Skip to main content

Notch Signaling in Vascular Development

  • Chapter
  • First Online:
Translational Vascular Medicine

Abstract

Notch signaling is a very widespread signaling system that has diverse functions in many developmental systems in an evolutionarily conserved manner. Notch signaling is known to play a role in regulating epithelial, neuronal, hematopoietic, and muscle cell fate, and in the last decade, the role played by Notch signaling in the vasculature has been uncovered.

In this chapter, we will discuss the development of hematopoietic and vascular cells from cell precursors to a differentiated and fully functional vascular system, along with the role of various Notch signaling molecules in defining the different cell types that make up this system. Notch ligands and receptors are expressed in the developing vasculature and blood cells from the early emergence of hemangioblast precursors through to differentiated vascular beds. The characteristic Notch signaling mechanisms of lateral inhibition and lateral induction enable neighboring cells to create the diversity in cell types required to form not only the blood vessels, but also the vessel wall and thereby utilizing a relatively small number of genes to control multiple processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kinder SJ, Tsang TE, Wakamiya M, et al. The organizer of the mouse gastrula is composed of a dynamic population of progenitor cells for the axial mesoderm. Development. 2001;128(18):3623–34.

    PubMed  CAS  Google Scholar 

  2. Lawson KA, Meneses JJ, Pedersen RA. Clonal analysis of epiblast fate during germ layer formation in the mouse embryo. Development. 1991;113(3):891–911.

    PubMed  CAS  Google Scholar 

  3. Baron MH. Embryonic origins of mammalian hematopoiesis. Exp Hematol. 2003;31(12):1160–9.

    Article  PubMed  CAS  Google Scholar 

  4. Ferkowicz MJ, Starr M, Xie X, et al. CD41 expression defines the onset of primitive and definitive hematopoiesis in the murine embryo. Development. 2003;130(18):4393–403.

    Article  PubMed  CAS  Google Scholar 

  5. Choi K, Kennedy M, Kazarov A, Papadimitriou JC, Keller G. A common precursor for hematopoietic and endothelial cells. Development. 1998;125(4):725–32.

    PubMed  CAS  Google Scholar 

  6. Sabin F. Studies on the origin of blood vessels and of red blood corpuscles as seen in the living blastoderm of chicks during the second day of incubation. Contrib Embryol Carnegie Inst Wash. 1920;9:214–62.

    Google Scholar 

  7. Huber TL, Kouskoff V, Fehling HJ, Palis J, Keller G. Haemangioblast commitment is initiated in the primitive streak of the mouse embryo. Nature. 2004;432(7017):625–30.

    Article  PubMed  CAS  Google Scholar 

  8. Shalaby F, Rossant J, Yamaguchi TP, et al. Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature. 1995;376(6535):62–6.

    Article  PubMed  CAS  Google Scholar 

  9. Kinder SJ, Tsang TE, Quinlan GA, Hadjantonakis AK, Nagy A, Tam PP. The orderly allocation of mesodermal cells to the extraembryonic structures and the anteroposterior axis during gastrulation of the mouse embryo. Development. 1999;126(21):4691–701.

    PubMed  CAS  Google Scholar 

  10. Kattman SJ, Huber TL, Keller GM. Multipotent flk-1+ cardiovascular progenitor cells give rise to the cardiomyocyte, endothelial, and vascular smooth muscle lineages. Dev Cell. 2006;11(5):723–32.

    Article  PubMed  CAS  Google Scholar 

  11. Yamashita J, Itoh H, Hirashima M, et al. Flk1-positive cells derived from embryonic stem cells serve as vascular progenitors. Nature. 2000;408(6808):92–6.

    Article  PubMed  CAS  Google Scholar 

  12. Ema M, Rossant J. Cell fate decisions in early blood vessel formation. Trends Cardiovasc Med. 2003;13(6):254–9.

    Article  PubMed  CAS  Google Scholar 

  13. Furuta C, Ema H, Takayanagi S, et al. Discordant developmental waves of angioblasts and hemangioblasts in the early gastrulating mouse embryo. Development. 2006;133(14):2771–9.

    Article  PubMed  CAS  Google Scholar 

  14. Risau W, Flamme I. Vasculogenesis. Annu Rev Cell Dev Biol. 1995;11:73–91.

    Article  PubMed  CAS  Google Scholar 

  15. Poole TJ, Coffin JD. Vasculogenesis and angiogenesis: two distinct morphogenetic mechanisms establish embryonic vascular pattern. J Exp Zool. 1989;251(2):224–31.

    Article  PubMed  CAS  Google Scholar 

  16. Risau W. Mechanisms of angiogenesis. Nature. 1997;386(6626):671–4.

    Article  PubMed  CAS  Google Scholar 

  17. Kopan R, Ilagan MX. The canonical Notch signaling pathway: unfolding the activation mechanism. Cell. 2009;137(2):216–33.

    Article  PubMed  CAS  Google Scholar 

  18. Talora C, Campese AF, Bellavia D, et al. Notch signaling and diseases: an evolutionary journey from a simple beginning to complex outcomes. Biochim Biophys Acta. 2008;1782(9):489–97.

    PubMed  CAS  Google Scholar 

  19. Sanalkumar R, Dhanesh SB, James J. Non-canonical activation of Notch signaling/target genes in vertebrates. Cell Mol Life Sci. 2010;67(17):2957–68.

    Article  PubMed  CAS  Google Scholar 

  20. Artavanis-Tsakonas S, Rand MD, Lake RJ. Notch signaling: cell fate control and signal integration in development. Science. 1999;284(5415):770–6.

    Article  PubMed  CAS  Google Scholar 

  21. Bray S. Notch signalling in Drosophila: three ways to use a pathway. Semin Cell Dev Biol. 1998;9(6):591–7.

    Article  PubMed  CAS  Google Scholar 

  22. Bray SJ. Notch signalling: a simple pathway becomes complex. Nat Rev Mol Cell Biol. 2006;7(9):678–89.

    Article  PubMed  CAS  Google Scholar 

  23. Fortini ME. Notch signaling: the core pathway and its posttranslational regulation. Dev Cell. 2009;16(5):633–47.

    Article  PubMed  CAS  Google Scholar 

  24. D’Souza B, Miyamoto A, Weinmaster G. The many facets of Notch ligands. Oncogene. 2008;27(38):5148–67.

    Article  PubMed  Google Scholar 

  25. Yang LT, Nichols JT, Yao C, Manilay JO, Robey EA, Weinmaster G. Fringe glycosyltransferases differentially modulate Notch1 proteolysis induced by Delta1 and Jagged1. Mol Biol Cell. 2005;16(2):927–42.

    Article  PubMed  CAS  Google Scholar 

  26. Haines N, Irvine KD. Glycosylation regulates Notch signalling. Nat Rev Mol Cell Biol. 2003;4(10):786–97.

    PubMed  CAS  Google Scholar 

  27. Uyttendaele H, Marazzi G, Wu G, Yan Q, Sassoon D, Kitajewski J. Notch4/int-3, a mammary proto-oncogene, is an endothelial cell-specific mammalian Notch gene. Development. 1996;122(7):2251–9.

    PubMed  CAS  Google Scholar 

  28. Swiatek PJ, Lindsell CE, del Amo FF, Weinmaster G, Gridley T. Notch1 is essential for postimplantation development in mice. Genes Dev. 1994;8(6):707–19.

    Article  PubMed  CAS  Google Scholar 

  29. Limbourg FP, Takeshita K, Radtke F, Bronson RT, Chin MT, Liao JK. Essential role of endothelial Notch1 in angiogenesis. Circulation. 2005;111(14):1826–32.

    Article  PubMed  CAS  Google Scholar 

  30. Krebs LT, Xue Y, Norton CR, et al. Notch signaling is essential for vascular morphogenesis in mice. Genes Dev. 2000;14(11):1343–52.

    PubMed  CAS  Google Scholar 

  31. Uyttendaele H, Ho J, Rossant J, Kitajewski J. Vascular patterning defects associated with expression of activated Notch4 in embryonic endothelium. Proc Natl Acad Sci USA. 2001;98(10):5643–8.

    Article  PubMed  CAS  Google Scholar 

  32. Murphy PA, Lam MT, Wu X, et al. Endothelial Notch4 signaling induces hallmarks of brain arteriovenous malformations in mice. Proc Natl Acad Sci USA. 2008;105(31):10901–6.

    Article  PubMed  CAS  Google Scholar 

  33. Alva JA, Iruela-Arispe ML. Notch signaling in vascular morphogenesis. Curr Opin Hematol. 2004;11(4):278–83.

    Article  PubMed  CAS  Google Scholar 

  34. Claxton S, Fruttiger M. Periodic Delta-like 4 expression in developing retinal arteries. Gene Expr Patterns. 2004;5(1):123–7.

    Article  PubMed  CAS  Google Scholar 

  35. Villa N, Walker L, Lindsell CE, Gasson J, Iruela-Arispe ML, Weinmaster G. Vascular expression of Notch pathway receptors and ligands is restricted to arterial vessels. Mech Dev. 2001;108(1–2):161–4.

    Article  PubMed  CAS  Google Scholar 

  36. Joutel A, Andreux F, Gaulis S, et al. The ectodomain of the Notch3 receptor accumulates within the cerebrovasculature of CADASIL patients. J Clin Invest. 2000;105(5):597–605.

    Article  PubMed  CAS  Google Scholar 

  37. Krebs LT, Xue Y, Norton CR, et al. Characterization of Notch3-deficient mice: normal embryonic development and absence of genetic interactions with a Notch1 mutation. Genesis. 2003;37(3):139–43.

    Article  PubMed  CAS  Google Scholar 

  38. Domenga V, Fardoux P, Lacombe P, et al. Notch3 is required for arterial identity and maturation of vascular smooth muscle cells. Genes Dev. 2004;18(22):2730–5.

    Article  PubMed  CAS  Google Scholar 

  39. Beckers J, Clark A, Wunsch K, De Hrabe AM, Gossler A. Expression of the mouse Delta1 gene during organogenesis and fetal development. Mech Dev. 1999;84(1–2):165–8.

    Article  PubMed  CAS  Google Scholar 

  40. Limbourg A, Ploom M, Elligsen D, et al. Notch ligand Delta-like 1 is essential for postnatal arteriogenesis. Circ Res. 2007;100(3):363–71.

    Article  PubMed  CAS  Google Scholar 

  41. Shutter JR, Scully S, Fan W, et al. Dll4, a novel Notch ligand expressed in arterial endothelium. Genes Dev. 2000;14(11):1313–8.

    PubMed  CAS  Google Scholar 

  42. De Hrabe AM, McIntyre J, Gossler A. Maintenance of somite borders in mice requires the Delta homologue DII1. Nature. 1997;386(6626):717–21.

    Article  Google Scholar 

  43. Duarte A, Hirashima M, Benedito R, et al. Dosage-sensitive requirement for mouse Dll4 in artery development. Genes Dev. 2004;18(20):2474–8.

    Article  PubMed  CAS  Google Scholar 

  44. Gale NW, Dominguez MG, Noguera I, et al. Haploinsufficiency of delta-like 4 ligand results in embryonic lethality due to major defects in arterial and vascular development. Proc Natl Acad Sci USA. 2004;101(45):15949–54.

    Article  PubMed  CAS  Google Scholar 

  45. Krebs LT, Shutter JR, Tanigaki K, Honjo T, Stark KL, Gridley T. Haploinsufficient lethality and formation of arteriovenous malformations in Notch pathway mutants. Genes Dev. 2004;18(20):2469–73.

    Article  PubMed  CAS  Google Scholar 

  46. Hellstrom M, Phng LK, Hofmann JJ, et al. Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature. 2007;445(7129):776–80.

    Article  PubMed  Google Scholar 

  47. Suchting S, Freitas C, le Noble F, et al. The Notch ligand Delta-like 4 negatively regulates endothelial tip cell formation and vessel branching. Proc Natl Acad Sci USA. 2007;104(9):3225–30.

    Article  PubMed  CAS  Google Scholar 

  48. Lobov IB, Renard RA, Papadopoulos N, et al. Delta-like ligand 4 (Dll4) is induced by VEGF as a negative regulator of angiogenic sprouting. Proc Natl Acad Sci USA. 2007;104(9):3219–24.

    Article  PubMed  CAS  Google Scholar 

  49. Irvin DK, Nakano I, Paucar A, Kornblum HI. Patterns of Jagged1, Jagged2, Delta-like 1 and Delta-like 3 expression during late embryonic and postnatal brain development suggest multiple functional roles in progenitors and differentiated cells. J Neurosci Res. 2004;75(3):330–43.

    Article  PubMed  CAS  Google Scholar 

  50. Loomes KM, Underkoffler LA, Morabito J, et al. The expression of Jagged1 in the developing mammalian heart correlates with cardiovascular disease in Alagille syndrome. Hum Mol Genet. 1999;8(13):2443–9.

    Article  PubMed  CAS  Google Scholar 

  51. Xue Y, Gao X, Lindsell CE, et al. Embryonic lethality and vascular defects in mice lacking the Notch ligand Jagged1. Hum Mol Genet. 1999;8(5):723–30.

    Article  PubMed  CAS  Google Scholar 

  52. High FA, Lu MM, Pear WS, Loomes KM, Kaestner KH, Epstein JA. Endothelial expression of the Notch ligand Jagged1 is required for vascular smooth muscle development. Proc Natl Acad Sci USA. 2008;105(6):1955–9.

    Article  PubMed  CAS  Google Scholar 

  53. Jiang R, Lan Y, Chapman HD, et al. Defects in limb, craniofacial, and thymic development in Jagged2 mutant mice. Genes Dev. 1998;12(7):1046–57.

    Article  PubMed  CAS  Google Scholar 

  54. Lee CY, Vogeli KM, Kim SH, et al. Notch signaling functions as a cell-fate switch between the endothelial and hematopoietic lineages. Curr Biol. 2009;19(19):1616–22.

    Article  PubMed  CAS  Google Scholar 

  55. Sheng G. Primitive and definitive erythropoiesis in the yolk sac: a bird’s eye view. Int J Dev Biol. 2010;54(6–7):1033–43.

    Article  PubMed  CAS  Google Scholar 

  56. Taoudi S, Medvinsky A. Functional identification of the hematopoietic stem cell niche in the ventral domain of the embryonic dorsal aorta. Proc Natl Acad Sci USA. 2007;104(22):9399–403.

    Article  PubMed  CAS  Google Scholar 

  57. Medvinsky A, Dzierzak E. Definitive hematopoiesis is autonomously initiated by the AGM region. Cell. 1996;86(6):897–906.

    Article  PubMed  CAS  Google Scholar 

  58. Garcia-Porrero JA, Godin IE, Dieterlen-Lievre F. Potential intraembryonic hemogenic sites at pre-liver stages in the mouse. Anat Embryol (Berl). 1995;192(5):425–35.

    Article  CAS  Google Scholar 

  59. Kumano K, Chiba S, Kunisato A, et al. Notch1 but not Notch2 is essential for generating hematopoietic stem cells from endothelial cells. Immunity. 2003;18(5):699–711.

    Article  PubMed  CAS  Google Scholar 

  60. Robert-Moreno A, Espinosa L, de la Pompa JL, Bigas A. RBPjkappa-dependent Notch function regulates Gata2 and is essential for the formation of intra-embryonic hematopoietic cells. Development. 2005;132(5):1117–26.

    Article  PubMed  CAS  Google Scholar 

  61. Robert-Moreno A, Guiu J, Ruiz-Herguido C, et al. Impaired embryonic haematopoiesis yet normal arterial development in the absence of the Notch ligand Jagged1. EMBO J. 2008;27(13):1886–95.

    Article  PubMed  CAS  Google Scholar 

  62. Radtke F, Fasnacht N, Macdonald HR. Notch signaling in the immune system. Immunity. 2010;32(1):14–27.

    Article  PubMed  CAS  Google Scholar 

  63. Yuan JS, Kousis PC, Suliman S, Visan I, Guidos CJ. Functions of notch signaling in the immune system: consensus and controversies. Annu Rev Immunol. 2010;28:343–65.

    Article  PubMed  Google Scholar 

  64. Majesky MW. Developmental basis of vascular smooth muscle diversity. Arterioscler Thromb Vasc Biol. 2007;27(6):1248–58.

    Article  PubMed  CAS  Google Scholar 

  65. Shin M, Nagai H, Sheng G. Notch mediates Wnt and BMP signals in the early separation of smooth muscle progenitors and blood/endothelial common progenitors. Development. 2009;136(4):595–603.

    Article  PubMed  CAS  Google Scholar 

  66. Schroeder T, Meier-Stiegen F, Schwanbeck R, et al. Activated Notch1 alters differentiation of embryonic stem cells into mesodermal cell lineages at multiple stages of development. Mech Dev. 2006;123(7):570–9.

    Article  PubMed  CAS  Google Scholar 

  67. Joutel A, Corpechot C, Ducros A, et al. Notch3 mutations in CADASIL, a hereditary adult-onset condition causing stroke and dementia. Nature. 1996;383(6602):707–10.

    Article  PubMed  CAS  Google Scholar 

  68. Liu H, Kennard S, Lilly B. NOTCH3 expression is induced in mural cells through an autoregulatory loop that requires endothelial-expressed JAGGED1. Circ Res. 2009;104(4):466–75.

    Article  PubMed  CAS  Google Scholar 

  69. Doi H, Iso T, Sato H, et al. Jagged1-selective notch signaling induces smooth muscle differentiation via a RBP-Jkappa-dependent pathway. J Biol Chem. 2006;281(39):28555–64.

    Article  PubMed  CAS  Google Scholar 

  70. Wang HU, Chen ZF, Anderson DJ. Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell. 1998;93(5):741–53.

    Article  PubMed  CAS  Google Scholar 

  71. Zhong TP, Childs S, Leu JP, Fishman MC. Gridlock signalling pathway fashions the first embryonic artery. Nature. 2001;414(6860):216–20.

    Article  PubMed  CAS  Google Scholar 

  72. Lawson ND, Vogel AM, Weinstein BM. Sonic hedgehog and vascular endothelial growth factor act upstream of the Notch pathway during arterial endothelial differentiation. Dev Cell. 2002;3(1):127–36.

    Article  PubMed  CAS  Google Scholar 

  73. Lawson ND, Scheer N, Pham VN, et al. Notch signaling is required for arterial-venous differentiation during embryonic vascular development. Development. 2001;128(19):3675–83.

    PubMed  CAS  Google Scholar 

  74. Zhong TP, Rosenberg M, Mohideen MA, Weinstein B, Fishman MC. Gridlock, an HLH gene required for assembly of the aorta in zebrafish. Science. 2000;287(5459):1820–4.

    Article  PubMed  CAS  Google Scholar 

  75. Trindade A, Kumar SR, Scehnet JS, et al. Overexpression of delta-like 4 induces arterialization and attenuates vessel formation in developing mouse embryos. Blood. 2008;112(5):1720–9.

    Article  PubMed  CAS  Google Scholar 

  76. Benedito R, Trindade A, Hirashima M, et al. Loss of Notch signalling induced by Dll4 causes arterial calibre reduction by increasing endothelial cell response to angiogenic stimuli. BMC Dev Biol. 2008;8:117.

    Article  PubMed  Google Scholar 

  77. Kim YH, Hu H, Guevara-Gallardo S, Lam MT, Fong SY, Wang RA. Artery and vein size is balanced by Notch and ephrin B2/EphB4 during angiogenesis. Development. 2008;135(22):3755–64.

    Article  PubMed  CAS  Google Scholar 

  78. Sorensen I, Adams RH, Gossler A. DLL1-mediated Notch activation regulates endothelial identity in mouse fetal arteries. Blood. 2009;113(22):5680–8.

    Article  PubMed  Google Scholar 

  79. Fruttiger M. Development of the mouse retinal vasculature: angiogenesis versus vasculogenesis. Invest Ophthalmol Vis Sci. 2002;43(2):522–7.

    PubMed  Google Scholar 

  80. Fruttiger M. Development of the retinal vasculature. Angiogenesis. 2007;10(2):77–88.

    Article  PubMed  Google Scholar 

  81. Gerhardt H, Golding M, Fruttiger M, et al. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol. 2003;161(6):1163–77.

    Article  PubMed  CAS  Google Scholar 

  82. Phng LK, Gerhardt H. Angiogenesis: a team effort coordinated by notch. Dev Cell. 2009;16(2):196–208.

    Article  PubMed  CAS  Google Scholar 

  83. Leslie JD, Ariza-McNaughton L, Bermange AL, McAdow R, Johnson SL, Lewis J. Endothelial signalling by the Notch ligand Delta-like 4 restricts angiogenesis. Development. 2007;134(5):839–44.

    Article  PubMed  CAS  Google Scholar 

  84. Siekmann AF, Lawson ND. Notch signalling limits angiogenic cell behaviour in developing zebrafish arteries. Nature. 2007;445(7129):781–4.

    Article  PubMed  CAS  Google Scholar 

  85. Benedito R, Roca C, Sorensen I, et al. The notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis. Cell. 2009;137(6):1124–35.

    Article  PubMed  CAS  Google Scholar 

  86. Holderfield MT, Hughes CC. Crosstalk between vascular endothelial growth factor, notch, and transforming growth factor-beta in vascular morphogenesis. Circ Res. 2008;102(6):637–52.

    Article  PubMed  CAS  Google Scholar 

  87. Franco CA, Liebner S, Gerhardt H. Vascular morphogenesis: a Wnt for every vessel? Curr Opin Genet Dev. 2009;19(5):476–83.

    Article  PubMed  CAS  Google Scholar 

  88. Oda T, Elkahloun AG, Pike BL, et al. Mutations in the human Jagged1 gene are responsible for Alagille syndrome. Nat Genet. 1997;16(3):235–42.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus Fruttiger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Jadeja, S., Fruttiger, M. (2012). Notch Signaling in Vascular Development. In: Abraham, D., Handler, C., Dashwood, M., Coghlan, G. (eds) Translational Vascular Medicine. Springer, London. https://doi.org/10.1007/978-0-85729-920-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-920-8_4

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-919-2

  • Online ISBN: 978-0-85729-920-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics