Skip to main content

Novel Tensio-Active Microbial Compounds for Biocontrol Applications

  • Chapter
General Concepts in Integrated Pest and Disease Management

Abstract

Several microorganisms are known to produce tensio-active compounds (biosurfactants). They have emerged out as successful alternative to synthetic surfactants. The enormous diversity of biosurfactants makes them interesting for application in several areas. Rhamnolipids are one such heterogeneous group of compounds which has been studied as a model system and acquired a status as potential performance-effective molecules in various fields, like production of speciality chemicals, additives for environmental remediation and biological control agent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abalos, A., Pinazo, A., Infante, R., Casals, M., Gracia, F., & Manresa, A. (2001). Physicochemical and antimicrobial properties of new rhamnolipids produced by Pseudomonas aeruginosa AT10 from soybean oil refinery wastes. Langmuir, 17, 1367-1371.

    Article  CAS  Google Scholar 

  • Arino, S., Marchal, R., & Vandecasteele, J. P. (1996). Identification and purification of a rhamnolipidic biosurfactant by a Pseudomonas species. Applied Microbiology and Biotechnology, 45, 162-168.

    Article  CAS  Google Scholar 

  • Banat, I. M. (1993). The isolation of thermophilic biosurfactant producing Bacillus sp. Biotechnology Lettsers, 15, 591-594.

    Article  CAS  Google Scholar 

  • Banat, I. M. (1995). Biosurfactant production and possible uses in microbial enhanced oil recovery and oil pollution remediation: a review. Bioresources Technology, 51,1-12.

    Article  CAS  Google Scholar 

  • Banat, I. M., Makkar, R. S., & Comeotra, S. S. (2000). Potential commercial application of microbial surfactants. Applied Microbiology and Biotechnology, 53, 495-508.

    Article  CAS  PubMed  Google Scholar 

  • Benincasa, M., Abalos, A., Morcira, I., & Manresa, A. (2002). Rhamnolipid production by Pseudomonas aeruginosa LBI growing on soapstock as the sole source of carbon. Journal of Food Engineering, 54, 283-288.

    Article  Google Scholar 

  • Benincasa, M., Abalos, A., Oliveira, I., & Manresa A. (2004). Chemical structure, surface properties and biological activities of the biosurfactant produced by Pseudomonas aeruginosa LBI from soapstock. Antonie van Leeuwenhoek, 85, 1-8.

    Article  CAS  PubMed  Google Scholar 

  • Bunster, L., Fokkema, N. J., & Schippers, B. (1989). Effect of surface-active Pseudomonas Pseudomonas spp. on leaf wettability. Applied and Environmental Microbiology, 55, 1340-1345.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chhatre, S., Purohit, H., Shanker, R., & Khanna, P. (1996) Bacterial consortia for crude oil spill remediation. Water Science and Technology, 34, 187–193.

    Article  CAS  Google Scholar 

  • Chayabutra, C., Wu, J., & Lu-Kwang, J. (2001). Rhamnolipid production by Pseudomonas aeruginosa under denitrification: effects of limiting nutrients and carbon substrates. Biotehnology and Bioengineering, 72, 25-33.

    Article  CAS  Google Scholar 

  • Cooper, D. G. (1986). Biosurfactants. Microbiological Sciences, 3, 145-149.

    CAS  PubMed  Google Scholar 

  • Daniel, H. J., Otto, R. T., Binder, M., Reuss, M., & Syldatk, C. (1999). Production of sphorolipids from whey. Development of a two stage process with Cryptococcus curvatus ATCC 20509 and Candida bombicola ATCC 22214 using deproteinized whey concentrates as substrates. Applied Microbiology and Biotechnology, 51, 40-45.

    Article  CAS  PubMed  Google Scholar 

  • Davey, M. E., Caiazza, N. C., & O’Toole, G. A. (2003). Rhamnolipid surfactant production affects biofilm architecture∈dex in seudomonas. aeruginosa PAO1. Journal of Bacteriology, 185, 1027-1036.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • De Souza, J. T., Weller, D. M., & Raaijmakers, J. M. (2003). Frequency, diversity and activity of 2, 4-diacetyl-phloroglucinol-producing fluorescent Pseudomonas spp. in Dutch take-all decline soils. Phytopathology, 93, 54-63.

    Article  PubMed  Google Scholar 

  • Desai, J. D., & Banat, I. M. (1997). Microbial production of surfactants and their commercial potential. Microbiology and Molecular Biology Reviews, 61, 47-64.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Déziel, E., Lépine, F., Milot, S., & Villemur, R. (2000). Mass spectrometry monitoring of rhamnolipids from a growing culture of Pseudomonas aeruginosa strain 57 RP. Biochimica Biophysica Acta/Molecular and Cell Biology of Lipids, 1485, 145-152.

    Article  Google Scholar 

  • Duynstee, H. I., van Vliet, M. J., van der Marel, G. A., & van Boom, J. H. (1998). An efficient synthesis of (R)-3-{(R)-3-[2-O-(a-L-Rhamnopyranosyl)-α-L-rhamnopyranosyl]oxydecanoyl}oxydecanoic acid, a rhamnolipid from Pseudomonas aeruginosa. European Journal of Organic Chemistry, 1998, 303-307.

    Article  Google Scholar 

  • Edwards, J. R., & Hayashi, J. A. (1965). Structure of a rhamnolipid from Pseudomonas aeruginosa. Archives of Biochemistry and Biophyics, 111, 415-421.

    Article  CAS  Google Scholar 

  • Environment Protection Agency. (2004). Rhamnolipid biosurfactant (PC Code 110029). Biopesticide registration action document. Available on line at http://www.epa.gov/pesticides/biopesticides/ ingredients/factsheets/factsheet_110029.htm

    Google Scholar 

  • Fiechter, A. (1992). Biosurfactants: moving towards industrial application. Trends in Biotechnology, 10, 208-217.

    Article  CAS  PubMed  Google Scholar 

  • Georgiou, G., Lin, S., & Sharma, M. M. (1992). Surface active compounds from microorganisms. Biotechnology, 10, 60-65.

    Article  CAS  PubMed  Google Scholar 

  • Gruber, T., Chmiel, H., Kappeli, O., Sticher, P., & Fiechter, A. (1993). Integrated process for continuous rhamnolipid biosynthesis. In: Biosurfactants, production, properties, applications. Kosaric, N. (ed.), Marcel Dekker, New York, 157-173.

    Google Scholar 

  • Haba, E., Espuny, M. J., Busquets, M., & Manresa, A. (2000). Screening and production of rhamnolipid by Pseudomonas aeruginosa 47T2 NCBIM 40044 from waste frying oils. Journal of Applied Microbiology, 88, 379-387.

    Article  CAS  PubMed  Google Scholar 

  • Haba, E., Pinazo, A., Jauregui, O., Espuny, M. J., Infante, M. R., & Manresa, A. (2003). Physiochemical characterization and antimicrobial properties of rhamnolipids produced by Pseudomonas aeruginosa 47T2 NCBIM 40044. Biotechnology and Bioengineering, 81, 316-322.

    Article  CAS  PubMed  Google Scholar 

  • Haferburg, D., Hommel, R., Kleber, H. P., Klug, S., Schuster, G., & Zschiegner, H. J. (1987). Antiphytovirale aktivität von rhamnolipid aus Pseudomonas aeruginosa. Acta Biotechnologica, 7, 353-356.

    Article  CAS  Google Scholar 

  • Hauser, G., & Karnovsky, M. L. (1958). Studies on the biosynthesis of L-rhamnose. Journal of Biological Chemistry, 233, 287-291.

    CAS  PubMed  Google Scholar 

  • Ishigami, Y. (1997). Characterization of biosurfactants. In: Structure-performance relationships in surfactants. Esumi, K. & Ueno, M. (eds.), Marcel Dekker, New York, 197-226.

    Google Scholar 

  • Jarvis, F. G., & Johnson, M. J. (1949). A glyco-lipide produced by Pseudomonas aeruginosa. Journal of the Americal Chemical Society, 71, 4124–4126.

    Article  CAS  Google Scholar 

  • Karanth, N. G. K., Deo, P. G., & Veenanadig, N. K. (1999). Microbial production of biosurfactants and their importance. Current Science, 77, 116-121.

    CAS  Google Scholar 

  • Kim, S. H., Lim, E. J., Lee, S. O., Lee, J. D., & Lee, T.H. (2000a). Purification and characterization of biosurfactants from Nocardia sp. L-417. Biotechnology and Applied Biochemistry, 31, 249-253.

    Article  Google Scholar 

  • Kim, B. S., Lee, J. Y., & Hwang, B. K. (2000b). In vivo control and in vitro antifungal activity of rhamnolipid B, a glycolipid antibiotic, against Phytophthora capsici and Colletotrichum orbiculare. Pest Management Science, 56, 1029–1035.

    Article  CAS  Google Scholar 

  • Kosaric, N., Cairns, W. L., & Gray, N.C.C. (1987). Microbial emulsifiers and de-emulsifiers. In: Biosurfactants and Biotechnology, Vol. 25, Marcel Dekker, New York, pp 247-331.

    Google Scholar 

  • Kosaric, N. (1993). Biosurfactants: production, properties, applications. Marcel Dekker, New York.

    Google Scholar 

  • Kosaric, N. (1996). Biosurfactants. In: Biotechnology. Vol. 6. Rehm, H. J., Reed, G., Puhler, A. & Stadler, P. (Eds.). VCH Weinheim, New York, 659-717.

    Google Scholar 

  • Kosaric, N. (2001). Biosurfactants and their application for soil bioremediation. Food Technology and Biotechnology, 39, 295-304.

    CAS  Google Scholar 

  • Kourtkoutas, Y., & Banat, I. M. (2004). Biosurfactant production and application. In: Concise Encyclopedia of Bioresource Technology. Pandey, A. (ed.), The Haworth Press, Inc., New York, 505-514.

    Google Scholar 

  • Lang, S., & Wullbrandt, D. (1999). Rhamnose lipids biosynthesis, microbial production and application potential. Applied Microbiology and Biotechnology, 51, 22-32.

    Article  CAS  PubMed  Google Scholar 

  • Lee, Y., Lee, S. Y., & Yang, J. W. (1999) Production of rhamnolipid biosurfactant by fed-batch culture of Pseudomonas aeruginosa using glucose as a sole carbon source. Bioscience Biotechnolgy and Biochemistry, 63, 946-947.

    Article  CAS  Google Scholar 

  • Maier, R. M., & Soberon-Chavez, G. (2000). Pseudomonas aeruginosa rhamnolipids: biosynthesis and potential applications. Applied Microbiology and Biotechnology, 54, 625-633.

    Article  CAS  PubMed  Google Scholar 

  • Matsufuji, M., Nakata, K., & Yoshimoto, A. (1997). High production of rhamnolipid by Pseudomonas aeruginosagrowing on ethanol. Biotechnology Letters, 19, 1213-1215.

    Article  CAS  Google Scholar 

  • Muller, A., Russel, G., & Lucase, P. (1997). European Biotech’ 97. A new economy. The fourth annual Ernst and Young Report on the European Biotechnology Industry. Oxford Business Publishing, Oxford, UK.

    Google Scholar 

  • Ochsner, U. A., Reiser, J., Fiechter, A., & Witholt, B. (1995). Production of Pseudomonas aeruginosa rhamnolipid biosurfactants in heterologous hosts. Applied and Environmental Microbiology, 61, 3503-3506.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ochsner, U. A., Hembach, T., & Fiechter, A. (1996). Production of rhamnolipid biosurfactants. Advances in Biochemical Engineering Biotechnology, 53, 89-118.

    CAS  Google Scholar 

  • Ozdemir, G., Peker, S., & Helvaci, S. S. (2004). Effect of pH on the surface and interfacial behaviour of rhamnolipids R1 and R2. Colloids and Surfaces: Physiochemical and Engineering Aspects, 234, 135-143.

    CAS  Google Scholar 

  • Patel, R. M., & Desai, A. J. (1997). Biosurfactant production by Pseudomonas aeruginosa GS3 from molasses. Letters in Applied Microbiology, 25, 91-94.

    Article  CAS  Google Scholar 

  • Rahman, K. S. M., Banat, I. M., Thahira, J., Thayumanavan, T. & Lakshmanaperumalsamy, P. (2002). Bioremediation of gasoline contaminated soil by a bacterial consortium amended with poultry litter, coir pith and rhamnolipid biosurfactant. Bioresources Technology, 81, 25-32.

    Article  CAS  Google Scholar 

  • Sim, L., Ward., O. P. & Le, Z. Y. (1997). Production and characterization of a biosurfactant isolated from Pseudomonas aeruginosa UW-1. Journal of Industrial Microbiology and Biotechnology, 19, 232-238.

    Article  CAS  PubMed  Google Scholar 

  • Stanghellini, M. E., Kim, D. H., Ramussen, S. L. & Rorabaugh, P. A. (1996). Control of root rot of peppers caused by Phytophthora capsici with a nonionic surfactant. Plant Disease, 80, 1113-1116.

    Article  Google Scholar 

  • Stanghellini, M. E. & Miller, R. M. (1997). Biosurfactants, their identity and potential efficacy in the biological control of zoosporic plant pathogens. Plant Disease, 81, 4-12.

    Article  CAS  Google Scholar 

  • Van Dyke, M. I., Couture, P., Brauer, M., Lee, H., & Trevors, J. T. (1993). Pseudomonas aeruginosa UG2 rhamnolipid biosurfactants: structural characterization and their use in removing hydrophobic compounds from soil. Canadian Journal of Microbiology, 39, 1071–1078.

    Article  PubMed  Google Scholar 

  • Wagner, F., Kim, J. S, Lang, S., Li, Z.Y., Marwede, G., Matulovic, U., et al. (1984). Production of surface active anionic glycolipids by resting and immobilized microbial cells. Third European Congress of Biotechnology. Verlag Chemie, Weinheim, 1, 13-19.

    Google Scholar 

  • Wilson, N. G., & Bradley, G. (1996). The effect of immobilization on rhamnolipid production by Pseudomonas fluorescens. Journal of Applied Bacteriology, 81, 525-530.

    CAS  Google Scholar 

  • Wu, J. (1997). Rhamnolipid production by fermentation of Pseudomonas aeruginosa and application in enzymatic hydrolysis of cellulose. Ph.D. dissertation, University of Akron, USA.

    Google Scholar 

  • Zhang, Y., & Miller, R. M. (1992). Enhanced octadecane dispersion and biodegradation by a Pseudomonas rhamnolipid surfactant (biosurfactant). Applied and Environmental Microbiology, 58, 3276-3282.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Kulkarni, M., Chaudhari, R., Chaudhari, A. (2007). Novel Tensio-Active Microbial Compounds for Biocontrol Applications. In: Ciancio, A., Mukerji, K.G. (eds) General Concepts in Integrated Pest and Disease Management. Integrated Management of Plants Pests and Diseases, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6061-8_12

Download citation

Publish with us

Policies and ethics