Skip to main content
Log in

Evidence for proton/sulfate cotransport and its kinetics inLemna gibba G1

  • Published:
Planta Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Sulfate uptake into duckweed (Lemna gibba G1) was studied by means of [35S]sulfate influx and measurements of electrical membrane potential. Uptake was strongly regulated by the intracellular content of soluble sulfate. At the onset of sulfate uptake the membrane potential was transiently depolarized. Fusicoccin stimulated uptake up to 165% of the control even at pH 8. It is suggested that sulfate uptake is energized in the whole pH range by a 3H+/sulfate cotransport mechanism. Kinetics of sulfate uptake and sulfate-induced membrane depolarization in the concentration range of 5 μM to 1 mM sulfate at pH 5.7 was best described by two Michaelis-Menten terms without any linear component. The second system had a lower affinity for sulfate and was fully active only at sufficiently high proton concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

c o :

extracellular sulfate concentration

c i :

intracellular sulfate concentration

E m :

electrical membrane potential difference

ΔE m :

sulfate-induced, maximal membrane depolarization

\(\Delta \tilde \mu H^ +\) :

electrochemical proton gradient

FW:

fresh weight

References

  • Böcher, M., Fischer, E., Ullrich-Eberius, C.I., Novacky, A. (1980) Effect of fusicoccin on the membrane potential, on the uptake of glucose and glycine, and on the ATP level inLemna gibba G1. Plant Sci. Lett.18, 215–220

    Google Scholar 

  • Borstlap, A.C. (1981) Invalidity of the multiphasic concept of ion absorption in plants. Plant Cell Environ.4, 189–195

    Google Scholar 

  • Cram, J. (1983a) Characteristics of sulfate transport across plasmalemma and tonoplast of carrot root cells. Plant Physiol.72, 204–211

    Google Scholar 

  • Cram, W.J. (1983b) Sulphate accumulation is regulated at the tonoplast. Plant Sci. Lett.31, 329–338

    Google Scholar 

  • Espie, G.S., Colman, B. (1981) The intracellular pH of isolated, photosynthetically activeAsparagus mesophyll cells. Planta153, 210–216

    Google Scholar 

  • Hendrix, J.E. (1967) The effect of pH on the uptake and accumulation of phosphate and sulfate ions by bean plants. Am. J. Bot.54, 560–563

    Google Scholar 

  • Higinbotham, N., Etherton, B., Foster, R.J. (1964) Effect of external K, NH4, Na, Ca, Mg and H ions on the cell transmembrane electropotential ofAvena coleoptiles. Plant Physiol.39, 196–203

    Google Scholar 

  • Hodges, T.K. (1973) Ion absorption by plant roots. Adv. Agron.25, 163–207

    Google Scholar 

  • Jeschke, W.D., Simonis, W. (1965) Über die Aufnahme von Phosphat-und Sulfationen durch Blätter vonElodea densa und ihre Beeinflussung durch Licht, Temperatur und Außenkonzentration. Planta67, 6–32

    Google Scholar 

  • Köhler, K. (1982) Untersuchungen zum elektrogenen Membrantransport bei einer photoautotrophen Suspensionskultur vonChenopodium rubrum. Dissertation, Tübingen

  • Leggett, J.E., Epstein, E. (1956) Kinetics of sulfate absorption by barley roots. Plant Physiol.31, 222–226

    Google Scholar 

  • Lüttge, U., Jung, K.-D., Ullrich-Eberius, C.I. (1981) Evidence for amino acid-H+ cotransport inLemna gibba given by effects of fusicoccin. Z. Pflanzenphysiol.102, 117–125

    Google Scholar 

  • Marrè E. (1979) Fusicoccin: a tool in plant physiology. Annu. Rev. Plant Physiol.30, 273–288

    Google Scholar 

  • Neal, J.L. (1972) Analysis of Michaelis kinetics for two independent, saturable membrane transport functions. J. Theor. Biol.35, 113–118

    Google Scholar 

  • Nissen, P. (1971) Uptake of sulfate by roots and leaf slices of barley: mediated by single, multiphasic mechanisms. Physiol. Plant.24, 315–324

    Google Scholar 

  • Nissen, P. (1973) Multiphasic uptake in plants. I. Phosphate and sulfate. Physiol. Plant.28, 304–316

    Google Scholar 

  • Nissen, P., Nissen, Ø. (1983) Validity of the multiphasic concept of ion absorption in plants. Physiol. Plant.57, 47–56

    Google Scholar 

  • Novacky, A., Ullrich-Eberius, C.I., Lüttge, U. (1978) Membrane potential changes during transport of hexoses inLemna gibba G1. Planta138, 263–270

    Google Scholar 

  • Novacky, A., Ullrich-Eberius, C.I., Lüttge, U. (1980) pH and membrane potential changes during glucose uptake inLemna gibba G1 and their response to light. Planta149, 321–326

    Google Scholar 

  • Pirson, A., Seidel, F. (1950) Zell- und stoffwechselphysiologische Untersuchungen an der Wurzel vonLemna minor L. unter besonderer Berücksichtigung von Kalium-und Calciummangel. Planta38, 431–473

    Google Scholar 

  • Raschke, K., Schnabl, H. (1978) Availability of chloride effects on the balance between potassium chloride and potassium malate in guard cells ofVicia faba L. Plant Physiol.62, 84–87

    Google Scholar 

  • Roomans, G.M., Kuypers, G.A.I., Theuvenet, A.P.R., Borst-Pauwels, G.W.F.H. (1979) Kinetics of sulfate uptake by yeast. Biochim. Biophys. Acta551, 197–206

    Google Scholar 

  • Rybova, R., Nespurkova, L., Janacek, K., Struzinsky, R. (1982) Sulphate-uptake isotherm of the algaHydrodictyon reticulatum. Stud. Biophys.92, 123–126

    Google Scholar 

  • Shargool, P.D., Ngo, T.T. (1975) The uptake of sulfate by excised roots of rape seedlings (Brassica napus var. Target). Can. J. Bot.53, 914–920

    Google Scholar 

  • Smith, I.K. (1976) Characterization of sulfate transport in cultured tobacco cells. Plant Physiol.58, 358–362

    Google Scholar 

  • Thoiron, B., Thoiron, A., Thellier, M. (1969) Influence de la température sur l'absorption du sulfate par laLemna minor L. C. R. Acad. Sci Sér. D269, 2103–2106

    Google Scholar 

  • Thoiron, A., Thoiron, B., Demarty, M., Thellier, M. (1981) Compartmental analysis of sulfate transport inLemna minor L., taking growth and sulfate metabolization into consideration. Biochim. Biophys. Acta644, 24–35

    Google Scholar 

  • Ullrich, W.R., Novacky, A. (1981) Nitrate-dependent membrane potential changes and their induction inLemna gibba G1. Plant Sci. Lett.22, 211–217

    Google Scholar 

  • Ullrich-Eberius, C.I., Novacky, A., Ball, E. (1983) Effect of cyanide in dark and light on the membrane potential and the ATP level of young and mature green tissues of higher plants. Plant Physiol.72, 7–15

    Google Scholar 

  • Ullrich-Eberius, C.I., Novacky, A., Fischer, E., Lüttge, U. (1981) Relationship between energy-dependent phosphate uptake and the electrical membrane potential inLemna gibba G1. Plant Physiol.67, 797–801

    Google Scholar 

  • Ullrich-Eberius, C.I., Novacky, A., van Bel, A.J.E. (1984) Phosphate uptake inLemna gibba G1: energetics and kinetics. Planta161, 46–52

    Google Scholar 

  • Vange, M.S., Holmern, K., Nissen, P. (1974) Multiphasic uptake of sulfate by barley roots. I. Effects of analogues, phosphate, and pH. Physiol. Plant.31, 292–301

    Google Scholar 

  • Vick, C.M. (1975) Air pollution on Merseyside. Ph. D. thesis, University of Liverpool

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lass, B., Ullrich-Eberius, C.I. Evidence for proton/sulfate cotransport and its kinetics inLemna gibba G1. Planta 161, 53–60 (1984). https://doi.org/10.1007/BF00951460

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00951460

Key words

Navigation