Skip to main content

Thermal Conductivity of the Earth's Deepest Mantle

  • Chapter
Superplumes: Beyond Plate Tectonics

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, D.L. (2002) The case for irreversible chemical stratification of the mantle. Int. Geol. Rev., 44, 97–116.

    Google Scholar 

  • Anderson, O.L., and D.G. Isaak (1995) Elastic constants of mantle minerals at high temperature. In Ahrens, T.J. (ed.) A Handbook of Physical Constants, American Geophysical Union, Washington D.C., pp. 64–96.

    Google Scholar 

  • Andre, S., and A. Degiovanni (1995) A theoretical study of the transient coupled conduction and radiation heat transfer in glass: Phonic diffusivity measurements by the flash technique. Int. J. Heat. Transfer., 38, 3401–3412.

    Article  Google Scholar 

  • Bass, J.D. (1995) Elasticity of minerals, melts, and glasses. In Ahrens, T.J. (ed.) A Handbook of Physical Constants, American Geophysical Union, Washington D.C., pp. 45–63.

    Google Scholar 

  • Blumm, J., J.B. Henderson, O. Nilson, and J. Fricke (1997) Laser Flash measurement of the phononic thermal diffusivity of glasses in the presence of ballistic radiative transfer. High Temp. High Press., 29, 555–560.

    Article  Google Scholar 

  • Blumm, J., and S. Lemarchand (2002) Influence of test conditions on the accuracy of laser flash measurements. High Temp. High Press., 34, 523–528.

    Article  Google Scholar 

  • Braeuer, H., L. Dusza, and B. Schulz (1992) New laser flash equipment LFA 427. Interceram., 41, 489–492.

    Google Scholar 

  • Branlund, J., M.C. Kameyama, D.A. Yuen, and Y. Kaneda (2000) Effects of temperature-dependent thermal diffusivity on shear instability in a viscoelastic zone: Implication for faster ductile faulting and earthquakes in the spinel stability field. Earth Planet. Sci. Lett., 182, 171–185.

    Article  Google Scholar 

  • Brewster, M.Q. (1992) Thermal Radiative Transfer and Properties, John Wiley and Sons, Inc., New York.

    Google Scholar 

  • Buettner, R., B. Zimanowski, J. Blumm, and L. Hagermann (1998) Thermal conductivity of a volcanic rock material (olivine-melilitite) in the temperature range between 298 and 1470 K. J. Volcan. Geothermal. Res., 80, 293–302.

    Article  Google Scholar 

  • Burns, R.G. (1982) Electronic spectra of minerals at high pressures: How the mantle excites electrons. In Schreyer, W. (ed.) High-Pressure Researches in Geoscience, E. Schweizerbartsche Verlag, Stuttgart, pp. 223–246.

    Google Scholar 

  • Clark, Jr., S.P. (1957) Radiative transfer in the Earth’s Mantle. Trans. Am. Geophys. Union, 38, 931–938.

    Google Scholar 

  • Debye, P. (1914) Vortrage über die kinetische Theorie der Materie und der Electriztät. B.G. Teuber, Berlin, pp. 1–196.

    Google Scholar 

  • Deschamps, F., and J. Trampert (2003) Mantle topography and its relation to temperature and composition. Phys. Earth Planet. Inter., 140, 277–291.

    Article  Google Scholar 

  • Dubuffet, F., D.A. Yuen, and E.S.G. Rainey (2002) Controlling thermal chaos in the mantle by positive feedback from radiative thermal conductivity. Nonlinear Proc. Geophys., 9, 1–13.

    Article  Google Scholar 

  • Dugdale, J.S., and D.K.C. MacDonald (1955) Lattice thermal conductivity. Phys. Rev., 98, 1751–1752.

    Article  Google Scholar 

  • Dziewonski, A.M., and D.L. Anderson (1981) Preliminary reference Earth model. Phys. Earth Planet. Int., 25, 297–356.

    Article  Google Scholar 

  • Evans, A. (1992) The Dusty Universe, Ellis Horwood, New York, pp. 1–236.

    Google Scholar 

  • Foulger, G.R., J.H. Natland, D.C. Presnall, and D.L. Anderson (2005) Melting Anomolies: Their Nature and Origin, Geological Society of America, Boulder Colorado, USA, pp. 1–881.

    Google Scholar 

  • Fujisawa, H., N. Fujii, H. Mizutani, H. Kanamori, and S. Akimoto (1968) Thermal diffusivity of Mg2SiO4, Fe2SiO4, and NaCl at high pressures and temperatures. J. Geophys. Res., 75, 4727–4733.

    Google Scholar 

  • Gasparik, T. (2000) Evidence for the transition zone origin of some [Mg,Fe]O inclusions in diamonds. Earth Planet. Sci. Lett., 183, 1–5.

    Article  Google Scholar 

  • Geisting, P.A., A.M. Hofmeister, B. Wopenka, G.D. Gwanmesia, and B.L. Jolliff (2004) Thermal conductivity and thermodynamic properites of majorite: Implications for the transition zone. Earth Planet. Sci. Lett., 218, 45–56.

    Article  Google Scholar 

  • Gerbault, M. (2000) At what stress level is the central Indian Ocean lithosphere buckling? Earth Planet. Sci. Lett., 178, 165–181.

    Article  Google Scholar 

  • Giesting, P.A., and A.M. Hofmeister (2002) Thermal conductivity of disordered garnets from infrared spectroscopy. Phys. Rev., B65, website paper # 144305 (15 pages).

    Google Scholar 

  • Hamilton, W.B. (2003) An alternative Earth. GSA Today, 13, 2–4.

    Article  Google Scholar 

  • Hapke, B. (1993) Theory of Reflectance and Emittance Spectroscopy, Cambridge University Press, Cambridge, pp. 1–455.

    Google Scholar 

  • Henderson, J.B., F. Giblin, J. Blumm, and L. Hagemann (1998) SRM 1460 series as a thermal diffusivity standard for laser flash instruments. Int. Jour. Thermophysics, 19, 1647–1656.

    Google Scholar 

  • Hofer, M., and F.R. Schilling (2002) Heat transfer in quartz, orthoclase, and sanidine at elevated temperature. Phys. Chem. Mineral., 29, 571–584.

    Article  Google Scholar 

  • Hofmann, R., O. Hahn, F. Raether, H. Mehling, and J. Fricke (1997) Determination of thermal diffusivity in diathermic materials by the laser-flash technique. High Temp. High Press., 29, 703–710.

    Article  Google Scholar 

  • Hofmeister, A.M. (1999) Mantle Values of Thermal Conductivity and the Geotherm from Phonon Lifetimes. Science, 283, 1699–1706.

    Article  Google Scholar 

  • Hofmeister, A.M. (2001) Thermal conductivity of spinels and olivines from vibrational spectroscopy at ambient conditions. Am. Mineral., 86, 1188–1208.

    Google Scholar 

  • Hofmeister, A.M. (2004a) Enhancement of radiative transfer in the mantle by OH-in minerals. Phys. Earth Planet. Inter., 146, 483–485.

    Article  Google Scholar 

  • Hofmeister, A.M. (2004b) Thermal conductivity and thermodynamic properties from infrared spectroscopy. In King, P., M. Ramsey, and G. Swayze (eds.) Infrared Spectroscopy in Geochemistry, Exploration Geochemistry, and Remote Sensing, Mineralogical Association of Canada, Ottawa, Ontario, pp. 135–154.

    Google Scholar 

  • Hofmeister, A.M. (2004c) Physical properties of calcium aluminates from vibrational spectroscopy. Geochim. Cosmochim. Acta., 68, 4721–4726.

    Article  Google Scholar 

  • Hofmeister, A.M. (2005) The dependence of radiative transfer on grain-size, temperature, and pressure: Implications for mantle processes. J. Geodynamics, 40, 51–72.

    Article  Google Scholar 

  • Hofmeister, A.M. (2006) Thermal diffusivity of garnets at high temperature. Phys. Chem. Mineral. 33, 45–62.

    Article  Google Scholar 

  • Hofmeister, A.M. (2007) Pressure dependence of thermal transport properties. Proceedings of the National Academy of Science, doi: 10.1073/pnas.0610734104.

    Google Scholar 

  • Iitaka, T., K. Hirose, K. Kawamura, and M. Murakami (2004) The elasticity of the MgSiO3 post-perovskite phase in the Earth’s lowermost mantle. Nature, 430, 442–445.

    Article  Google Scholar 

  • Ishii, M., and J. Tromp (1999) Normal-mode and free-air gravity constraints in lateral variations of velocity and density in Earth’s mantle. Science, 285, 1231–1236.

    Article  Google Scholar 

  • Julian, C.L. (1965) Theory of heat conduction in rare-gas crystals. Phys. Rev., A137, 128–137.

    Article  Google Scholar 

  • Kachare, A., G. Andermann, and L.R. Brantley (1972) Reliability of classical dispersion analysis of LiF and MgO reflectance data. J. Phys. Chem. Solids, 33, 467–475.

    Article  Google Scholar 

  • Kanamori, H., N. Fujii, and H. Mizutani (1968) Thermal diffusivity measurement of rock-forming minerals from 300 to 1100 K. J. Geophys. Res., 73, 595–603.

    Google Scholar 

  • Kaufmann, R., and W.J. Freedman (2002) Universe, W.H. Freeman, New York.

    Google Scholar 

  • Keppler, H., C.A. McCammon, and D.C. Rubie (1994) Crystal-field and charge-transfer spectra of (Mg,Fe)SiO3 perovskite. Am. Mineral., 79, 1215–1218.

    Google Scholar 

  • Keppler, H., and C.A. McCammon (1996) Crystal-field and charge-transfer spectra of (Mg,Fe)SiO3 majorite. Phys. Chem. Mineral., 23, 94–98.

    Google Scholar 

  • Khomenko, V.M., K. Langer, R. Wirth, and B. Weyer (2001) Mie scattering and charge transfer phenomena as causes of the UV edge in the absorption spectra of natural and synthetic almandine garnets. Phys. Chem. Mineral., 29, 201–209.

    Article  Google Scholar 

  • Klemens, P.G. (1969) Theory of the thermal conductivity of solids. In Tye, R.P. (ed.) Thermal Conductivity, Academic Press, New York, pp. 1–68.

    Google Scholar 

  • Lee, D.W., and W.D. Kingery (1960) Radiation energy transfer and thermal conductivity of ceramic oxides. J. Am. Ceram. Soc., 43, 594–607.

    Article  Google Scholar 

  • Liebfried, G., and E. Schlömann (1954) Warmleitund in elektrische isolierenden Kristallen. Nach Ges Wissenschaften Goettingen Mathematik und Physik K1, 71–93.

    Google Scholar 

  • Mao, W., G. Shen, V.B. Prakapenka, Y. Meng, A.J. Campbell, D.L. Heinz, J. Shu, R.J. Hemley, and H.K. Mao (2004) Ferromagnesian postpero vskite silicates in the Dʺ layer. Proc. Natl. Acad. Sci., 39, 15867–15869.

    Article  Google Scholar 

  • Matyska, C., and D.A. Yuen (2005) The importance of radiative heat transfer on superplumes in the lower mantle with the new post-perovskite phase change. Earth Planet Sci. Lett., 234, 71–81.

    Article  Google Scholar 

  • McCammon, C.A., D.C. Rubie, C.R. Ross II, F. Siefert, and HStC O’Neill (1992) Mössbauer study of 57Fe0.05Mg0.95SiO3 perovskite at 80 and 298 K. Am. Mineral., 77, 894–897.

    Google Scholar 

  • Mehling, H., G. Huatzinger, O. Nilsson, J. Fricke, R. Hofmann, and O. Hahn (1998) Thermal diffusivity of semitransparent materials determined by the laser-flash method: Applying a new analytical model. Int. J. Thermophys., 19, 941–949.

    Article  Google Scholar 

  • Mitra, S.S. (1969) Infrared and Raman spectra due to lattice vibrations. In Nudelman, S., and S.S. Mitra (eds.) Optical Properties of Solids, Plenum Press, New York, pp. 333–452.

    Google Scholar 

  • Murakami, M., K. Hirose, K. Kawamura, N. Sata, and Y. Ohishi (2004) Post-perovskite phase transition in MgSiO3. Science, 30, 855–858.

    Article  Google Scholar 

  • Oganov, A.R., and S. Ono (2004) Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in Earth’s Dʺ layer. Nature, 430, 445–448.

    Article  Google Scholar 

  • Parker, J.W., J.R. Jenkins, P.C. Butler, and G.I. Abbott (1961) Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity. J. Appl. Phys., 32, 1679–1684.

    Article  Google Scholar 

  • Peierls, R.E. (1929) Zur kinetische Theorie der Warmeleitung in Kristallen. Ann der Physik Leipzig, 3, 1055–1101.

    Article  Google Scholar 

  • Peierls, R.E. (1956) Quantum Theory of Solids, Clarendon Press, Oxford, 229pp.

    Google Scholar 

  • Pertermann, M., and A.M. Hofmeister (2006) Thermal diffusivity of olivine-group minerals. Am. Mineral., 91, pp. 1747–1760.

    Article  Google Scholar 

  • Pomeranchuk, I. (1943) Heat conductivity of dielectrics at high temperatures. J. Phys. USSR, 7, 197–201.

    Google Scholar 

  • Ranalli, G. (2001) Mantle rheology: Radial and lateral viscosity variations inferred from microphysical creep laws. J. Geodynam., 32, 425–444.

    Article  Google Scholar 

  • Reif, F. (1965) Fundamentals of Statistical and Thermal Physics, McGraw Hill Book Co., New York, pp. 1–651.

    Google Scholar 

  • Ross, R.G., P. Andersson, B. Sundqvist, and G. Bäckström (1984) Thermal conductivity of solids and liquids under pressure. Rep. Prog. Phys., 47, 1347–1402.

    Article  Google Scholar 

  • Rossman, G.R. (1988a) Optical spectroscopy. Rev. Mineral., 18, 207–254.

    Google Scholar 

  • Rossman, G.R. (1988b) Vibrational spectroscopy of hydrous components. Rev. Mineral., 18, 193–206.

    Google Scholar 

  • Roufosse, M.C., and P.G. Klemens (1973) Thermal conductivity of complex dielectric crystals. Phys. Rev., B7, 5379–5386.

    Google Scholar 

  • Roufosse, M.C., and P.G. Klemens (1974) Lattice thermal conductivity of minerals at high temperatures. J. Geophys. Res., 79, 703–705.

    Google Scholar 

  • Schilling, F.R. (1999) A transient technique to measure thermal diffusivity at elevated temperatures. Eur. J. Mineral., 11, 1115–1124.

    Google Scholar 

  • Shankland, T.J., U. Nitsan, and A.G. Duba (1979) Optical absorption and radiative heat transport in olivine at high temperature. J. Geophys. Res., 84, 1603–1610.

    Google Scholar 

  • Smyth, J., and T. McCormick (1995) Crystallographic data for minerals. In Ahrens, T.J. (ed.) A Handbook of Physical Constants, American Geophysical Union, Washington D.C., pp. 1–17.

    Google Scholar 

  • Spitzer, W.G., R.C. Miller, D.A. Kleinman, and L.W. Howarth (1962) Far–infrared dielectric dispersion in BaTiO3, SrTiO3, and TiO2. Phys. Rev., 126, 1710–1721.

    Article  Google Scholar 

  • Tan, H.P., B. Maestre, and M. Lallemand (1991) Transient and steady-state combined heat transfer in semitransparent materials subjected to a pulse or step irradiation. J. Heat. Transfer, 113, 166–173.

    Article  Google Scholar 

  • Taran, M.N., and K. Langer (2001) Electronic absorption spectra of Fe2+ ions in oxygen-based rock-forming minerals at temperatures between 297 and 600 K. Phys. Chem. Minerals, 28, 199–210.

    Article  Google Scholar 

  • Trampert, J., F. Deschamps, J. Resovsky, and D.A. Yuen (2004) Probabilistic tomography maps chemical heterogeneities in the lower mantle. Science, 306, 853–856.

    Article  Google Scholar 

  • Tsuchiya, T., J. Tsuchiya, K. Umemoto, and R.M. Wentzcovitch (2004) Phase transition in MgSiO3 perovskite in the earth’s lower mantle. Earth Planet. Sci. Lett., 224, 241–248.

    Article  Google Scholar 

  • Van den Berg, A.P., D.A. Yuen, and E.S.G. Rainey (2004) The influence of variable viscosity on delayed cooling due to variable thermal conductivity. Phys. Earth Planet Inter., 142, 283–295.

    Article  Google Scholar 

  • Yanagawa, T.K.B., M. Nakada, and D.A. Yuen (2005) The influence of lattice thermal conductivity on thermal convection with strongly temperature-dependent viscosity. Earth Space. Sci., 57, 15.

    Google Scholar 

  • Yuen, D.A., A.P. Vincent, S.Y. Bergeron, F. Dubuffet, A.A. Ten, V.C. Steinbach, and L. Starin (2000) Crossing of scales and nonlinearities in geophysical processes. In Boschi, E., G. Ekstrom, and A. Morelli (eds.) Problems in Geophysics for the New Millenium, Editrice Compositori, Bologna, Italy, pp. 405–465.

    Google Scholar 

  • Ziman, J.M. (1962) Electrons and Phonons: The Theory of Transport Phenomena in Solids, Clarendon Press, Oxford (Ch 8 and 11), pp. 1–554.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Hofmeister, A. (2007). Thermal Conductivity of the Earth's Deepest Mantle. In: Yuen, D.A., Maruyama, S., Karato, SI., Windley, B.F. (eds) Superplumes: Beyond Plate Tectonics. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5750-2_10

Download citation

Publish with us

Policies and ethics