Skip to main content

Sulfur and plant ecology: a central role of sulfate transporters in responses to sulfur availability

  • Chapter
Sulfur in Plants An Ecological Perspective

Part of the book series: Plant Ecophysiology ((KLEC,volume 6))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson JW (2005) Regulation of sulfur distribution and redistribution in grain plants. In: Saito K, De Kok LJ, Stulen I, Hawkesford MJ, Schnug E, Sirko A, Rennenberg H (eds), Sulfur Transport and Assimilation in Plants in the Post Genomic Era. Backhuys, Leiden, The Netherlands, pp 23-31

    Google Scholar 

  • Anderson JW, Fitzgerald MA (2003) Sulphur distribution and redistribution. In: Abrol YP, Ahmad A (eds), Sulphur in Plants. Kluwer Academic, Dordrecht, The Netherlands, pp 113-134

    Google Scholar 

  • Blake-Kalff MMA, Harrison KR, Hawkesford MJ, Zhao FJ, McGrath SP (1998) Distribution of sulfur within oilseed rape leaves in response to sulfur deficiency during vegetative growth. Plant Physiol 118: 1337-1344

    Article  CAS  PubMed  Google Scholar 

  • Buchner P, Prosser IM, Hawkesford MJ (2004a) Phylogeny and expression of paralogous and orthologous sulphate transporter genes in diploid and hexaplold wheats. Genome 47: 526-534

    Article  CAS  Google Scholar 

  • Buchner P, Stuiver CEE, Westerman S, Wirtz M, Hell R, Hawkesford MJ, De Kok LJ (2004b) Regulation of sulfate uptake and expression of sulfate transporter genes in Brassica oleracea as affected by atmospheric H2S and pedospheric sulfate nutrition. Plant Physiol 136: 3396-3408

    Article  CAS  Google Scholar 

  • Clarkson DT, Smith FW, Vandenberg PJ (1983) Regulation of sulfate transport in a tropical legume, Macroptilium atropurpureum, cv Siratro. J Exp Bot 34: 1463-1483

    Article  CAS  Google Scholar 

  • Datko AH, Mudd SH (1984a) Responses of sulfur-containing-compounds in Lemna paucicostata Hegelm. 6746 to changes in availability of sulfur sources. Plant Physiol 75: 474-479

    Article  CAS  Google Scholar 

  • Datko AH, Mudd SH (1984b) Sulfate uptake and its regulation in Lemna paucicostata Hegelm. 6746. Plant Physiol 75: 466-473

    Article  CAS  Google Scholar 

  • Diatloff E, Roberts M, Sanders D, Roberts SK (2004) Characterization of anion channels in the plasma membrane of Arabidopsis epidermal root cells and the identification of a citrate-permeable channel induced by phosphate starvation. Plant Physiol 136: 4136-4149

    Article  CAS  PubMed  Google Scholar 

  • Ernst WHO (1997) Life-history syndromes and ecology of plants from high sulphur-habitats. In: Cram WJ, De Kok LJ, Stulen I, Brunold C, Rennenberg H Sulfur and Plant Ecology - a Central Role of Sulfate Transporters 13 (eds), Sulphur Metabolism in Higher Plants: Molecular, Ecophysiological and Nutritional Aspects. Backhuys, Leiden, The Netherlands, pp 131-146

    Google Scholar 

  • Frachisse J-M, Thomine S, Colcombet J, Guern J, Barbier-Brygoo H (1999) Sulfate is both a substrate and an activator of the voltage-dependent anion channel of Arabidopsis hypocotyl cells. Plant Physiol 121: 253-261

    Article  CAS  PubMed  Google Scholar 

  • Giordano M, Norici A, Hell R (2005) Sulfur and phytoplankton: acquisition, metabolism and impact on the environment. New Phytol 166: 371-382

    Article  CAS  PubMed  Google Scholar 

  • Hawkesford MJ (2003) Transporter gene families in plants: the sulphate transporter gene family - redundancy or specialization? Physiol Plant 117: 155-163

    Article  CAS  Google Scholar 

  • Hawkesford MJ, De Kok LJ (2006) Managing sulphur metabolism in plants. Plant Cell Environ 29: 382-395

    Article  CAS  PubMed  Google Scholar 

  • Hawkesford MJ, Davidian J-C, Grignon C (1993) Sulfate proton cotransport in plasma-membrane vesicles isolated from roots of Brassica napus L - increased transport in membranes isolated from sulfur-starved plants. Planta 190: 297-304

    Article  CAS  Google Scholar 

  • Hawkesford MJ, Howarth JR, Buchner P (2006) Control of sulfur uptake, assimilation and metabolism. In: Paxton W, McManus MT (eds), Control of Primary Metabolism in Plants. Blackwell, Oxford, pp 348-372

    Chapter  Google Scholar 

  • Holmer M, Storkholm P (2001) Sulphate reduction and sulphur cycling in lake sediments: a review. Freshw Biol 46: 431-451

    Article  CAS  Google Scholar 

  • Hopkins L, Parmar S, Bouranis DL, Howarth JR, Hawkesford MJ (2004) Coordinated expression of sulfate uptake and components of the sulfate assimilatory pathway in maize. Plant Biol 6: 408-414

    Article  CAS  PubMed  Google Scholar 

  • Howarth JR, Fourcroy P, Davidian J-C, Smith FW, Hawkesford MJ (2003) Cloning of two contrasting high-affinity sulfate transporters from tomato induced by low sulfate and infection by the vascular pathogen Verticillium dahliae. Planta 218: 58-64

    Article  CAS  PubMed  Google Scholar 

  • Kaiser G, Martinoia E, Schroppelmeier G, Heber U (1989) Active transport of sulfate Into the vacuole of plant cells provides halotolerance and can detoxify SO2. J Plant Physiol 133: 756-763

    CAS  Google Scholar 

  • Kataoka T, Hayashi N, Yamaya T, Takahashi H (2004a) Root-to-shoot transport of sulfate in Arabidopsis. Evidence for the role of SULTR3;5 as a component of low-affinity sulfate transport system in the root vasculature. Plant Physiol 136: 4198-4204

    Article  CAS  Google Scholar 

  • Kataoka T, Watanabe-Takahashi A, Hayashi N, Ohnishi M, Mimura T, Buchner P, Hawkesford MJ, Yamaya T, Takahashi H (2004b) Vacuolar sulfate transporters are essential determinants controlling internal distribution of sulfate in Arabidopsis. Plant Cell 16: 2693-2704

    Article  CAS  Google Scholar 

  • Kertesz MA (2001) Bacterial transporters for sulfate and organosulfur compounds. Res Microbiol 152: 279-290

    Article  CAS  PubMed  Google Scholar 

  • Kertesz MA, Mirleau P (2004) The role of soil microbes in plant sulphur nutrition. J Exp Bot 55: 1939-1945

    Article  CAS  PubMed  Google Scholar 

  • Kunze R, Frommer WB, Flugge UI (2002) Metabolic engineering of plants: the role of membrane transport. Metab Eng 4: 57-66

    Article  CAS  PubMed  Google Scholar 

  • Kutz A, Muller A, Hennig P, Kaiser WM, Piotrowski M, Weiler EW (2002) A role for nitrilase 3 in the regulation of root morphology in sulphur-starving Arabidopsis thaliana. Plant J 30: 95-106

    Article  CAS  PubMed  Google Scholar 

  • Lass B, Ullrich-Eberius CI (1984) Evidence for proton/sulfate cotransport and its kinetics in Lemna gibba G1. Planta 161: 53-60

    Article  CAS  Google Scholar 

  • López-Bucio J, Cruz-Ramirez A, Herrera-Estrella L (2003) The role of nutrient availability in regulating root architecture. Curr Opin Plant Biol 6: 280-287

    Article  PubMed  Google Scholar 

  • Neale AD, Blomstedt CK, Bronson P, Le TN, Guthridge K, Evans J, Gaff DF, Hamill JD (2000) The isolation of genes from the resurrection grass Sporobolus stapfianus which are induced during severe drought stress. Plant Cell Environ 23: 265-277

    Article  CAS  Google Scholar 

  • Neuenschwander U, Suter M, Brunold C (1991) Regulation of sulfate assimilation by light and O-acetyl-L-serine in Lemna minor L. Plant Physiol 97: 253-258

    Article  CAS  PubMed  Google Scholar 

  • Ng AY-N, Blomstedt CK, Gianello R, Hamill JD, Neale AD, Gaff DF (1996) Isolation and characterisation of a lowly expressed cDNA from the resurrection grass Sporobolus stapfianus with homology to eukaryotic sulfate transporter proteins (Accession No. X96761). (PGR96-032). Plant Physiol 111: 651

    Google Scholar 

  • Parsons RF (1976) Gypsophily in plants. Am Midl Nat 96: 1-20

    Article  Google Scholar 

  • Passera C, Ferrari G (1975) Sulfate uptake in two mutants of Chlorella vulgaris with high and low sulfur amino acid content. Physiol Plant 35: 318-321

    Article  CAS  Google Scholar 

  • Roberts SK (2006) Plasma membrane anion channels in higher plants and their putative functions in roots. New Phytol 169: 647-666

    Article  PubMed  Google Scholar 

  • Rybova R, Nespurkova L, Janacek K (1988) Sulfate ion influx and efflux in Hydrodictyon reticulatum. Biol Plant 30: 440-450

    Article  CAS  Google Scholar 

  • Smith FW, Ealing PM, Hawkesford MJ, Clarkson DT (1995) Plant members of a family of sulfate transporters reveal functional subtypes. Proc Natl Acad Sci USA 92: 9373-9377

    Article  CAS  PubMed  Google Scholar 

  • Smith FW, Hawkesford MJ, Ealing PM, Clarkson DT, Vanden Berg PJ, Belcher AR, Warrilow AGS (1997) Regulation of expression of a cDNA from barley roots encoding a high affinity sulphate transporter. Plant J 12: 875-884

    Article  CAS  PubMed  Google Scholar 

  • Stevenson FJ, Cole MA (1999) Cycles of Soil: Carbon, Nitrogen, Phosphorus, Sulfur, Micronutrients. Wiley, New York

    Google Scholar 

  • Takahashi H, Sasakura N, Noji M, Saito K (1996) Isolation and characterization of a cDNA encoding a sulfate transporter from Arabidopsis thaliana. FEBS Lett 392: 95-99

    Article  CAS  PubMed  Google Scholar 

  • Takahashi H, Yamazaki M, Sasakura N, Watanabe A, Leustek T, De Almeida Engler J, Engler G, Van Montagu M, Saito K (1997) Regulation of sulfur assimilation in higher plants: a sulfate transporter induced in sulfate-starved roots plays a central role in Arabidopsis thaliana. Proc Natl Acad Sci USA 94: 11102-11107

    Article  CAS  PubMed  Google Scholar 

  • Takahashi H, Watanabe-Takahashi A, Smith FW, Blake-Kalff M, Hawkesford MJ, Saito K (2000) The roles of three functional sulphate transporters involved in uptake and translocation of sulphate in Arabidopsis thaliana. Plant J 23: 171-182

    Article  CAS  PubMed  Google Scholar 

  • Thoiron A, Thoiron B, Demarty M, Thellier M (1981) Compartmental analysis of sulfate transport in Lemna minor L taking plant-growth and sulfate metabolization into consideration. Biochim Biophys Acta 644: 24-35

    Article  CAS  PubMed  Google Scholar 

  • Vallee M, Jeanjean R (1968a) Sulphate transport system of Chlorella pyrenoidosa and its regulation. II. Regulation of entry. Biochim Biophys Acta 150: 607-617

    Article  CAS  Google Scholar 

  • Vallee M, Jeanjean R (1968b) Sulphate transport system of Chlorella pyrenoidosa and its regulation. I. Kinetics of permeation. Biochim Biophys Acta 150: 599-606

    Google Scholar 

  • Waizel Y (1972) Biology of Halophytes. Academic Press, New York

    Google Scholar 

  • Yang L, Stulen I, De Kok LJ (2003) Interaction between atmospheric sulfur dioxide deposition and pedospheric sulfate nutrition in Chinese cabbage. In: Davidian J-C, Grill D, De Kok LJ, Stulen I, Hawkesford MJ, Schnug E, Rennenberg H (eds), Sulfur Transport and Assimilation in Plants: Regulation, Interaction and Signaling. Backhuys, Leiden, The Netherlands, pp 363-365

    Google Scholar 

  • Yildiz FH, Davies JP, Grossman AR (1994) Characterization of sulfate transport in Chlamydomonas reinhardtii during sulfur-limited and sulfur-sufficient growth. Plant Physiol 104: 981-987

    CAS  PubMed  Google Scholar 

  • Yoshimoto N, Inoue E, Saito K, Yamaya T, Takahashi H (2003) Phloemlocalizing sulfate transporter, Sultr1;3, mediates re-distribution of sulfur from source to sink organs in Arabidopsis. Plant Physiol 131: 1511-1517

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Hawkesford, M.J. (2007). Sulfur and plant ecology: a central role of sulfate transporters in responses to sulfur availability. In: Hawkesford, M.J., De Kok, L.J. (eds) Sulfur in Plants An Ecological Perspective. Plant Ecophysiology, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5887-5_1

Download citation

Publish with us

Policies and ethics