Skip to main content

Movement and localization of Tomato Yellow Leaf Curl Viruses in the Infected Plant

  • Chapter
Tomato Yellow Leaf Curl Virus Disease

After its release into the phloem of a young leaf by feeding Bemisia tabaci, TYLCV systemically invades most plant organs above and below ground within 1–2 weeks (Ber et al., 1990; Czosnek et al., 1988b; Kheyr-Pour et al., 1994; Michelson et al., 1994; Picó et al., 1999, 2001; Rom et al., 1993). Different virus titers will accumulate depending on the organ type and its position at the plant. In tomato, viral replication and translocation usually precede symptom appearance by days or even weeks. Tolerant tomoto varieties were developed following epidemics of devastating tomato yellow leaf curl disease (TYLCD) in Israel and the Middle East since the first half of last century (Cohen & Antignus, 1994; Czosnek, 1999, and references herein). In tolerant breeding lines, TYLCV spread is almost or fully latent, producing only mild and delayed phenotypic alterations, if at all (Picó et al., 1996; Rom et al., 1993).

In order to understand TYLCD pathogenesis, detailed analyses on transmissibility, symptom induction, and host range of the causative agent named Tomato yellow leaf curl virus were performed in the 1960s (Cohen & Nitzany, 1966). In this study, eight symptomless crops and weed hosts were discovered, which were able to serve as source plants for whitefly inoculation of test plant species. These early findings substantiated the frequently “hidden nature” of the virus upon translocation inside its hosts. Hence, unraveling time course, preferential routes, and final distribution patterns of the virus in the different types of tissues and cells has been attempted in several consecutive studies, whenever more advanced techniques were available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aloni, R. & Peterson, C. A. (1990). The functional significance of phloem anastomoses in stems of Dahlia pinnata Cav. Planta 182, 583–590.

    Article  Google Scholar 

  • Andrianifahanana, M., Lovins, K., Dute, R., Sikora, E., & Murphy, J. F. (1997). Pathway for phloem-dependent movement of Pepper mottle potyvirus in the stem of Capsicum annuum. Phytopathology 87, 892–898.

    Article  CAS  PubMed  Google Scholar 

  • Avery, G. S. (1933). Structure and development of the tobacco leaf. Am. J. Bot. 20, 565–592.

    Article  Google Scholar 

  • Ber, R., Navot, N., Zamir, D., Antignus, Y., Cohen, S., & Czosnek, H. (1990). Infection of tomato by the tomato yellow leaf curl virus: susceptibility to infection, symptom development, and accumulation of viral DNA. Arch. Virol. 112, 169–180.

    Article  CAS  PubMed  Google Scholar 

  • Bisaro, D. M. (2006). Silencing suppression by geminivirus proteins. Virology 344, 158–168.

    Article  CAS  PubMed  Google Scholar 

  • Buntin, G. D., Gilbertz, D. A., & Oetting, R. D. (1993). Chlorophyll loss and gas exchange in tomato leaves after feeding injury by Bemisia tabaci (Homoptera: Aleyrodidae). J. Econ. Entom. 86, 517–522.

    Google Scholar 

  • Castillo, A. G., Collinet, D., Deret, S., Kashoggi, A., & Bejarano, E. R. (2003). Dual interaction of plant PCNA with geminivirus replication accessory protein (Ren) and viral replication protein (Rep). Virology 312, 381–394.

    Article  CAS  PubMed  Google Scholar 

  • Castillo, A. G., Kong, L. J., Hanley-Bowdoin, L., & Bejarano, E. (2004). Interaction between a geminivirus replication protein and the plant sumoylation system.J. Virol. 78, 2758–2769.

    Google Scholar 

  • Cherif, C. & Russo, M. (1983). Cytological evidence of the association of a geminivirus with the tomato yellow leaf curl disease in Tunisia. Phytopath. Z. 108, 221–225.

    Article  Google Scholar 

  • Cohen, S. & Antignus, Y. (1994). Tomato yellow leaf curl virus (TYLCV), a whitefly-borne geminivirus of tomatoes. Adv. Dis. Vector Res. 10, 259–288.

    Google Scholar 

  • Cohen, S. & Nitzany, F. E. (1966). Transmission and host range of the tomato yellow leaf curl virus. Phytopathology 56, 1127–1131.

    Google Scholar 

  • Cui, X., Li, G., Wang, D., Hu, D., & Zhou, X. (2005). A begomovirus DNAβ-encoded protein binds DNA, functions as a suppressor of RNA silencing, and targets the cell nucleus. J. Virol. 79, 10764–10775.

    Article  CAS  PubMed  Google Scholar 

  • Cui, X., Tao, X., Xie, Y., Fauquet, C. M., & Zhou, X. (2004). A DNAβ associated with tomato yellow leaf curl China Virus is required for symptom induction. J. Virol. 78, 13966–13974.

    Article  CAS  PubMed  Google Scholar 

  • Czosnek, H. (1999). Tomato yellow leaf curl virus-Israel. AAB Descr. Plant Vir. 368, 1–11.

    Google Scholar 

  • Czosnek, H. & Navot, N. (1988). Virus detection in squash-blots of plants and insects: applications in diagnostics, epidemiology, and breeding. In A. Mizrahi (Ed.), Biotechnology in Agriculture. New York: Alan R. Liss, fehlt, pp. 83–96.

    Google Scholar 

  • Czosnek, H., Ber, R., Antignus, Y., Cohen, S., Navot, N., & Zamir, D. (1988a). Isolation of tomato yellow leaf curl virus, a geminivirus. Phytopathology 78, 508–512.

    Article  Google Scholar 

  • Czosnek, H., Ber, R., Navot, N., & Zamir, D. (1988b). Detection of tomato yellow leaf curl virus in lysates of plants and insects by hybridization with a viral DNA probe. Plant Dis. 72, 949–951.

    Article  Google Scholar 

  • Delatte, H., Dalmon, A., Rist, D., Soustrade, I., Wuster, G., Lett, J. M., Goldbach, R. W., Peterschmitt, M., & Reynaud, B. (2003). Tomato yellow leaf curl virus can be acquired and transmitted by Bemisia tabaci (Gennadius) from tomato fruit. Plant Dis. 87, 1297–1300.

    Article  Google Scholar 

  • Ding, B. 1998. Intercellular trafficking through plasmodesmata. Plant Mol. Biol. 38, 279–310.

    Article  CAS  PubMed  Google Scholar 

  • Dong, X., van Wezel, R., Stanley, J., & Hong, Y. (2003). Functional characterization of the nuclear localization signal for a suppressor of posttranscriptional gene silencing. J. Virol. 77, 7026–7033.

    Article  CAS  PubMed  Google Scholar 

  • Esau, K. (1969). Pflanzenanatomie (Plant Anatomy; German edition). Stuttgart/New York: Gustav Fischer Verlag/Wiley.

    Google Scholar 

  • Fargette, D., Leslie, M., & Harrison, B. D. (1996). Serological studies on the accumulation and localisation of the tomato leaf curl geminiviruses in resistant and susceptible Lycopersicon species and tomato cultivars. Ann. Appl. Biol. 128, 317–328.

    Article  Google Scholar 

  • Fondong, V. N., Pita, J. S., Rey, M. E. C., de Kockko, A., Beachy, R. N., & Fauquet, C. M. (2000). Evidence of synergism between African cassava mosaic virus and a new double-recombinant geminivirus infecting cassava in Cameroon. J. Gen. Virol. 81, 287–297.

    CAS  PubMed  Google Scholar 

  • Fosket, D. E. (1994). Plant Growth and Development. San Diego/New York: Academic Press.

    Google Scholar 

  • Gafni, Y. (2003). Tomato yellow leaf curl virus, the intracellular dynamics of a plant DNA virus. Mol. Plant Pathol. 4, 9–15.

    Article  CAS  Google Scholar 

  • Ghanim, M., Morin, S., & Czosnek, H. (2001). Rate of tomato yellow leaf curl virus translocation in the circulative transmission pathway of its vector, the whitefly Bemisia tabaci. Phytopathology 91, 188–196.

    Google Scholar 

  • Harris, K. F., Pesic-Van Esbroeck, Z., & Duffus, J. E. (1996). Morphology of the sweet potato whitefly, Bemisia tabaci (Homoptera, Aleyrodidae) relative to virus transmission. Zoomorphology 116, 143–156.

    Article  Google Scholar 

  • Harrison, B. D. & Robinson, D. J. (1999). Natural genomic and antigenic variation in whitefly-transmitted geminiviruses (Begomoviruses). Annu. Rev. Phytopathol. 37, 369–398.

    Article  CAS  PubMed  Google Scholar 

  • Hehnle, S., Wege, C., & Jeske, H. (2004). The interaction of DNA with the movement proteins of geminiviruses revisited. J. Virol. 78, 7698–7706.

    Article  CAS  PubMed  Google Scholar 

  • Janssen, J. A. M., Tjallingii, W. F., & van Lenteren, J. C. (1989). Electrical recording and ultrastructure of stylet penetretation by the greenhouse whitefly. Entomol. Exp. Appl. 52, 69–81.

    Article  Google Scholar 

  • Jeske, H., Lütgemeier, M., & Preiss, W. (2001). Distinct DNA forms indicate rolling circle and recombination-dependent replication of Abutilon mosaic geminivirus. EMBO J. 20, 6158–6167.

    Article  CAS  PubMed  Google Scholar 

  • Jupin, I., De Kouchkovsky, F., Jouanneau, F., & Gronenborn, B. (1994). Movement of tomato yellow leaf curl geminivirus (TYLCV): involvement of the protein encoded by ORF C4. Virology 204, 82–90.

    Article  CAS  PubMed  Google Scholar 

  • Kheyr-Pour, A., Bendahmane, M., Matzeit, V., Accotto, G. P., Crespi, S., & Gronenborn, B. (1991). Tomato yellow leaf curl virus from Sardinia is a whitefly-transmitted monopartite geminivirus. Nucleic Acids Res. 19, 6763–6769.

    Article  CAS  PubMed  Google Scholar 

  • Kheyr-Pour, A., Gronenborn, B., & Czosnek, H. (1994). Agroinoculation of tomato yellow leaf curl virus (TYLCV) overcomes the virus resistance of wild Lycopersicon species. Plant Breed. 112, 228–233.

    Article  CAS  Google Scholar 

  • Knoblauch, M. & van Bel, A. J. E. (1998). Sieve tubes in action. Plant Cell 10, 35–50.

    Article  CAS  Google Scholar 

  • Kong, L. J., Orozco, B. M., Roe, J. L., Nagar, S., Ou, S., Feiler, H. S., Durfee, T., Miller, A. B., Gruissem, W., Robertson, D., & Hanley-Bowdoin, L. (2000). A geminivirus replication protein interacts with the retinoblastoma protein through a novel domain to determine symptoms and tissue specificity of infection in plants. EMBO J. 19, 3485–3495.

    Article  CAS  PubMed  Google Scholar 

  • Kunik, T., Mizrachy, L., Citovsky, V., & Gafni, Y. (1999). Characterization of a tomato karyopherin alpha that interacts with the tomato yellow leaf curl virus (TYLCV) capsid protein. J. Exp. Botany 50, 731–732.

    Article  CAS  Google Scholar 

  • Kunik, T., Palanichelvam, K., Czosnek, H., Citovsky, V., & Gafni, Y. (1998). Nuclear import of the capsid protein of tomato yellow leaf curl virus (TYLCV) in plant and insect cells. Plant J. 13, 393–399.

    Article  CAS  PubMed  Google Scholar 

  • Lapidot, M. & Friedmann, M. (2002). Breeding for resistance to whitefly-transmitted geminiviruses. Ann. Appl. Biol. 140, 109–127.

    Article  Google Scholar 

  • Latham, J. R., Saunders, K., Pinner, M. S., & Stanley, J. (1997). Induction of plant cell division by beet curly top virus gene C4. Plant J. 11, 1273–1283.

    Article  CAS  Google Scholar 

  • Levy, A. & Czosnek, H. (2003). The DNA-B of the non-phloem-limited bean dwarf mosaic virus (BDMV) is able to move the phloem-limited Abutilon mosaic virus (AbMV) out of the phloem, but DNA-B of AbMV is unable to confine BDMV to the phloem. Plant Mol. Biol. 53, 789–803.

    Article  CAS  PubMed  Google Scholar 

  • McGivern, D. R., Findlay, K. C., Montague, N. P., & Boulton, M. I. (2005). An intact RBR-binding motif is not required for infectivity of maize streak virus in cereals, but is required for invasion of mesophyll cells. J. Gen. Virol. 86, 797–801.

    Article  CAS  PubMed  Google Scholar 

  • Michelson, I., Zamir, D., & Czosnek, H. (1994). Accumulation and translocation of tomato yellow leaf curl virus (TYLCV) in a Lycopersicon esculentum breeding line containing the L. chilense TYLCV tolerance gene Ty-1. Phytopathology 84, 928–933.

    Google Scholar 

  • Michelson, I., Zeidan, M., Zamir, D., & Czosnek, H. (1997). Localization of tomato yellow leaf curl virus (TYLCV) in susceptible and tolerant nearly isogenic tomato lines. In Horticulture Biotechnology in Vitro Culture and Breeding. Proceedings of the third International ISHS Symposium, pp. 407–414.

    Google Scholar 

  • Moffat, A. (1999). Geminiviruses emerge as serious crop threat. Science 286, 1835.

    Article  CAS  Google Scholar 

  • Monci, F., Sanchez-Campos, S., Navas-Castillo, J., & Moriones, E. (2002). A natural recombinant between the geminiviruses tomato yellow leaf curl Sardinia virus and tomato yellow leaf curl virus exhibits a novel pathogenic phenotype and is becoming prevalent in Spanish populations. Virology 303, 317–326.

    Article  CAS  PubMed  Google Scholar 

  • Morilla, G., Castillo, A. G., Preiss, W., Jeske, H., & Bejarano, E. R. (2006). A versatile transreplica-tion-based system to identify cellular proteins involved in geminivirus replication. J. Virol. 80, 3624–3633.

    Article  CAS  PubMed  Google Scholar 

  • Morilla, G., Krenz, B., Jeske, H., Bejarano, E. R., & Wege, C. (2004). Tête à tête of tomato yellow leaf curl virus (TYLCV) and tomato yellow leaf curl Sardinia virus (TYLCSV) in single nuclei. J. Virol. 78, 10715–10723.

    Article  CAS  PubMed  Google Scholar 

  • Moriones, E. & Navas-Castillo, J. (2000). Tomato yellow leaf curl virus, an emerging virus complex causing epidemics worldwide. Virus Res. 71, 123–134.

    Article  CAS  PubMed  Google Scholar 

  • Morra, M. R. & Petty, I. T. (2000). Tissue specificity of geminivirus infection is genetically determined. Plant Cell 12, 2259–2270.

    Article  CAS  PubMed  Google Scholar 

  • Münch, E. (1930). Die Stoffbewegungen in der Pflanze. Jena, Germany: Gustav-Fischer-Verlag.

    Google Scholar 

  • Murant, A. F. & Roberts, I. M. (1979). Virus-like particles in phloem tissues of chervil (Anthriscus cerefolium) infected with carrot red leaf virus. Ann. Appl. Biol. 92, 343–346.

    Article  Google Scholar 

  • Navas-Castillo, J., Sanchez-Campos, S., Diaz, J. A., Saez-Alonso, E., & Moriones, E. (1997). First report of tomato yellow leaf curl virus is in Spain: coexistenceof two different geminiviruses in the same epidemic outbreak. Plant Dis. 81, 1461–1461.

    Article  Google Scholar 

  • Navas-Castillo, J., Sánchez-Campos, S., Díaz, J. A., Sáez-Alonso, E., & Moriones, E. (1999). Tomato Yellow Leaf Curl Virus-Is causes a novel disease of common bean and severe epidemics in tomato in Spain. Plant Dis. 83, 29–32.

    Article  Google Scholar 

  • Navot, N., Ber, R., & Czosnek, H. (1989). Rapid detection of tomato yellow leaf curl virus in squashes of plants and insect vectors. Phytopathology 79, 562–568.

    Article  Google Scholar 

  • Navot, N., Pichersky, E., Zeidan, M., Zamir, D., & Czosnek, H. (1991). Tomato yellow leaf curl virus: a whitefly-transmitted geminivirus with a single genomic component. Virology 185, 151–161.

    Article  CAS  PubMed  Google Scholar 

  • Nelson, R. S. & van Bel, A. J. E. (1998). The mystery of virus trafficking into, through and out of vascular tissue. Progr. Bot. 59, 476–533.

    Google Scholar 

  • Noris, E., Vaira, A. M., Caciagli, P., Masenga, V., Gronenborn, B., & Accotto, G. P. (1998). Amino acids in the capsid protein of tomato yellow leaf curl virus that are crucial for systemic infection, particle formation, and insect transmission. J. Virol. 72, 10050–10057.

    CAS  PubMed  Google Scholar 

  • Noueiry, A. O., Lucas, W. J., & Gilbertson, R. L. (1994). Two proteins of a plant DNA virus coordinate nuclear and plasmodesmatal transport. Cell 76, 925–932.

    Article  CAS  PubMed  Google Scholar 

  • Opalka, N., Brugidou, C., Bonneau, C., Nicole, M., Beachy, R. N., Yeager, M., & Fauquet, C. (1998). Movement of rice yellow mottle virus between xylem cells through pit membranes. Proc. Natl. Acad. Sci. USA 95, 3323–3328.

    Article  CAS  PubMed  Google Scholar 

  • Oparka, K. J. & Santa Cruz, S. (2000). The great escape: phloem transport and unloading of macromolecules. Ann. Rev. Plant Physiol. Plant Mol. Biol. 51, 323–347.

    Article  CAS  Google Scholar 

  • Padidam, M., Sawyer, S., & Fauquet, C. M. (1999). Possible emergence of new geminiviruses by frequent recombination. Virology 285, 218–225.

    Article  Google Scholar 

  • Palanichelvam, K., Kunik, T., Citovsky, V., & Gafni, Y. (1998). The capsid protein of tomato yellow leaf curl virus binds cooperatively to single-stranded DNA. J. Gen. Virol. 79, 2829–2833.

    CAS  PubMed  Google Scholar 

  • Pelah, D., Altman, A., & Czosnek, H. (1994). Tomato yellow leaf curl virus DNA in callus cultures derived from infected tomato leaves. Plant Cell Tiss. Org. Cult. 39, 37–42.

    Article  Google Scholar 

  • Picó, B., Diez, M. J., & Nuez, F. (1996). Viral diseases causing the greatest economic losses to the tomato crop. II. The tomato yellow leaf curl virus–a review. Sci. Horticult. 67, 151–196.

    Google Scholar 

  • Picó, B., Díez, M. J., & Nuez, F. (1999). Improved diagnostic techniques for Tomato yellow leaf curl virus in tomato breeding programs. Plant Dis. 83, 1006–1012.

    Article  Google Scholar 

  • Picó, B., Ferriol, M., Díez, M. J., & Vinals, F. N. (2001). Agroinoculation methods to screen wild Lycopersicon for resistance to Tomato yellow leaf curl virus. J. Plant Pathol. 83, 215–220.

    Google Scholar 

  • Pilartz, M. & Jeske, H. (1992). Abutilon mosaic geminivirus double-stranded DNA is packed into minichromosomes. Virology 189, 800–802.

    Article  CAS  PubMed  Google Scholar 

  • Pita, J. S., Fondong, V. N., Sangare, A., Otim-Nape, G. W., Ogwal, S., & Fauquet, C. M. (2001). Recombination, pseudorecombination and synergism of geminiviruses are determinant keys to the epidemic of severe cassava mosaic disease in Uganda. J. Gen. Virol. 82, 655–665.

    CAS  PubMed  Google Scholar 

  • Pollard, D. G. (1955). Feeding habits of the cotton whitefly, Bemisia tabaci Genn. (Homoptera: Aleyrodidae). Ann. Appl. Biol. 43, 664–671.

    Google Scholar 

  • Preiss, W. & Jeske, H. (2003). Multitasking in replication is common among geminiviruses. J. Virol. 77, 2972–2980.

    Article  CAS  PubMed  Google Scholar 

  • Rasheed, M. S., Selth, L. A., Koltunow, A. M. G., Randles, J. W., & Rezaian, M. A. (2006). Single-stranded DNA of tomato leaf curl virus accumulates in the cytoplasm of phloem cells. Virology 348, 120–132.

    Article  CAS  PubMed  Google Scholar 

  • Rhee, Y., Gafni, Y., Dingwall, C., & Citovsky, V. (2000). A genetic system for detection of protein nuclear import and export. Nat. Biotech. 18, 433–437.

    Article  CAS  Google Scholar 

  • Ribeiro, S. G., Ambrozevicius, L. P., Avila, A. C., Bezerra, I. C., Calegario, R. F., Fernandes, J. J., Lima, M. F., de Mello, R. N., Rocha, H., & Zerbini, F. M. (2003). Distribution and genetic diversity of tomato-infecting begomoviruses in Brazil. Arch. Virol. 148, 281–295.

    Article  CAS  PubMed  Google Scholar 

  • Roberts, A. G., Santa Cruz, S., Roberts, I. M., Prior, D. A. M., Turgeon, R., & Oparka, K. J. (1997). Phloem unloading in sink leaves of Nicotiana benthamiana: comparison of a fluorescent solute with a fluorescent virus. Plant Cell 9, 1381–1396.

    Article  CAS  PubMed  Google Scholar 

  • Rojas, M. R., Hagen, C., Lucas, W. J., & Gilbertson, R. L. (2005). Exploiting chinks in the plant’s armor: evolution and emergence of geminiviruses. Annu. Rev. Phytopathol. 43, 361–394.

    Article  CAS  PubMed  Google Scholar 

  • Rojas, M. R., Jiang, H., Salati, R., Xoconostle-Cazares, B., Sudarshana, M. R., Lucas, W. J., & Gilbertson, R. L. (2001). Functional analysis of proteins involved in movement of the monopartite begomovirus, tomato yellow leaf curl virus. Virology 291, 110–125.

    Article  CAS  PubMed  Google Scholar 

  • Rom, M., Antignus, Y., Gidoni, D., Pilowsky, M., & Cohen, S. (1993). Accumulation of tomato yellow leaf curl virus DNA in tolerant and susceptible tomato lines. Plant Dis. 77, 253–257.

    CAS  Google Scholar 

  • Russo, M., Cohen, S., & Martelli, G. P. (1980). Virus-like particles in tomato plants affected by the yellow leaf curl disease. J. Gen. Virol. 49, 209–213.

    Article  Google Scholar 

  • Sanchez-Campos, S., Navas-Castillo, J., Camero, R., Soria, C., Díaz, J. A., & Moriones, E. (1999). Displacement of tomato yellow leaf curl virus (TYLCV)-Sr by TYLCV-Is in tomato epidemics in Spain. Phytopathology 89, 1038–1043.

    Article  CAS  PubMed  Google Scholar 

  • Sanz, A. I., Fraile, A., García-Arenal, F., Zhou, X., Robinson, D. J., Khalid, S., Butt, T., & Harrison, B. D. (2000). Multiple infection, recombination and genome relationships among begomovirus isolates found in cotton and other plants in Pakistan. J. Gen. Virol. 81, 1839–1849.

    CAS  PubMed  Google Scholar 

  • Schnippenkoetter, W. H., Martin, D. P., Willment, J. A., & Rybicki, E. P. (2001). Forced recombination between distinct strains of Maize streak virus. J. Gen. Virol. 82, 3081–3090.

    CAS  PubMed  Google Scholar 

  • Settlage, S. B., See, R. G., & Hanley-Bowdoin, L. (2005). Geminivirus c3 protein: replication enhancement and protein interactions. J. Virol. 79, 9885–9895.

    Article  CAS  PubMed  Google Scholar 

  • Silva, M. S., Wellink, J., Goldbach, R. W., & van Lent, J. W. M. (2002). Phloem loading and unloading of cowpea mosaic virus in Vigna unguiculata. J. Gen. Virol. 83, 1493–1504.

    Google Scholar 

  • Sudarshana, M. R., Wang, H. L., Lucas, W. J., & Gilbertson, R. L. (1998). Dynamics of bean dwarf mosaic geminivirus cell-to-cell and long-distance movement in Phaseolus vulgaris revealed, using the green fluorescent protein. Mol. Plant Microbe Interact. 11, 277–291.

    Article  CAS  Google Scholar 

  • Tao, X. & Zhou, X. (2004). A modified viral satellite DNA that suppresses gene expression in plants. Plant J. 38, 850–860.

    Article  CAS  PubMed  Google Scholar 

  • van Bel, A. J. E. (1993). Strategies of phloem loading. Annu. Rev. Plant Physiol. Plant Mol. Biol. 44, 253–281.

    Article  Google Scholar 

  • van Bel, A. J. E., & Kempers, R. (1997). The pore/plasmodesm unit; key element in the interplay between sieve element and companion cell. Progr. Bot. 58, 278–291.

    Google Scholar 

  • van Wezel, R., Liu, H., Tien, P., Stanley, J., & Hong, Y. (2001). Gene C2 of the monopartite geminivirus tomato yellow leaf curl virus-China encodes a pathogenicity determinant that is localized in the nucleus. Mol. Plant Microbe Interact. 14, 1125–1128.

    Article  PubMed  Google Scholar 

  • Vanitharani, R., Chellappan, P., & Fauquet, C. M. (2005). Geminiviruses and RNA silencing. Trends Plant Sci. 10, 144–151.

    CAS  PubMed  Google Scholar 

  • Verchot, J., Driskel, B. A., Zhu, Y., Hunger, R. M., & Littlefield, L. J. (2001). Evidence that soilborne wheat mosaic virus moves long distance through the xylem in wheat. Protoplasma 218, 57–66.

    Article  CAS  PubMed  Google Scholar 

  • Waigmann, E., Ueki, S., Trutnyeva, K., & Citovsky, V. (2004). The ins and outs of nondestructive cell-to-cell and systemic movement of plant viruses. Crit. Rev. Plant Sci. 23, 195–250.

    Article  CAS  Google Scholar 

  • Wartig, L., Kheyr-Pour, A., Noris, E., Dekouchkovsky, F., Jouanneau, F., Gronenborn, B., & Jupin, I. (1997). Genetic analysis of the monopartite tomato yellow leaf curl geminivirus: roles of V1, V2 and C2 ORFs in viral pathogenesis. Virology 228, 132–140.

    Article  CAS  PubMed  Google Scholar 

  • Waterhouse, P. M. & Murant, A. F. (1982). Carrot red leaf virus. AAB Descr. Plant Vir. 249, 1–13.

    Google Scholar 

  • Wege, C., Saunders, K., Stanley, J., & Jeske, H. (2001). Comparative analysis of tissue tropism of bipartite geminiviruses. J. Phytopathol. 149, 359–368.

    Article  Google Scholar 

  • Wege, C. & Siegmund, D. (2006). Synergism of a DNA and an RNA virus: enhanced tissue infiltration of Abutilon mosaic begomovirus (AbMV) upon co-infection with cucumber mosaic virus (CMV). Virology 357, 10–28.

    Article  PubMed  Google Scholar 

  • Wege, C. & Pohl, D. (2007). Abutilon mosaic virus DNA B component supports mechanical virus transmission, but does not counteract begomoviral phloem limitation in transgenic plants. Virology, in press; doi: 10.1016/j.virol.2007.03.041.

    Google Scholar 

  • Zhou, X., Liu, Y., Calvert, L., Munoz, C., Otim-Nape, G. W., Robinson, D. J., & Harrison, B. D. (1997). Evidence that DNA-A of a geminivirus associated with severe cassava mosaic disease in Uganda has arisen by interspecific recombination. J. Gen. Virol. 78, 2101–2111.

    CAS  PubMed  Google Scholar 

  • Zhou, X., Xie, Y., Tao, X., Zhang, Z., Li, Z., & Fauquet, C. M. (2003). Characterization of DNAbeta associated with begomoviruses in China and evidence for co-evolution with their cognate viral DNA-A. J. Gen. Virol. 84, 237–247.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, X. P., Liu, Y. L., Robinson, D. J., & Harrison, B. D. (1998). Four DNA-A variants among Pakistani isolates of cotton leaf curl virus and their affinities to DNA-A of geminivirus isolates from okra. J. Gen. Virol. 79, 915–923.

    CAS  PubMed  Google Scholar 

  • Zrachya, A., Glick, E., Levy, Y., Arazi, T., Citovsky, V., & Gafni, Y. (2007). Suppressor of RNA silencing encoded by Tomato yellow leaf curl virus-Israel. Virology 358, 159–165.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Wege, C. (2007). Movement and localization of Tomato Yellow Leaf Curl Viruses in the Infected Plant. In: Czosnek, H. (eds) Tomato Yellow Leaf Curl Virus Disease. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4769-5_11

Download citation

Publish with us

Policies and ethics