NH, Keightley PD (2002) Understanding quantitative genetic variation. Nat Rev Genet 3:11–21

    Article  PubMed  CAS  Google Scholar 

  • Beecher M, Bettege A, Smidansky E, Giroux MJ (2002) Expression of wild type pinB sequence in transgenic wheat complements a hard phenotype. Theor Appl Genet 105:870–877

    Article  PubMed  CAS  Google Scholar 

  • Belayev A, Raskina O, Korol A, Nevo E (2000) Coevolution of A and B genomes in allotetraploid Triticum dicoccoides. Genome 43:1021–1026

    Article  Google Scholar 

  • Borlaug N (1968) Wheat breeding and its impact on world food supply. Canberra, Australia: Proceeding III International Wheat Genetics Symposium

    Google Scholar 

  • Borner A, Korzun V, Worland AJ (1998) Comparative genetic mapping of loci affecting plant height and development in cereals. Euphytica 100:245–248

    Article  CAS  Google Scholar 

  • Brandolini A, Vaccino P, Boggini G, Ozkan H, Kilian B, Salamini F (2006) Quantification of genetic relationships among A genomes of wheats. Genome 49:297–305

    Article  PubMed  CAS  Google Scholar 

  • Breseghello F, Sorrels ME (2006) Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics 172:1165–1177

    Article  PubMed  Google Scholar 

  • Brunner S, Fengler K, Morgante M, Tingey S, Rafalski A (2005) Evolution of DNA sequence non homologies among maize inbreds. Plant Cell 17:343–360

    Article  PubMed  CAS  Google Scholar 

  • Buchner P, Prosser IM, Hawkesford, MJ (2004) Phylogeny and expression of paralogous and orthologous sulphate transporter genes in diploid and hexaploid wheats. Genome 47:526–534

    Article  PubMed  CAS  Google Scholar 

  • Buckler E, Thornsberry JM, Kresovich S (2001) Molecular diversity, structure and domestication of grasses. Genet Res 77:213–218

    Article  PubMed  CAS  Google Scholar 

  • Bullrich L, Appendino ML, Tranquilli G, Lewis S, Dubcovski J (2002) Mapping of a thermo-sensitive earliness per se gene on Triticum monococcum chromosome 1Am. Theor Appl Genet 105:585–593

    Article  PubMed  CAS  Google Scholar 

  • Cadalen T, Sourdille P, Charmet G, Tixier MH, Gay G, Boeuf C, Bernard S, Leroy P, Bernard M (1998) Molecular markers linked to genes affecting plant height in wheat using a double-haploid population. Theor Appl Genet 96:933–940

    Article  CAS  Google Scholar 

  • Cai W, Morishima H (2002) QTL clusters reflect charcater associations in wild and cultivated rice. Theor Appl Genet 104:1217–1228

    Article  PubMed  CAS  Google Scholar 

  • Caldwell KS, Dvorak J, Lagudh ES, Akhunov E, Luo MC et al (2004) Sequence polymorphism in polyploid wheat and their D genome diploid ancestor. Genetics 167:941–947

    Article  PubMed  CAS  Google Scholar 

  • Campbell B, Baenziger PS, Gill KS, Eskridge KM, Budak H, Erayman M, Dweikat I, Yen Y (2003) Identification of QTLs and environmental interactions associated with agronomic traits on chromosome 3A of wheat. Crop Sci 43:1493–1505

    Article  CAS  Google Scholar 

  • Cao W, Scoles GJ, Hucl P (1997) The genetics of rachis fragility and glume tenacity in semi-wild wheat. Euphytica 94:119–124

    Article  Google Scholar 

  • Capparelli R, Boriello G, Giroux MJ, Amoroso MG (2003) Puroindoline A-gene expression is involved in association of puroindolines to starch. Theor Appl Genet 107:1463–1468

    Article  PubMed  CAS  Google Scholar 

  • Chandler PM, Marion-Poll A, Ellis M, Gubler F (2002) Mutants at the Slender1 locus of barley cv. Himalaya. Molecular and physiological characterization. Plant Physiol 129:181–190

    Article  PubMed  CAS  Google Scholar 

  • Chantret N, Salse J, Sabot F, Rahman S, Bellec A, Laubin B, et al (2005) Molecular basis of evolutionary events that shaped the Hardness locus in diploid and polyploid wheat species (Triticum and Aegilops). Plant Cell 17:1033–1045

    Article  PubMed  CAS  Google Scholar 

  • Chen Q-F, Yen C, Yang J-L (1998) Chromosome location of the gene for brittle rachis in the Tibetan weedrace of common wheat. Genet Res Crop Evol 45:21–25

    Google Scholar 

  • Cho C, Kyu HO, Lee SH (1993) Origin, dissemination and utilization of semi-dwarf genes in Korea. In Miller T, Koebner RMD (eds) Proceedings VII International Wheat Genetic Symposium Bath, Bath Press, pp 223–231

    Google Scholar 

  • Clarke B, Rahman S (2005) A microarray analysis of wheat grain hardness. Theor Appl Genet 110:1259–1267

    Article  PubMed  CAS  Google Scholar 

  • Cox TS (1998) Deepening the wheat gene pool. J Crop Prod 1:1–25

    Article  Google Scholar 

  • Cox T, Wilson WJ, Gill DL, Leath S, Bockus WW, Browder LE (1992) Resistance to foliar diseases in a collection of Triticum tauschii germplasm. Plant Dis 76:1061–1064

    Article  Google Scholar 

  • Diamond J (1997) Guns, germs and steel. Random House, London

    Google Scholar 

  • Doebley J, Stec A (1993) Genetic analysis of the morphological differences between maize and teosinte. Genetics 141:333–346

    Google Scholar 

  • Doebley J, Stec A, Hubbard L (1997) The evolution of apical dominance in maize. Nature 386:485–488

    Article  PubMed  CAS  Google Scholar 

  • Driscoll, C (1972) Genetic suppression of homoeologous chromosome pairing in hexaploid wheat. Can J Genet Cytol 14:39–42

    Google Scholar 

  • Dubcovsky, J, Loukoianov A, Fu D, Valarik M, Sanchez A, Yan L (2006) Effect of photoperiod on the regulation of wheat vernalization genes VRN1 and VRN2. Plant Mol Biol 60:469–480

    Article  PubMed  CAS  Google Scholar 

  • Duggan B, Richards RA, Tsuyuzaki H (2002) Environmental effects on stunting and the expression of the tiller inhibition (tin) gene in wheat. Funct Plant Biol 29:45–53

    Article  CAS  Google Scholar 

  • Dvorak J, Akhunov ED (2005) Tempos of deletions and duplications of gene loci in relation to recombination rate during diploid and polyploid evolution in the Aegilops–Triticum alliance. Genetics 171:323–332

    Article  PubMed  CAS  Google Scholar 

  • Dvorak J, Luo MC, Yang Zl, Zhang HB (1998) The structure of the Aegilops tauschii genepool and the evolution of hexaploid wheat. Theor Appl Genet 67:657–670

    Article  Google Scholar 

  • Dvorak J, Akhunov ED, Akhunov AR, Deal KR, Luo MC (2006) Molecular characterization of a diagnostic DNA marker for domesticated tetraploid wheat provides evidence for gene flow from wild tetraploid wheat to hexaploid wheat. Mol Biol Evol 23:1386–1396

    Article  PubMed  CAS  Google Scholar 

  • Elias EM, Steiger KD, Cantrell RG (1996) Evaluation of lines derived from wild emmer chromosome substitutions II. Agronomic traits. Crop Sci 36:228–233

    Article  Google Scholar 

  • Ellis M, Rebetzke GJ, Chandler P, Bonnett D, Spielmeyer W, Richards RA (2004) The effect of different height reducing genes on early growth characteristics of wheat. Funct Plant Biol 31:583–589

    Article  CAS  Google Scholar 

  • Ellis M, Rebetzke GJ, Azanza F, Richards RA, Spielmeyer W (2005) Molecular mapping of gibberellin-responsive dwarfing genes in bread wheat. Theor Appl Genet 111:423–430

    Article  PubMed  CAS  Google Scholar 

  • Evenson R, Gollin D (2003) Assessing the impact of the green revolution, 1960–2000. Science 300:758–762

    Article  PubMed  CAS  Google Scholar 

  • Faris J, Gill BS (2002) Genomic targeting and high resolution mapping of the domestication gene Q in wheat

    Google Scholar 

  • Faris J, Fellers JP, Brooks SA, Gill BS (2003) A bacterial artificial chromosome contig spanning the major domestication locus Q in wheat and identification of a candidate gene. Genetics 164:311–321

    PubMed  CAS  Google Scholar 

  • Feldman M (2001) Origin of cultivated wheat. In: The World Wheat Book: A history of wheat breeding. Lavoisier Publications, Paris

    Google Scholar 

  • Feldman M, Liu B, Segal G, Abbo S, Levy AA, Vega JM (1997) Rapid elimination of low-copy DNA sequences in polyploid wheat: a possible mechanism for differentiation of homoeologous chromosomes. Genetics 147:1381–1387

    PubMed  CAS  Google Scholar 

  • Freeling M, Thomas BC (2006) Gene-balanced duplications, like tetraploidy, provide predictable drive to increase morphological complexity. Genome 16:805–814

    Article  CAS  Google Scholar 

  • Fu D, Szucs P, Yan L, Helguera M, Skinner JS, von Zitzewitz J, Hayes PM, Dubcovsky J (2005) Large deletions within the first intron in VRN1 are associated with spring growth habit in barley and wheat. Mol Gen Genomics 273:54–65

    Article  CAS  Google Scholar 

  • Gautier M, Aleman ME, Guirao A, Marion D, Joudrier P (1994) Triticum aestivum puroindolines, two basic cystine-rich seed proteins: cDNA sequence analysis and developmental gene expression. Plant Mol Biol 25:43–57

    Article  PubMed  CAS  Google Scholar 

  • Giroux M, Morris CG (1998) Wheat grain hardness results from highly conserved mutations in the friabilin components puroindoline a and b. Proc Natl Acad Sci USA 95:6262–6266

    Article  PubMed  CAS  Google Scholar 

  • Giroux MJ, Talbert L, Habernicht DK, Lanning S, Hempill A, Martin JM (2000) Association of puroindoline sequence type and grain hardness in hard red spring wheat. Crop Sci 40:370–374

    Article  CAS  Google Scholar 

  • Griffiths S, Sharp R, Foote TN, Bertin I, Wanous M, Reader S, Colas I, Moore G (2006) Molecular characterization of Ph1 as a major chromosome pairing locus in polyploid wheat. Nature 439:749–752

    Article  PubMed  CAS  Google Scholar 

  • Gu Y, Coleman-Derr D, Kong X, Anderson OD (2004) Rapid genome evolution revealed by comparative sequence analysis of orthologous regions from four triticeae genomes. Plant Physiol 135:459–470

    Article  PubMed  CAS  Google Scholar 

  • He P, Friebe BR, Gill BS, Zhou J-M (2003) Allopolyploidy alters gene expression in the highly stable hexaploid wheat. Plant Mol Biol 52:401–414

    Article  PubMed  CAS  Google Scholar 

  • Hedden P (2003) The genes of the Green Revolution. Trends Genet 19:5–9

    Article  PubMed  CAS  Google Scholar 

  • Heun M, Shaefer-Pregl R, Klawan D, Castagna R, Accerbi M, Borghi B, Salamini F (1997) Site of einkorn wheat domestication identified by DNA fingerprinting. Science 278:1312–1314

    Article  CAS  Google Scholar 

  • Huang S, Sirikhachornikit A, Su X, Faris J, Gill B, Haselkorn R, Gornicki P (2002) Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase ot the Triticum/Aegilops complex and the evolutionary history of polyploid wheat. Proc Natl Acad Sci USA 99:8133–8138

    Article  PubMed  CAS  Google Scholar 

  • Ikeda A, Ueguchi-Tanaka M, Sonoda Y, Kitano H, Koshioka M, Futsuhara Y, Matsuoka M, Yamaguchi J (2001) slender rice, a constitutive gibberellin response mutant, is caused by a null mutation of the SLR1 gene, an ortholog of the height-regulating gene GAI/RGA/RHT/D8. Plant Cell 13:999–1010

    Article  PubMed  CAS  Google Scholar 

  • Jantasuriyarat C, Vales MI, Watson CJW, Riera-Lizarazu O (2004) Identification and mapping of genetic loci affecting the free-threshing habit and spike compactness in wheat. Theor Appl Genet 108:261–273

    Article  PubMed  CAS  Google Scholar 

  • Kashkush K, Feldman M, Levy AA (2002) Gene loss, silencing and activation in a newly synthesized wheat allotetraploid. Genetics 160:1651–1659

    PubMed  CAS  Google Scholar 

  • Kato K, Miura H, Akiyama M, Kuroshima M, Sawada S (1998) RFLP mapping of the three major genes, Vrn1, Q and B1, on the long arm of chromosome 5A of wheat. Euphytica 101:91–95

    Article  CAS  Google Scholar 

  • Kato K, Miura H, Sawada S (2000) Mapping QTLs controlling grain yield and its compoenents on chromosome 5A of wheat. Theor Appl Genet 101:933–943

    Google Scholar 

  • Kato K, Sonokawa R, Miura H, Sawada S (2003) Dwarfing effect associated with the threshability gene Q on wheat chromosome 5A. Plant Breed 122:489–492

    Article  CAS  Google Scholar 

  • Kerber E, Rowland GG (1974) Origin of the free threshing character in hexaploid wheat. Can J Genet Cytol 16:145–154

    Google Scholar 

  • Khush GS (2001) Green revolution: the way forward. Nature Rev Genet 2:815–822

    Article  CAS  PubMed  Google Scholar 

  • Kihara H (1944) Discovery of the DD-analyser, of the ancestors of Triticum vulgare. Agric Hort 19:13–14

    Google Scholar 

  • Kilian B, Ozkan H, Deusch O, Effgen S, Brandolini A, Kohl J, Martin W, Salamini F (2006) Independent wheat B and G genome origins in outcrossing Aegilops progenitor haplotypes. Mol Biol Evol 24:217–227

    Article  PubMed  CAS  Google Scholar 

  • Koebner R, Shepherd KW (1985) Induction of recombination between rye chromosome 1RL and wheat chromosomes. Theor Appl Genet 71:208–215

    Google Scholar 

  • Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, Araki T, Yano M (2002) Hd3 a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant Cell Physiol 43:1096–1105

    Article  PubMed  CAS  Google Scholar 

  • Komatsuda T, Maxim P, Senthil N, Mano Y (2004) High-density AFLP map of nonbrittle rachis 1 (Btr1) and 2 (Btr2) genes in barley (Hordeum vulgare L.). Theor Appl Genet 109:989–995

    Article  CAS  Google Scholar 

  • Kong X-Y, Gu YQ, You FM, Dubcovsky J, Anderson OD (2004) Dynamics of the evolution of orthologous and paralogous portions of a complex locus region in two genomes of allopolyploid wheat. Plant Mol Biol 54:55–69

    Article  PubMed  CAS  Google Scholar 

  • Konishi S, Izawa T, Lin SY, Ebana K, Fukuta Y, Sasaki T, Yano M (2006) An SNP caused loss of seed shattering during rice domestication. Science 312:1392–1396

    Article  PubMed  CAS  Google Scholar 

  • Kowalski S, Lan T-H, Feldamnn K, Paterson A (1994) Comparative mapping of Arabidopsis thaliana and Brassica oleracea chromosomes reveals islands of conserved gene order. Genetics 138:499–510

    PubMed  CAS  Google Scholar 

  • Kuckuck H (1959) Neuere arbeiten zur entsheung der hexaploiden Kulturweize. Z Pflanzenzucht 41:205–226

    Google Scholar 

  • Law C, Worland AJ (1997) Genetic analysis of some flowering time and adaptive traits in wheat. New Phytol 137:19–28

    Article  Google Scholar 

  • Le Thierry D’Ennequin MLT, Toupance B, Robert T, Godele B, Gouyon P (1999) Plant domestication: a model for studying the selection of linkage. J Evol Biol 12:1138–1147

    Article  Google Scholar 

  • Leicht IJ, Bennett MD (1997) Polyploidy in angiosperms. Trends Plant Sci 2:470–475

    Article  Google Scholar 

  • Lelley T, Stachel M, Grausgruber H, Vollmann J (2000) Analysis of relationships between Aegilops tauschii and the D genome of wheat utilizing microsatellites. Genome 43:661–668

    Article  PubMed  CAS  Google Scholar 

  • Levy AL, Feldman, M (2002) The impact of polyploidy on grass genome evolution. Plant Physiol 130:1587–1593

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Pinson SRM, Stansel JW, Park WD (1995) Identification of quantitative trait loci (QTLs) for heading date and plant height in cultivated rice (Oryza sativa L.). Theor Appl Genet 91:374–381

    CAS  Google Scholar 

  • Li W, Zhang P, Fellers JP, Friebe B, Gill BS (2004) Sequence composition, organization, and evolution of the core Triticeae genome. Plant J 40:500–511

    Article  PubMed  CAS  Google Scholar 

  • Li C, Zhou A, Sang T (2006) Rice domestication by reducing shattering. Science 311:1936–1939

    Article  PubMed  CAS  Google Scholar 

  • Lin Y-Y, Shertz KF, Paterson AH (1995) Comparative analysis of QTLs affecting plant height and maturity across the Poaceae, in reference to an interspecific sorghum population. Genetics 141:391–411

    PubMed  CAS  Google Scholar 

  • Lubbers E, Gill KS, Cox TS, Gill BS (1991) Variation of molecular markers among geographically diverse accessions of Triticum tauschii. Genome 34:354–361

    Google Scholar 

  • Luo M, Yang ZL, Kota RS, Dvorak J (2000) Recombination of chromosomes 3A(m) and 5A(m) of wheat: the distribution of recombination across chromosomes. Genetics 154:1301–1308

    PubMed  CAS  Google Scholar 

  • Luo M, Young ZL, Kawahara T, You F, Dvorak J (2006) The structure of wild and domesticated emmer wheat populations, gene flow between them, and the site of emmer domestication. Theor Appl Genet, in press

    Google Scholar 

  • Marza F, Bai G-H, Carver BF, Zhou W-C (2006) Quantitative trait loci for yield and related traits in the wheat population Ning7840 × Clark. Theor Appl Genet 112:688–698

    Article  PubMed  CAS  Google Scholar 

  • Mc Key J (1966) Species relationships in Triticum. Hereditas 2:237–276

    Google Scholar 

  • McFadden E, Sears ER (1946) The origin of Triticum spelta and its free-threshing hexaploid relative. J Hered 37:81–89

    Google Scholar 

  • McIntosh R, Hart GE Devos KM, Gale D, Rogers WJ (1998) Catalogue of gene symbols for wheat. Proc 9th Int Wheat Genet Symp 5:235

    Google Scholar 

  • Mello-Sampayo T (1971) Genetic regulation of meiotic chromosome pairing by chromosome 3D of Triticum aestivum. Nat New Biol 230:23–24

    Article  Google Scholar 

  • Mikhailova E, Naranjo T, Shepherd K, Eden JW, Heyting C, de Jong JH (1998) The effect of the wheat Ph1 locus on chromatin organization and meiotic chromosome pairing analysed by genome painting. Chromosoma 107:339–350

    Article  PubMed  CAS  Google Scholar 

  • Morgante M, Salamini F (2003) From plant genomics to breeding practice. Curr Opin Biotechnol 14:214–219

    Article  PubMed  CAS  Google Scholar 

  • Mori N, Ishi T, Ishido T, Hirosawa S, Watatani H et al (2003) Origins of domesticated emmer and common wheat inferred from chloroplast DNA fingerprinting. In Pogna NE, Romano M, Pogna EA, Galtiero G (eds) 10th International Wheat Genetic Symposium. Istituto Sperimentale per la Cerealicultura Rome, Italy pp 25–28

    Google Scholar 

  • Muramatsu M (1963) Dosage effect of the spelta gene q of hexaploid wheeat. Genetics 48:469–482

    PubMed  CAS  Google Scholar 

  • Nalam V, Vales MI, Watson CJW, Kianian SF, RieraLizarazu O (2006) Map-based analysis of genes affecting the brittle rachis character in tetraploid wheat (Triticum turgidum). Theor Appl Genet 112:373–381

    Article  PubMed  CAS  Google Scholar 

  • Nesbitt M, Samuel D (1995) Promoting the conservation and use of underutilized and neglected crops. Paper presented at the First International. Workshop on hulled wheats, Castelvecchio Pascoli, Italy

    Google Scholar 

  • Ozkan H, Levy AA, Feldman M (2001) Allopolyploidy-induced rapid genome evolution in the wheat (Aegilops-Triticum) group. Plant Cell 13:1735–1747

    Article  PubMed  CAS  Google Scholar 

  • Ozkan H, Brandolini A, Schaefer-Pregl R, Salamini F (2002) AFLP analysis of a collection of tetraploid wheats indicates the origin of emmer and hard wheat domestication in southeast Turkey. Mol Biol Evol 19:1797–1801

    PubMed  CAS  Google Scholar 

  • Ozkan H, Brandolini A, Pozzi C, Effeng S, Wunder J et al (2005) A reconsideration of the domestication geography of tetraploid wheat. Theor Appl Genet 110:1052–1060

    Article  PubMed  CAS  Google Scholar 

  • Paterson AH (2002) What has QTL mapping taught us about plant domestication? New Phytol 154:591–608

    Article  CAS  Google Scholar 

  • Paterson A, Lin Y-R, Li Z, Schertz KF, Doebley JF et al (1995) Convergent domestication of cereal crops by independent mutations at corresponding genetic loci. Science 269:1714–1718

    Article  PubMed  CAS  Google Scholar 

  • Paterson A, Bowers J, Burow M, Draye X, Eslik C, Jinag C, Katsar C, Lan T, LinY, Ming R, Wright R (2000) Comparative genomics of plant chromosomes. Plant Cell 12:1523–1539

    Article  PubMed  CAS  Google Scholar 

  • Peng J, Carol P, Richards DE, King KE, Cowling RJ, Murphy GP, Harberd NP (1997) The Arabidopsis GAI gene defines a signalling pathway that negatively regulates gibberellin responses. Gen Dev 11:3194–3205

    CAS  Google Scholar 

  • Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales J, Fish LJ et al (1999) “Green revolution” genes encode mutant gibberellin response modulators. Nature 400:256–261

    Article  PubMed  CAS  Google Scholar 

  • Peng J, Ronin Y, Fahima T, Roder MS, Li Y, Nevo E, Korol A (2003) Domestication quantitative trait loci in Triticum dicoccoides the progenitor of wheat. Proc Natl Acad Sci USA 10:2489–2494

    Article  CAS  Google Scholar 

  • Peng JH, Zadeh H, Lazo GR, Gustafson JP, Chao S et al (2004) Chromosome bin map of expressed sequence tags in homoeologous group 1 of hexaploid wheat and homoeology with rice and Arabidopsis. Genetics 168:609–623

    Article  PubMed  CAS  Google Scholar 

  • Perretant M, Cadalen T, Charmet G, Sourdille P, Nicolas P, Boeuf C et al (2000) QTL analysis of bread making quality in wheat using a doubled haploid population. Theor Appl Genet 100:1167–1175

    Article  CAS  Google Scholar 

  • Petersen G, Seberg O, Merete Y, Kasper B (2006) Phylogenetic relationships of Triticum and Aegilops and evidence for the origin of the A, B and D genomes of common wheat (T. aestivum). Mol Phylogenet Evol 39:70–82

    Article  PubMed  CAS  Google Scholar 

  • Pozzi C, Rossini L, Vecchietti A, Salamini F (2004) Gene and genome changes during domestication of cereals. In: Gupta P, Varsheny RK (eds) Cereal genomics, Kluwer Academic Press, Netherlands

    Google Scholar 

  • Provan J, Wolters P, Caldwell KH, Powell W (2004) High resolution organellar genome analysis of triticum and Aegilops sheds new light on cytoplasm evolution in wheat. Theor Appl Genet 108:1182–1190

    Article  PubMed  CAS  Google Scholar 

  • Rahman S, Jolly JC, Skerritt JH, Wallosheck A (1994) Cloning of a wheat 15 kDA grain softness protein (GSP). GSP is a mixture of puroindoline-like polypetides. Eur J Biochem 223:917–925

    Article  PubMed  CAS  Google Scholar 

  • Rao M (1972) Mapping of the compactum gene C on chromosome 2D of wheat. Wheat Inf Serv 35:9

    Google Scholar 

  • Rao M (1977) Mapping of the sphaerococcum gene “s” on chromosome 3D of wheat. Cereal Res Commun 5:15–17

    Google Scholar 

  • Ravel C, Nagy IJ, Martre P, Sourdille P, Dardevet M, Balfourier F, Pont C, Giancola S, Praud S, Charmet G (2006) Single nucleotide polymorphism, genetic mapping, and expression of genes coding for the DOF wheat prolamin-box binding factor. Funct Integr Genomics 6:310–321

    Article  PubMed  CAS  Google Scholar 

  • Reif J, Zhang P, Dreisigacker S, Warburton ML, van Ginkel M, Hoisington D, Bohn M, Melchinger AE (2005) Wheat genetic diversity trends during domestication and breeding. Theor Appl Genet 110:859–864

    Article  PubMed  CAS  Google Scholar 

  • Richards, R (1988) A tiller inhibitor gene in wheat and its effect on plant growth. Aust J Agric Res 39:749–757

    Article  Google Scholar 

  • Rodriguez S, Maestra B, Perera B, Diez M, Naranjo T (2000) Pairing affinities of the B- and G-genome chromosomes of polyploid wheats with those of Aegilops speltoides. Genome 43:814–819

    Article  PubMed  CAS  Google Scholar 

  • Rong J, Millet E, Manisterski J, Feldman M (2000) A new powdery mildew resistance gene: introgression from wild emmer into common wheat and RFLP-based mapping. Euphytica 115:121–126

    Article  CAS  Google Scholar 

  • Roussel V, Koenig J, Beckert M, Balfourier F (2004) Molecular diversity in French bread wheat accessions related to temporal trends and breeding programs. Theor Appl Genet 108:920–930

    Article  PubMed  CAS  Google Scholar 

  • Salamini F (2003) Hormones and the green revolution. Science 302:71–72

    Article  PubMed  CAS  Google Scholar 

  • Salamini F, Ozkan H, Brandolini A, Schaefer-Pregl R, Martin W (2002) Genetics and geography of wild cereal domestication in the near east. Nat Rev Genet 3:429–441

    PubMed  CAS  Google Scholar 

  • Sallares R, Brown TA (2004) Phylogenetic analysis of complete 5′ external transcribed spacers of the 18S ribosomal RNA genes of diploid Aegilops and related species (Triticeae, Poaceae). Genet Resour Crop Evol 51:701–712

    Article  CAS  Google Scholar 

  • Salvi S, Tuberosa R (2005) To clone or not to clone plant QTLs: present and future challenges. Trends Plant Sci 10:297–304

    Article  PubMed  CAS  Google Scholar 

  • Sears E (1976) Genetic control of chromosome pairing in wheat. Annu Rev Genet 10:31–51

    Article  PubMed  CAS  Google Scholar 

  • Shah M, Gill KS, Bezinger PS, Yen Y, Kaeppler SM, Ariyarathne HM (1999) Molecular mapping of loci for agronomic traits on chromosome 3A of bread wheat. Crop Sci 39:1728–1732

    Article  CAS  Google Scholar 

  • Shaked H, Kashkush K, Ozkan H, Feldman M, Levy AA (2001) Sequence elimination and cytosine methylation are rapid and reproducible responses of the genome to wide hybridiazion and allopolyploidy in wheat. Plant Cell 13:1749–1759

    Article  PubMed  CAS  Google Scholar 

  • Sharma H, Waynes J (1980) Inheritance of tough rachis in crosses of Triticum monococcum and Triticum boeoticum. J Hered 7:214–216

    Google Scholar 

  • Shindo C, Tsujimoto H, Sasakuma T (2003) Segregation analysis of heading traits in hexaploid wheat utilizing recombinant inbred lines. Heredity 90:56–93

    Article  PubMed  CAS  Google Scholar 

  • Simonetti M, Bellomo MP, Laghetti G, Perrino P, Simeone R, Blanco A (1999) Quantitative trait loci influencing free-threshing habit in tetraploid wheats. Gen Res Crop Evol 46:267–271

    Article  Google Scholar 

  • Simons K, Fellers JP, Trik HN, Zhang Z, Tai Y-S, Gill BS, Faris JD (2006) Molecular characterization of the major wheat domestication gene Q. Genetics 172:547–555

    Article  PubMed  CAS  Google Scholar 

  • Slageren MW (1994) Wild wheats: a monograph of Aegilops L. and Amblyopyrum (Jaub Abd Spach). Wageningen Agric Univ Press, Wageningen

    Google Scholar 

  • Smale M, Reynolds MP, Warburton M, Skovmand B, Trethowan R, Singh RP, Ortiz-Monasterio I, Crossa J (2002) Dimensions of diversity in modern spring bread wheat in developing countries from 1965. Crop Sci 42:1766–1779

    Article  Google Scholar 

  • Snape J, Law W, Parker CN, Worland BB, Worland AJ (1985) Genetical analysis of chromosome 5A of wheat and its influence on important agronomic characters. Theor Appl Genet 71:518–526

    Article  Google Scholar 

  • Soltis PS (2005) Ancient and recent polyploidy in the angiosperms. New Phytol 166:5–8

    Article  PubMed  Google Scholar 

  • Sourdille P, Perretnat MR, Charmet G, Leory P, Gautire MF, Joudrier P, Nelson JC, Sorrells ME, Bernard M (1996) Linkage between RFLP markers and genes affecting kernel hardness in wheat. Theor Appl Genet 93:580–586

    CAS  Google Scholar 

  • Sourdille P, Tixier MH, Charmet G, Gay G, Cadalen T, Bernard S, Bernard M (2000) Location of genes involved in ear compactness in wheat (Triticum aestivum) by means of molecular markers. Mol Breed 6:247–255

    Article  CAS  Google Scholar 

  • Sourdille P, Cadalen T, Gay G, Gill B, Bernard M (2002) Molecular and physical mapping of genes affecting awning in wheat. Plant Breed 121:320–324

    Article  CAS  Google Scholar 

  • Spielmeyer W, Richards RA (2004) Comparative mapping of wheat chromosome 1AS which contains the tiller inhibition gene (tin) with rice chromosome 5S. Theor Appl Genet 109:1303–1310

    Article  PubMed  CAS  Google Scholar 

  • Stelmack A (1990) Geographic distribution of Vrn-genes in landraces and improved varieties of spring bread wheat. Euphytica 45:113–118

    Google Scholar 

  • Sutton T, Whitford R, Baumann Y, Dong C (2003) The Ph2 pairing homoeologous locus of wheat (Triticum aestivum): identification of candidate meiotic genes using a comparative genetics approach. Plant J 36:443–456

    Article  PubMed  CAS  Google Scholar 

  • Symes KJ (1965) The inheritance of grain hardness in wheat as measured by the particle size index. Aust J Agric Res 16:113–123

    Article  Google Scholar 

  • Tajima F (1989) Statistical methods to test for nucleotide mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    PubMed  CAS  Google Scholar 

  • Talbert L, Smith LY, Blake NK (1998) More than one origin of hexaploid wheat is indicated by sequence comparison of low-copy DNA. Genome 41:402–407

    Article  CAS  Google Scholar 

  • Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277:1063–1066

    Article  PubMed  CAS  Google Scholar 

  • Thornsberry JM, Goodman MM, Doebley J, Kresovich S, Nielsen D, Buckler ES (2001) Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet 28:286–289

    Article  PubMed  CAS  Google Scholar 

  • Thuillet AC, Bru D, David J, Roumet P, Santomi S, et al (2005) Direct estimation of mutation rate for 10 microsatellites loci in durum wheat, T. turgidum. Mol Biol Evol 19:122–125

    Google Scholar 

  • Tranquilli G, Dubcovsky J (2000) Epistatic interactions between vernalization genes VrnAm1 and VrnAm2 in diploid wheat. J Hered 91:304–306

    Article  PubMed  CAS  Google Scholar 

  • Turnbull K, Turner M, Mukai Y, Yamamoto M, Morell MK, Appels R, Rahman S (2003) The organization of genes tightly linked to the Ha locus in Ae. tauschii, the D genome donor of wheat. Genome 46:330–336

    Article  PubMed  CAS  Google Scholar 

  • Vega J, Feldman M (1998) Effect of the pairing gene Ph1 on centromere misdivision in common wheat. Genetics 148:1285–1294

    PubMed  CAS  Google Scholar 

  • Villareal R, Davila GF, Kazi AM (1995) Synthetic hexaploids Triticum aestivum advanced derivatives resistant to karnal bunt (Tilletia indica Mitra). Cereal Res Commun 23:127–132

    Google Scholar 

  • Villareal R, Mujeeb-Kazi A, Rajaram S (1996) Inherintance of threshability in synthetic hexaploid byT. aestivum crosses. Plant Breed 115:407–409

    Article  Google Scholar 

  • Vision T, Brown D, Tanksley S (2000) The origins of genomic duplications in Arabidopsis. Science 290:2114–2117

    Article  PubMed  CAS  Google Scholar 

  • Wanlong L, Gill BS (2006) Multiple genetic pathways for seed shattering in the grasses. Funct Integr Genomics 6:300–309

    Article  CAS  Google Scholar 

  • Watanabe N, Sogiyama K, Yamagashi Y, Skata Y (2002) Comparative telosomic mapping of homoeologous genes for brittle rachis in tetraploid and hexaploid wheats. Hereditas 137:180–185

    Article  Google Scholar 

  • Watanabe N, Takesada N, Fujii Y, Martinek P (2005) Comparative mapping of genes for brittle rachis in Triticum and Aegilops. Czech J Genet Plant Breed 41:39–44

    Google Scholar 

  • Wendel J (2000) Genome evolution in polyploids. Plant Mol Biol 42:225–249

    Article  PubMed  CAS  Google Scholar 

  • Wicker T, Yahiaoui N, Guyot R, Schlagenhauf E, Liu ZD, Dubcovsky J, Keller B (2003) Rapid genome divergence at orthologous low molecular weight glutenin loci of the A and A(m) genomes of wheat. Plant Cell 15:1186–1197

    Article  PubMed  CAS  Google Scholar 

  • Worland A (1996) The influence of flowering time genes on environmental adaptability in European wheats. Euphytica 89:49–57

    Article  Google Scholar 

  • Wright SI, Gaut, BS (2005) Molecular population genetics and the search for adaptive evolution in plants. Mol Biol Evol 22:506–519

    Article  PubMed  CAS  Google Scholar 

  • Wright SI, Vroh I, Schroeder SG, Yamasaki M, Doebley JF, McMullen MD, Gaut BS (2005) The effects of artificial selection on the maize genome. Science 308:1310–1314

    Article  PubMed  CAS  Google Scholar 

  • Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J (2003) Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci USA 100:6263–6268

    Article  PubMed  CAS  Google Scholar 

  • Yan L, Helguera M, Kato K, Fukuyama S, Sherman J, Dubcosky J (2004) Allelic variation at the VRN-1 promoter region in polyploid wheat. Theor Appl Genet 109:1677–1686

    Article  PubMed  CAS  Google Scholar 

  • Yan L, Loukoianov A, Blech A, Tranquilli G, Ramakrishna W, SanMiguel P, Bennetzen JL, Echenique V, Dubcovsky J (2006a) The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science 303:1640–1644

    Article  CAS  Google Scholar 

  • Yan L, Fu D, Li C, Blechl A, Tranquilli G, Bonafede M, Sanchez A, Valarik M, Yasuda S, Dubcovsky J (2006b) The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc Natl Acad Sci USA 103:19581–19586

    Article  CAS  Google Scholar 

  • Yano M, Katayose Y, Ahikari M, Yamanouchi U, Monna L et al (2000) Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell 12:2473–2484

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Qu L-J, Gu H, Gao W, Liu M, Chen J, Chen Z (2002) Studies on the origin and evolution of tetraploid wheats based on the internal transcribed spacer (ITS) sequences of nuclear ribosomal DNA. Theor Appl Genet 104:1099–1106

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Pozzi, C., Salamini, F. (2007). Genomics of Wheat Domestication. In: Varshney, R.K., Tuberosa, R. (eds) Genomics-Assisted Crop Improvement. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6297-1_17

Download citation

Publish with us

Policies and ethics