Skip to main content

Topochemistry, Porosity and Chemical Composition Affecting Enzymatic Hydrolysis of Lignocellulosic Materials

  • Chapter
  • First Online:
Routes to Cellulosic Ethanol

Abstract

Lignocellulosic materials such as sugarcane bagasse represent a lowcost source of carbon for biofuel and chemical production, including cellulosic ethanol. Despite its low cost and availability, bagasse presents several technical challenges for its conversion to monomeric sugars suitable for fermentation processes. It is highly recalcitrant, which requires efficient pretreatment for enzymatic hydrolysis. Both pretreatment and enzymatic hydrolysis have frequently been highlighted as the most costly steps in the bioprocessing of this lignocellulosic material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alfani, F., Gallifuoco, A., Saporosi, A., Spera, A., and Cantarella, M. 2000. Comparison of SHF and SSF processes for the bioconversion of steam-exploded wheat straw. J. Ind. Microbiol. Biotechnol. 25:184–192.

    Article  CAS  Google Scholar 

  • Bayer, E. A., Belaich, J. P., Shoham, Y., and Lamed, R. 2004. The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. Annu. Rev. Microbiol. 58:521–54.

    Article  CAS  PubMed  Google Scholar 

  • Beg, Q. K., Kapoor, M., Mahajan, L., and Hoondal, G. S. 2001. Microbial xylanases and their industrial applications: a review. Appl. Microbiol. Biotechnol. 56:326–338.

    Article  CAS  PubMed  Google Scholar 

  • Berlin, A., Gilkes, N., Kurabi, A., Bura, R., Tu, M. B., and Kilburn, D. 2005a. Weak lignin-binding enzymes – a novel approach to improve activity of cellulases for hydrolysis of lignocellulosics. Appl. Biochem. Biotechnol. 121:163–170.

    Article  PubMed  Google Scholar 

  • Berlin, A., Gilkes, N., Kilburn, D., Bura, R., Markov, A., Skomarovsky, A., Okunev, O., Gusakov, A., Maximenko, V., Gregg, D., Sinitsyn, A., and Saddler, J. 2005b. Evaluation of novel fungal cellulase preparations for ability to hydrolyze softwood substrates-evidence for the role of accessory enzymes. Enzyme Microb. Technol. 37:175–184.

    Article  CAS  Google Scholar 

  • Berlin, A., Maximenko, V., Gilkes, N., and Saddler, J. 2007. Optimization of enzyme complexes for lignocellulose hydrolysis. Biotechnol. Bioeng. 97:287–296.

    Article  CAS  PubMed  Google Scholar 

  • Bertran, M. S., and Dale, B. E. 1985. Determination of cellulose accessibility by differential scanning calorimetry. J. Appl. Polym. Sci. 32:4241–4253.

    Article  Google Scholar 

  • Bhat, M. K., and Hazlewood, G. P. 2001. Enzymology and other characteristics of cellulases and xylanases. In: Enzymes in farm animal nutrition, ed M.R. Bedford and C.C. Partridge, pp. 11–60, Wallingford: CAB International.

    Google Scholar 

  • Borjesson, J., Petersson, R., and Tjerneld, F. 2007. Enhanced enzymatic conversion of softwood lignocellulose by poly(ethylene glycol) addition. Enzyme Microb. Technol. 40:754–762.

    Article  Google Scholar 

  • Borston, A. B., Bolam, D. N., Gilbert, H. J., and Davies, G. J. 2004. Carbohydrate binding modules: fine-tuning polysaccharide recognition. Biochem. J. 382:769–781.

    Article  Google Scholar 

  • Browning, B. L. 1967. Methods of wood chemistry. New York: Wiley.

    Google Scholar 

  • Cantarella, M., Cantarella, L., Gallifuoco, A., Spera, A., and Alfani, F. 2004. Effect of inhibitors released during steam-explosion treatment of poplar wood on subsequent enzymatic hydrolysis and SSF. Biotechnol. Prog. 20:200–206.

    Article  CAS  PubMed  Google Scholar 

  • Carpita, N. C. 1996. Structure and biogenesis of the cell walls of grasses. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47:445–476.

    Article  CAS  PubMed  Google Scholar 

  • Carpita, N., Sabularse, D., Montezinos, D., and Delmer, D. P. 1979. Determination of the pore size of cell walls of living plant cells. Science 205:1144–1147.

    Article  CAS  PubMed  Google Scholar 

  • Chen, F., and Dixon, R. A. 2007. Lignin modification improves fermentable sugar yields for biofuel production. Nat. Biotechnol. 25:759–761.

    Article  CAS  PubMed  Google Scholar 

  • Cosgrove, D. J. 2000. Loosening of plant cell walls by expansins. Nature 407:321–326.

    Article  CAS  PubMed  Google Scholar 

  • Decker, C. H., Visser, J., and Schreier, P. 2000. β-Glucosidases from five black Aspergillus species: study of their physico-chemical and biocatalytic properties. J. Agric. Food Chem. 48:4929–4936.

    Article  CAS  PubMed  Google Scholar 

  • Ding, S. Y., and Himmel, M. E. 2006. The maize primary cell wall microfibril: a new model derived from direct visualization. J. Agric. Food Chem. 54:597–606.

    Article  CAS  PubMed  Google Scholar 

  • Dotson, W. D., Greenier, J., and Ding, H. 2007. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same. US Patent 7271244.

    Google Scholar 

  • Dumonceaux, T., Bartholomew, K., Valeanu, L., Charles, T., and Archibald, F. 2001. Cellobiose dehydrogenase is essential for wood invasion and nonessential for kraft pulp delignification by Trametes versicolor. Enzyme Microb. Technol. 29:478–489.

    Article  CAS  Google Scholar 

  • Emmert, G. H., and Rivers, D. B. 1987. Lignocellulose pretreatment: a comparison of wet and dry ball attrition. Biotechnol. Lett. 9:365–368.

    Article  Google Scholar 

  • Eriksson, K. E., Grunewald, A., Nilsson, T., and Vallander, L. 1980. A scanning electron microscopy study of the growth and attack on wood by three white-rot fungi and their cellulase-less mutants. Holzforschung 34:207–213.

    Article  Google Scholar 

  • Eriksson, T., Borjesson, J., and Tjerneld, F. 2002. Mechanism of surfactant effect in enzymatic hydrolysis of lignocellulose. Enzyme Microb. Technol. 31:353–364.

    Article  CAS  Google Scholar 

  • Fan, Z. L., South, C., Lyford, K., Munsie, J., Walsum, P., and Lynd, L. R. 2003. Conversion of paper sludge to ethanol in a semicontinuous solids-fed reactor. Bioprocess Biosyst. Eng. 26:93–101.

    Article  CAS  PubMed  Google Scholar 

  • Fengel, D., and Wegener, G. 1989. Wood chemistry, ultrastructure and reactions. Berlin: Walter de Gruyter.

    Google Scholar 

  • Flournoy, D. S., Kirk, T. K., and Highley, T. L. 1991. Wood decay by brown-rot fungi – changes in pore structure and cell-wall volume. Holzforschung 45:383–388.

    Article  CAS  Google Scholar 

  • Gilkes, N. R., Henrissat, B., Kilburn, D. G., and Miller, R. C. Jr., Warren, R. A. J. 1991. Domains in microbial β1-4 glycanase sequence conservation, function and enzyme families. Microbiol. Rev. 55:305–315.

    Google Scholar 

  • Goodell, B., Jellison, J., Liu, J., Daniel, G., Paszczynski, A., Fekete, F., Kirshnamurthy, S., Lu, J., and Xu, G. 1997. Low molecular weight chelators and phenolic compounds isolated from wood decay fungi and their role in the fungal biodegradation of wood. J. Biotechnol. 53:133–162.

    Article  CAS  Google Scholar 

  • Gould, J. M. 1984. Alkaline peroxide delignification of agricultural residues to enhance enzymatic saccharification. Biotechnol. Bioeng. 26:46–52.

    Article  CAS  PubMed  Google Scholar 

  • Grabber, J. H., Panciera, M. T., and Hatfield, R. D. 2002. Chemical composition and enzymatic degradability of xylem and nonxylem walls isolated from alfalfa internodes. J. Agric. Food Chem. 50:2595–2600.

    Article  CAS  PubMed  Google Scholar 

  • Grabber, J. H., Hatfield, R. D., Lu, F. C., and Ralph, J. 2008. Coniferyl ferulate incorporation into lignin enhances the alkaline delignification and enzymatic degradation of cell walls. Biomacromolecules 9:2510–2516.

    Article  CAS  PubMed  Google Scholar 

  • Grabber, J. H., Mertens, D. R., Kim, H., Funk, C., Lu, F. C., and Ralph, J. 2009. Cell wall fermentation kinetics are impacted more by lignin content and ferulate cross-linking than by lignin composition. J. Sci. Food Agric. 89:122–129.

    Article  CAS  Google Scholar 

  • Gray, K. A., Zhao, L., and Emptage, M. 2006. Bioethanol. Curr. Opin. Chem. Biol. 10:141–146.

    Article  CAS  Google Scholar 

  • Gregg, D. J., Boussaid, A., and Saddler, J. N. 1998. Techno-economic evaluations of a generic wood-to-ethanol process: effect of increased cellulose yields and enzyme recycle. Bioresour. Technol. 63:7–12.

    Article  CAS  Google Scholar 

  • Grethlein, H. E. 1985. The effect of pore size distribution on the rate of enzymatic hydrolysis of cellulosic substrates. Bio/Technology 3:155–160.

    Article  CAS  Google Scholar 

  • Hammel, K. E., and Cullen, D. 2008. Role of fungal peroxidases in biological ligninolysis. Curr. Opin. Plant Biol. 11:349–355.

    Article  CAS  PubMed  Google Scholar 

  • Hammel, K. E., Kapich, A. N., Jensen, K. A., and Ryan, Z. C. 2002. Reactive oxygen species as agents of wood decay by fungi. Enzyme Microb. Technol. 30:445–453.

    Article  CAS  Google Scholar 

  • Han, Y., and Chen, H. Z. 2007. Synergism between corn stover protein and cellulase. Enzyme Microb. Technol. 41:638–645.

    Article  CAS  Google Scholar 

  • Henriksson, G., Salumets, A., Divne, C., and Pettersson, G. 1997. Studies of cellulose binding by cellobiose dehydrogenase and a comparison with cellobiohydrolase 1. Biochem. J. 324:833–838.

    CAS  PubMed  Google Scholar 

  • Henriksson, G., Johansson, G., and Pettersson, G. 2000. A critical review of cellobiose dehydrogenases. J. Biotechnol. 78:93–113.

    Article  CAS  PubMed  Google Scholar 

  • Henrissat, B., and Coutinho, P. M. 1999. Carbohydrate-active enzymes: an integrated database approach. Spec. Pub. Royal Soc. Chem. 246:3–14.

    Google Scholar 

  • Himmel, M. E., Ding, S.-H., Johnson, D. K., Adney, W. S., Nimlos, M. R., Brady, J. W., and Foust, T. D. 2007. Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807.

    Article  CAS  PubMed  Google Scholar 

  • Holtzapple, M. T., and Humphrey, A. E. 1984. The effect of organosolv pretreatment on the enzymatic hydrolysis of poplar. Biotechnol. Bioeng. 26:670–676.

    Article  CAS  PubMed  Google Scholar 

  • Holtzapple, M., Cognata, M., Shu, Y., and Hendrickson, C. 1990. Inhibition of Trichoderma reesei cellulase by sugars and solvents. Biotechnol. Bioeng. 36:275–287.

    Article  CAS  PubMed  Google Scholar 

  • Ishizawa, C. I., Davis, M. F., Schell, D. F., and Johnson, D. K. 2007. Porosity and its effect on the digestibility of dilute sulfuric acid pretreated corn stover. J. Agric. Food Chem. 55:2575–2581.

    Article  CAS  PubMed  Google Scholar 

  • Jeoh, T., Wilson, D. B., and Walker, L. P. 2008. Effect of cellulase mole fraction and cellulose recalcitrance on synergism in cellulose hydrolysis and binding. Biotechnol. Prog. 22:270–277.

    Article  Google Scholar 

  • Jorgensen, H., and Olsson, L. 2006. Production of cellulases by Penicillium brasilianum IBT 20888 – effect of substrate on hydrolytic performance. Enzyme Microb. Technol. 38:381–390.

    Article  CAS  Google Scholar 

  • Jorgensen, H., Kristensen, J. B., and Felby, C. 2007. Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuels Bioprod. Bioref. 1:119–134.

    Article  Google Scholar 

  • Kabel, M. A., Bos, G., Zeevalking, J., Voragen, A. G., and Schols, H. A. 2007. Effect of pretreatment severity on xylan solubility and enzymatic breakdown of the remaining cellulose from wheat straw. Bioresour. Technol. 98:2034–2042.

    Article  CAS  PubMed  Google Scholar 

  • Kirk, T. K., and Cullen D. 1998. Enzymology and molecular genetics of wood degradation by white-rot fungi. In: Environmentally friendly technologies for the pulp and paper industry, ed R.A. Young, M. Akhtar, pp. 273–308, New York: Wiley.

    Google Scholar 

  • Kristensen, J. B., Thygesen, L. G., Felby, C., Jorgensen, H., and Elder, T. 2008. Cell-wall structural changes in wheat straw pretreated for bioethanol production. Biotechnol. Biofuels 1:1–9.

    Article  Google Scholar 

  • Kuhad, R. C., Singh, A., and Eriksson, K. E. 1997. Microorganisms and enzymes involved in the degradation of plant fiber cell walls. Adv. Biochem. Eng. Biotechnol. 57:45–125.

    CAS  PubMed  Google Scholar 

  • Lee, J. M., and Wolf, J. H. 1988. Continuous attrition bioreactor with enzyme recycling for the bioconversion of cellulose. Appl. Biochem. Biotechnol. 18:203–215.

    Article  CAS  Google Scholar 

  • Lee, D., Yu, A. H. C., and Saddler, J. N. 1995. Evaluation of cellulase recycling strategies for the hydrolysis of lignocellulosics. Biotechnol. Bioeng. 45:328–336.

    Article  CAS  PubMed  Google Scholar 

  • Lee, S. H., Doherty, T. V., Linhardt, R. J., and Dordick, J. S. 2009. Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnol. Bioeng. 102:1368–1376.

    Article  CAS  PubMed  Google Scholar 

  • Li, J., Henriksson, G., and Gellerstedt, G. 2007. Lignin depolymerization-repolymerization and its critical role for delignification of aspen wood by steam explosion. Bioresour. Technol. 98:3061–3068.

    Article  CAS  PubMed  Google Scholar 

  • Limon, M. C., Margolles-Clarck, E., Benitez, T., and Pentilla, M. 2001. Addition of substrate-binding domains increases substrate-binding capacity and specific activity of a chitinase from Trichoderma harzianum. FEMS Microbiol. Lett. 198:57–63.

    Article  CAS  PubMed  Google Scholar 

  • Lloyd, T. A., and Wyman, C. E. 2005. Combined sugar yields for dilute sulfuric acid pretreatment of corn stover followed by enzymatic hydrolysis of the remaining solids. Bioresour. Technol. 96:1967–1977.

    Article  CAS  PubMed  Google Scholar 

  • Lu, Y. P., Yang, B., Gregg, D., Saddler, J. N., and Mansfield, S. D. 2002. Cellulase adsorption and an evaluation of enzyme recycle during hydrolysis of steam-exploded softwood residues. Appl. Biochem. Biotechnol. 98:641–654.

    Article  PubMed  Google Scholar 

  • Machuca, A., and Ferraz, A. 2001. Hydrolytic and oxidative enzymes produced by white and brown-rot fungi during Eucalyptus grandis decay in solid state medium. Enzyme Microb. Technol. 29:386–391.

    Article  CAS  Google Scholar 

  • Martins, L. F., Kolling, D., Camassola, M., Dillon, A. J. P., and Ramos, L. P. 2008. Comparison between Penicillium echinulatum and Trichoderma reesei cellulases in relation to their activity against cellulosic substrates. Bioresour. Technol. 99:1417–1424.

    Article  CAS  PubMed  Google Scholar 

  • Matthews, J. F., Skopec, C. E., Mason, P. E., Zuccato, P., Torget, R. W., and Sugiyama, J. 2006. Computer simulation studies of microcrystalline cellulose Iβ. Carbohydr. Res. 341:138–152.

    Article  CAS  PubMed  Google Scholar 

  • Mohagheghi, A., Tucker, M., Grohmann, K., and Wyman, C. 1992. High solids simultaneous saccharification and fermentation of pretreated wheat straw to ethanol. Appl. Biochem. Biotechnol. 33:67–81.

    Article  CAS  Google Scholar 

  • Mooney, C. A., Mansfield, S. D., Touhy, M. G., and Saddler, J. N. 1998. The effect of initial pore volume and lignin content on the enzymatic hydrolysis of softwood. Bioresour. Technol. 64:113–119.

    Article  CAS  Google Scholar 

  • Mooney, C. A., Mansfield, S. D., Beatson, R. P., and Saddler, J. N. 1999. The effect of fiber characteristics on hydrolysis and cellulase accessibility to softwood substrates. Enzyme Microb. Technol. 25:644–650.

    Article  CAS  Google Scholar 

  • Mosier, N. S., Hall, P., Ladisch, C. M., and Ladisch, M. R. 1999. Reaction kinetics, molecular action, and mechanisms of cellulolytic proteins. Adv. Biochem. Eng/Biotechnol. 65:23–40.

    Article  CAS  Google Scholar 

  • Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., and Holtzapple, M. 2005. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 96:673–686.

    Article  CAS  PubMed  Google Scholar 

  • Nguyen, D., Zhang, X., Jiang, Z.-H., Audet, A., Paice, M. G., Renaud, S., and Tsang, A. 2008. Bleaching of kraft pulp by a commercial lipase: accessory enzymes degrade hexenuronic acids. Enzyme Microb. Technol. 43:130–136.

    Article  CAS  Google Scholar 

  • Oghren, K., Bura, R., Saddler, J., and Zacchi, G. 2007. Effect of hemicellulose and lignin removal on enzymatic hydrolysis of steam pretreated corn stover. Bioresour. Technol. 98:2503–2510.

    Article  Google Scholar 

  • Oliva, J. M., Negro, M. J., Sáez, F., Ballesteros, I., Manzanares, P., González, A., and Ballesteros, M. 2006. Effects of acetic acid, furfural and catechol combinations on ethanol fermentation of Kluyveromyces marxianus. Process Biochem. 41:1223–1228.

    Article  CAS  Google Scholar 

  • Palonen, H., Tjerneld, F., Zacchi, G., and Tenkanen, M. 2004. Adsorption of Trichoderma reesei CBHI e EGII and their catalytic domains on steam pretreated softwood and isolated lignin. J. Biotechnol. 107:65–72.

    Article  CAS  PubMed  Google Scholar 

  • Panagiotou, G., and Olsson, L. 2007. Effect of compounds released during pretreatment of wheat straw on microbial growth and enzymatic hydrolysis rates. Biotechnol. Bioeng. 96:250–258.

    Article  CAS  PubMed  Google Scholar 

  • Pandey, A., Soccol, C. R., Nigam, P., and Soccol, V. T. 2000. Biotechnological potential of agro-industrial residues: sugarcane bagasse. Bioresour. Technol. 74:69–80.

    Article  CAS  Google Scholar 

  • Park, J. W., Park, K., Song, H., and Shin, H. 2002. Saccharification and adsorption characteristics of modified cellulases with hydrophilic/hydrophobic copolymers J. Biotechnol. 93:203–208.

    Article  CAS  PubMed  Google Scholar 

  • Ramos, L. P. 2003. The chemistry involved in the steam treatment of lignocellulosic materials. Quim. Nova 26:863–871.

    CAS  Google Scholar 

  • Ramos, L. P., Breuil, C., and Saddler, J. N. 1992. Comparison of steam pretreatment of eucalyptus, aspen and spruce wood chips and their enzymatic hydrolysis. Appl. Biochem. Biotechnol. 34/35:37–47.

    Article  Google Scholar 

  • Ramos, L. P., Breuil, C., and Saddler, J. N. 1993. The use of enzyme recycling and the influence of sugar accumulation on the cellulose hydrolysis by Trichoderma cellulases. Enzyme Microb. Technol. 15:19–25.

    Article  CAS  Google Scholar 

  • Rudolf, A., Alkasrawi, M., Zacchi, G., and Liden, G. 2005. A comparison between batch and fed-batch simultaneous saccharification and fermentation of steam pretreated spruce. Enzyme Microb. Technol. 37:195–204.

    Article  CAS  Google Scholar 

  • Saloheimo, M., Paloheimo, M., Hakola, S., Pere, J., Swanson, B., and Nyyssönen, E. 2002. Swollenin, a Trichoderma reesei protein with sequence similarity to the plant expansins, exhibits disruption activity on cellulosic materials. Eur. J. Biochem. 269:4202–4211.

    Article  CAS  PubMed  Google Scholar 

  • Sánchez, O. J., and Cardona, C. A. 2008. Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour. Technol. 99:5270–5295.

    Article  PubMed  Google Scholar 

  • Sanjuán, R., Anzaldo, J., Vargas, J., Turbado, J., and Patt, R. 2001. Morphological and chemical composition of pith and fibers from Mexican sugarcane bagasse. Holz. Roh. Werkst. 59:447–450.

    Article  Google Scholar 

  • Schell, D. J., Torget, R., Power, A., Walter, P. J., Grohmann, K., and Hinman, N. D. 1991. A technical and economic analysis of acid-catalyzed steam explosion and dilute sulfuric acid pretreatments using wheat straw or aspen wood chips. Appl. Biochem. Biotechnol. 28/29:87–97.

    Article  Google Scholar 

  • Schell, D. J., Riley, C. J., Dowe, N., Farmer, J., Ibsen, K. N., and Ruth, M. F. 2004. A bioethanol process development unit: initial operating experiences and results with a corn fiber feedstock. Bioresour. Technol. 91:179–188.

    Article  CAS  PubMed  Google Scholar 

  • Silverstein, R. A., Chen, Y., Sharma-Shivappa, R. R., Boyette, M. D., and Osborne, J. 2007. A comparison of chemical pretreatment methods for improving saccharification of cotton stalks. Bioresour. Technol. 98:3000–3011.

    Article  CAS  PubMed  Google Scholar 

  • Singh, A., Kumar, P. K. R., and Schugerl, K. 1991. Adsorption and reuse of cellulases during saccharification of cellulosic materials. J. Biotechnol. 19:205–212.

    Article  Google Scholar 

  • Sun, Y., and Cheng, J. 2002. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour. Technol. 83:1–11.

    Article  CAS  PubMed  Google Scholar 

  • Tolan, J. S., and Foody, B. 1999. Cellulases from submerged fermentation. Adv. Biochem. Eng. Biotechnol. 65:41–67.

    CAS  Google Scholar 

  • Varga, E., Klinke, H. B., Reczey, K., and Thomsen, A. B. 2004. High solid simultaneous saccharification and fermentation of wet oxidized corn stover to ethanol. Biotechnol. Bioeng. 88:567–574.

    Article  CAS  PubMed  Google Scholar 

  • Walker, L. P., and Wilson, D. B. 1991. Enzymatic hydrolysis of cellulose: an overview. Bioresour. Technol. 36:3–14.

    Article  CAS  Google Scholar 

  • Wang, W., and Gao, P. J. 2003. Function and mechanism of a low-molecular-weight peptide produced by Gloeophyllum trabeum in biodegradation of cellulose. J. Biotechnol. 101:119–130.

    Article  PubMed  Google Scholar 

  • Wang, L. S., Liu, J., Zhang, Y. Z., Zhao, Y., and Gao, P. J. 2003. Comparison of domains function between cellobiohydrolase I and endoglucanase I from Trichoderma pseudokoningii S-38 by limited proteolysis. J. Mol. Catal. B 24/25:27–38.

    Article  Google Scholar 

  • Willfor, S., Sundberg, A., Hemming, J., and Holmbom, B. 2005a. Polysaccharides in some industrially important softwood species. Wood Sci. Technol. 39:245–258.

    Article  Google Scholar 

  • Willfor, S., Sundberg, A., Pranovich, A., and Holmbom, B. 2005b. Polysaccharides in some industrially important hardwood species. Wood Sci. Technol. 39:601–617.

    Article  Google Scholar 

  • Wingren, A., Galbe, M., and Zacchi, G. 2003. Techno-economic evaluation of producing ethanol from softwood: comparison of SSF and SHF and identification of bottlenecks. Biotechnol. Prog. 19:1109–1117.

    Article  CAS  PubMed  Google Scholar 

  • Wyman, C. E., Dale, B. E., Elander, R. T., Holtzapple, M., Ladisch, M. R., and Lee, Y. Y. 2005. Coordinated development of leading biomass pretreatment technologies. Bioresour. Technol. 96:1959–1966.

    Article  CAS  PubMed  Google Scholar 

  • Yang, B., and Wyman, C. E. 2004. Effect of xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose. Biotechnol. Bioeng. 86:88–95.

    Article  CAS  PubMed  Google Scholar 

  • Yang, B., and Wyman, C. 2006. BSA treatment to enhance enzymatic hydrolysis of cellulose in lignin containing substrates. Biotechnol. Bioeng. 94:611–617.

    Article  CAS  PubMed  Google Scholar 

  • Yang, B., Boussaid, A., Mansfield, S. D., Gregg, D. J., and Saddler, J. N. 2002. Fast and efficient alkaline peroxide treatment to enhance the enzymatic digestibility of steam-exploded softwood substrates. Biotechnol. Bioeng. 77:678–684.

    Article  CAS  PubMed  Google Scholar 

  • Yu, X. B., Hyun, S. Y., and Koo, Y. M. 1999. Cellulase production in fed-batch culture by Trichoderma reesei Rut C30. J. Microbiol. Biotechnol. 9:44–49.

    CAS  Google Scholar 

  • Zhang, Y. H. P., and Lynd, L. R. 2004. Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed systems. Biotechnol. Bioeng. 88:797–824.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y. H. P., Himmel, M. E., and Mielenz, J. R. 2006. Outlook for cellulase improvement: screening and selection strategies. Biotechnol. Adv. 24:452–481.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriane M. F. Milagres .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Milagres, A.M.F., Carvalho, W., Ferraz, A. (2011). Topochemistry, Porosity and Chemical Composition Affecting Enzymatic Hydrolysis of Lignocellulosic Materials. In: Buckeridge, M., Goldman, G. (eds) Routes to Cellulosic Ethanol. Springer, New York, NY. https://doi.org/10.1007/978-0-387-92740-4_5

Download citation

Publish with us

Policies and ethics