Skip to main content

RNA-Binding Proteins Required for Chloroplast RNA Processing

  • Chapter
  • First Online:
Plant Mitochondria

Part of the book series: Advances in Plant Biology ((AIPB,volume 1))

Abstract

Chloroplasts and mitochondria both evolved from endosymbionts and therefore share many physiologic, biochemical, and genetic features. This chapter reviews a selection of chloroplast RNA-binding proteins, specifically those from land plants that meet the following criteria: (1) the encoding gene is known; (2) an association with RNA has been demonstrated; and (3) the protein does not have any (known) catalytic activity. This set of RNA-binding proteins predominantly consists of members from five protein families: the pentatricopeptide repeat (PPR) protein family; the chloroplast ribonucleoprotein (cpRNP) family; the chloroplast ribosome maturation (CRM) and RNA splicing protein family; the Whirly (Why) protein family; and the plant organelle RNA recognition (PORR) protein family. The functions of representative members of these families are summarized, and their protein–RNA interactions are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Asakura, Y., Barkan, A. 2006. Arabidopsis orthologs of maize chloroplast splicing factors promote splicing of orthologous and species-specific group II introns. Plant Physiol 142:1656–1663.

    Article  PubMed  CAS  Google Scholar 

  • Asakura, Y., Barkan, A. 2007. A CRM domain protein functions dually in group I and group II intron splicing in land plant chloroplasts. Plant Cell 19:3864–3875.

    Article  PubMed  CAS  Google Scholar 

  • Asakura, Y., Bayraktar, O. A., Barkan, A. 2008. Two CRM protein subfamilies cooperate in the splicing of group IIB introns in chloroplasts. RNA 14:2319–2332.

    Article  PubMed  CAS  Google Scholar 

  • Aubourg, S., Boudet, N., Kreis, M., Lecharny, A. 2000. In Arabidopsis thaliana, 1% of the genome codes for a novel protein family unique to plants. Plant Mol Biol. 42:603–613.

    Article  PubMed  CAS  Google Scholar 

  • Barkan, A. 1988. Proteins encoded by a complex chloroplast transcription unit are each translated from both monocistronic and polycistronic mRNAs. EMBO J 7:2637–2644.

    PubMed  CAS  Google Scholar 

  • Barkan, A., Goldschmidt-Clermont, M. 2000. Participation of nuclear genes in chloroplast gene expression. Biochimie 82:559–572.

    Article  PubMed  CAS  Google Scholar 

  • Barkan, A., Klipcan, L., Ostersetzer, O., Kawamura, T., Asakura, Y., Watkins, K. P. 2007. The CRM domain: an RNA binding module derived from an ancient ribosome-associated protein. RNA 13:55–64.

    Article  PubMed  CAS  Google Scholar 

  • Barneche, F., Winter, V., Crevecoeur, M., Rochaix, J. D. 2006. ATAB2 is a novel factor in the signalling pathway of light-controlled synthesis of photosystem proteins. EMBO J 25:5907–5918.

    Article  PubMed  CAS  Google Scholar 

  • Beick, S., Schmitz-Linneweber, C., Williams-Carrier, R., Jensen, B., Barkan, A. 2008. The pentatricopeptide repeat protein PPR5 stabilizes a specific tRNA precursor in maize chloroplasts. Mol Cell Biol. 28(17):5337–47.

    Article  PubMed  CAS  Google Scholar 

  • Bisanz, C., Begot, L., Carol, P., Perez, P., Bligny, M., Pesey, H., Gallois, J. L., Lerbs-Mache, S., Mache, R. 2003. The Arabidopsis nuclear DAL gene encodes a chloroplast protein which is required for the maturation of the plastid ribosomal RNAs and is essential for chloroplast differentiation. Plant Mol Biol. 51:651–663.

    Article  PubMed  CAS  Google Scholar 

  • Blatch, G., Lassle, M. 1999. The tetratricopeptide repeat: a structural motif mediating protein-protein interactions. Bioessays 21:932–939.

    Article  PubMed  CAS  Google Scholar 

  • Boyle, B., Brisson, N. 2001. Repression of the defense gene PR-10a by the single-stranded DNA binding protein SEBF. Plant Cell 13:2525–2537.

    PubMed  CAS  Google Scholar 

  • Chateigner-Boutin, A. L., Ramos-Vega, M., Guevara-Garcia, A., Andres, C., de la Luz Gutierrez-Nava, M., Cantero, A., Delannoy, E., Jimenez, L. F., Lurin, C., Small, I., Leon, P. 2008. CLB19, a pentatricopeptide repeat protein required for editing of rpoA and clpP chloroplast transcripts. Plant J. 56:590–602.

    Article  PubMed  CAS  Google Scholar 

  • Churin, Y., Hess, W., Börner, T. 1999. Cloning and characterization of three cDNAs encoding chloroplast RNA binding proteins from barley: differential regulation of expression by light and plastid development. Curr Genet. 36:173–181.

    Article  PubMed  CAS  Google Scholar 

  • Coffin, J. W., Dhillon, R., Ritzel, R. G., Nargang, F. E. 1997. The Neurospora crassa cya-5 nuclear gene encodes a protein with a region of homology to the Sacharomyces cerevisiae PET309 protein and is required in a post-transcriptional step for the expression of the mitochondrially encoded COXI protein. Curr Genet. 32:273–280.

    Article  PubMed  CAS  Google Scholar 

  • Cushing, D. A., Forsthoefel, N. R., Gestaut, D. R., Vernon, D. M. 2005. Arabidopsis emb175 and other ppr knockout mutants reveal essential roles for pentatricopeptide repeat (PPR) proteins in plant embryogenesis. Planta 221:424–436.

    Article  PubMed  CAS  Google Scholar 

  • D’Andrea, L. D., Regan, L. 2003. TPR proteins: the versatile helix. Trends Biochem Sci. 28:655–662.

    Article  PubMed  CAS  Google Scholar 

  • Das, A. K., Cohen, P. T. W., Barford D. 1998. The structure of the tetratricopeptide repeats of protein phosphatase 5: implications for TPR-mediated protein-protein interactions. EMBO J 17:1192–1199.

    Article  PubMed  CAS  Google Scholar 

  • Dauvillee, D., Stampacchia, O., Girard-Bascou, J., Rochaix, J.-D. 2003. Tab2 is a novel conserved RNA binding protein required for translation of the chloroplast psaB mRNA. EMBO J 22:6378–6388.

    Article  PubMed  CAS  Google Scholar 

  • de Longevialle, A. F., Hendrickson, L., Taylor, N. L., Delannoy, E., Lurin, C., Badger, M., Millar, A. H., Small, I. 2008. The pentatricopeptide repeat gene OTP51 with two LAGLIDADG motifs is required for the cis-splicing of plastid ycf3 intron 2 in Arabidopsis thaliana. Plant J. 56:157–168.

    Article  PubMed  CAS  Google Scholar 

  • Delannoy, E., Stanley, W. A., Bond, C. S., Small, I. D. 2007. Pentatricopeptide repeat (PPR) proteins as sequence-specificity factors in post-transcriptional processes in organelles. Biochem Soc Trans 35:1643–1647.

    Article  PubMed  CAS  Google Scholar 

  • Desveaux, D., Despres, C., Joyeux, A., Subramaniam, R., Brisson, N. 2000. PBF-2 is a novel single-stranded DNA binding factor implicated in PR-10a gene activation in potato. Plant Cell 12:1477–1489.

    PubMed  CAS  Google Scholar 

  • Desveaux, D., Marechal, A., Brisson, N. 2005. Whirly transcription factors: defense gene regulation and beyond. Trends Plant Sci 10:95–102.

    Article  PubMed  CAS  Google Scholar 

  • Desveaux, D., Subramaniam, R., Despres, C., Mess, J. N., Levesque, C., Fobert, P. R., Dangl, J. L., Brisson, N. 2004. A “Whirly” transcription factor is required for salicylic acid-dependent disease resistance in Arabidopsis. Dev Cell 6:229–240.

    Article  PubMed  CAS  Google Scholar 

  • Ding, Y. H., Liu, N. Y., Tang, Z. S., Liu, J., Yang, W. C. 2006. Arabidopsis GLUTAMINE-RICH PROTEIN23 is essential for early embryogenesis and encodes a novel nuclear PPR motif protein that interacts with RNA polymerase II subunit III. Plant Cell 18:815–830.

    Article  PubMed  CAS  Google Scholar 

  • Fisk, D. G., Walker, M. B., Barkan A. 1999. Molecular cloning of the maize gene crp1 reveals similarity between regulators of mitochondrial and chloroplast gene expression. EMBO J 18:2621–2630.

    Article  PubMed  CAS  Google Scholar 

  • Fu, Z. Q., Guo, M., Jeong, B. R., Tian, F., Elthon, T. E., Cerny, R. L., Staiger, D., Alfano, J. R. 2007. A type III effector ADP-ribosylates RNA-binding proteins and quells plant immunity. Nature 447:284–288.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Lamothe, R., Boyle, P., Dulude, A., Roy, V., Lezin-Doumbou, C., Kaur, G. S., Bouarab, K., Despres, C., Brisson, N. 2008. The transcriptional activator Pti4 is required for the recruitment of a repressosome nucleated by repressor SEBF at the potato PR-10a gene. Plant Cell 20:3136–3147.

    Article  PubMed  CAS  Google Scholar 

  • Hammani, K., Okuda, K., Tanz, S. K., Chateigner-Boutin, A. L., Shikanai, T., Small I. 2009. A study of new Arabidopsis chloroplast RNA editing mutants reveals general features of editing factors and their target sites. Plant Cell 21:3686–3699.

    Article  PubMed  CAS  Google Scholar 

  • Hattori, M., Miyake, H., Sugita M. 2007. A Pentatricopeptide repeat protein is required for RNA processing of clpP Pre-mRNA in moss chloroplasts. J Biol Chem 282:10773–10782.

    Article  PubMed  CAS  Google Scholar 

  • Hattori, M., Sugita, M. 2009. A moss pentatricopeptide repeat protein binds to the 3′ end of plastid clpP pre-mRNA and assists with mRNA maturation. FEBS J 276:5860–5869.

    Article  PubMed  CAS  Google Scholar 

  • Hirose, T., Sugiura, M. 2001. Involvement of a site-specific trans-acting factor and a common RNA-binding protein in the editing of chloroplast mRNAs: development of a chloroplast in vitro RNA editing system. EMBO J 20:1144–1152.

    Article  PubMed  CAS  Google Scholar 

  • Jenkins, B. D., Barkan, A. 2001. Recruitment of a peptidyl-tRNA hydrolase as a facilitator of group II intron splicing in chloroplasts. EMBO J 20:872–879.

    Article  PubMed  CAS  Google Scholar 

  • Jenkins, B. D., Kulhanek, D. J., Barkan, A. 1997. Nuclear mutations that block group II RNA splicing in maize chloroplasts reveal several intron classes with distinct requirements for splicing factors. Plant Cell 9:283–296.

    PubMed  CAS  Google Scholar 

  • Kanekatsu, M., Ezumi, A., Nakamura, T., Ohtsuki, K. 1995. Chloroplast ribonucleoproteins (RNPs) as phosphate acceptors for casein kinase II: purification by ssDNA-cellulose column chromatography. Plant Cell Physiol 36:1649–1656.

    PubMed  CAS  Google Scholar 

  • Kanekatsu, M., Munakata, H., Furuzono, K., Ohtsuki, K. 1993. Biochemical characterization of a 34 kDa ribonucleoprotein (p34) purified from the spinach chloroplast fraction as an effective phosphate acceptor for casein kinase II. FEBS Lett 335:176–180.

    Article  PubMed  CAS  Google Scholar 

  • Keren, I., Klipcan, L., Bezawork-Geleta, A., Kolton, M., Shaya, F., Ostersetzer-Biran, O. 2008. Characterization of the molecular basis of group II intron RNA recognition by CRS1-CRM domains. J Biol Chem 283:23333–23342.

    Article  PubMed  CAS  Google Scholar 

  • Kleffmann, T., von Zychlinski, A., Russenberger, D., Hirsch-Hoffmann, M., Gehrig, P., Gruissem, W., Baginsky, S. 2007. Proteome dynamics during plastid differentiation in rice. Plant Physiol 143:912–923.

    Article  PubMed  CAS  Google Scholar 

  • Kleine, T., Voigt, C., Leister, D. 2009. Plastid signalling to the nucleus: messengers still lost in the mists? Trends Genet 25:185–192.

    Article  PubMed  CAS  Google Scholar 

  • Kohler, A., Hurt, E. 2007. Exporting RNA from the nucleus to the cytoplasm. Nat Rev Mol Cell Biol 8:761–773.

    Article  PubMed  CAS  Google Scholar 

  • Konishi, M., Sugiyama, M. 2006. A novel plant-specific family gene, ROOT PRIMORDIUM DEFECTIVE 1, is required for the maintenance of active cell proliferation. Plant Physiol 140:591–602.

    Article  PubMed  CAS  Google Scholar 

  • Konishi, M., Sugiyama, M. 2003. Genetic analysis of adventitious root formation with a novel series of temperature-sensitive mutants of Arabidopsis thaliana. Development 130:5637–5647.

    Article  PubMed  CAS  Google Scholar 

  • Kotera, E., Tasaka, M., Shikanai, T. 2005. A pentatricopeptide repeat protein is essential for RNA editing in chloroplasts. Nature 433:326–330.

    Article  PubMed  CAS  Google Scholar 

  • Koussevitzky, S., Nott, A., Mockler, T. C., Hong, F., Sachetto-Martins, G., Surpin, M., Lim, J., Mittler, R., Chory, J. 2007. Signals from chloroplasts converge to regulate nuclear gene expression. Science 316:715–719.

    Article  PubMed  CAS  Google Scholar 

  • Kroeger, T. S., Watkins, K. P., Friso, G., van Wijk, K. J., Barkan, A. 2009. A plant-specific RNA-binding domain revealed through analysis of chloroplast group II intron splicing. Proc Natl Acad Sci USA 106:4537–4542.

    Article  PubMed  CAS  Google Scholar 

  • Kunkel, T. A., Erie, D. A. 2005. DNA mismatch repair. Annu Rev Biochem 74:681–710.

    Article  PubMed  CAS  Google Scholar 

  • Lezhneva, L., Meurer, J. 2004. The nuclear factor HCF145 affects chloroplast psaA-psaB-rps14 transcript abundance in Arabidopsis thaliana. Plant J 38:740–753.

    Article  PubMed  CAS  Google Scholar 

  • Li, Y. Q., Sugiura, M. 1991. Nucleic acid-binding specificities of tobacco chloroplast ribonucleoproteins. Nucleic Acids Res 19:2893–2896.

    Article  PubMed  CAS  Google Scholar 

  • Li, Y. Q., Sugiura, M. 1990. Three distinct ribonucleoproteins from tobacco chloroplasts: each contains a unique amino terminal acidic domain and two ribonucleoprotein consensus motifs. EMBO J 9:3059–3066.

    PubMed  CAS  Google Scholar 

  • Liere, K., Börner, T. 2007. Transcription and transcriptional regulation in plastids. in R. Bock, ed. pp. 121–174. Cell and Molecular Biology of Plastids. Springer: New York.

    Google Scholar 

  • Lisitsky, I., Liveanu, V., Schuster, G. 1995. RNA-binding characteristics of a ribonucleoprotein from spinach chloroplast. Plant Physiol 107:933–941.

    PubMed  CAS  Google Scholar 

  • Lisitsky, I., Schuster, G. 1995. Phosphorylation of a chloroplast RNA-binding protein changes its affinity to RNA. Nucleic Acids Res. 23:2506–2511.

    Article  PubMed  CAS  Google Scholar 

  • Lurin, C., Andres, C., Aubourg, S., Bellaoui, M., Bitton, F., Bruyere, C., Caboche, M., Debast, C., Gualberto, J., Hoffmann, B., Lecharny, A., Le Ret, M., Martin-Magniette, M. L., Mireau, H., Peeters, N., Renou, J. P., Szurek, B., Taconnat, L., Small, I. 2004. Genome-wide analysis of Arabidopsis pentatricopeptide repeat proteins reveals their essential role in organelle biogenesis. Plant Cell 16:2089–2103.

    Article  PubMed  CAS  Google Scholar 

  • Maier, U.-G., Bozarth, A., Funk, H., Zauner, S., Rensing, S., Schmitz-Linneweber, C., Börner, T., Tillich, M. 2008. Complex chloroplast RNA metabolism: just debugging the genetic programme? BMC Biol 6:36.

    Article  PubMed  CAS  Google Scholar 

  • Manthey, G. M., McEwen, J. E. 1995. The product of the nuclear gene PET309 is required for translation of mature mRNA and stability or production of intron-containing RNAs derived from the mitochondrial COX1 locus of Saccharomyces cerevisiae. EMBO J 14:4031–4043.

    PubMed  CAS  Google Scholar 

  • Marechal, A., Parent, J. S., Sabar, M., Veronneau-Lafortune, F., Abou-Rached, C., and Brisson, N. 2008. Overexpression of mtDNA-associated AtWhy2 compromises mitochondrial function. BMC Plant Biol 8:42.

    Article  PubMed  CAS  Google Scholar 

  • Marechal, A., Parent, J. S., Veronneau-Lafortune, F., Joyeux, A., Lang, B. F., Brisson, N. 2009. Whirly proteins maintain plastid genome stability in Arabidopsis. Proc Natl Acad Sci USA 106:14693–14698.

    Article  PubMed  CAS  Google Scholar 

  • Maruyama, K., Sato, N., Ohta, N. 1999. Conservation of structure and cold-regulation of RNA-binding proteins in cyanobacteria: probable convergent evolution with eukaryotic glycine-rich RNA-binding proteins. Nucleic Acids Res 27:2029–2036.

    Article  PubMed  CAS  Google Scholar 

  • McDowall, K. J., Kaberdin, V. R., Wu, S. W., Cohen, S. N., Lin-Chao, S. 1995. Site-specific RNase E cleavage of oligonucleotides and inhibition by stem-loops. Nature 374:287–290.

    Article  PubMed  CAS  Google Scholar 

  • Meierhoff, K., Felder, S., Nakamura, T., Bechtold, N., Schuster, G. 2003. HCF152, an Arabidopsis RNA binding pentatricopeptide repeat protein involved in the processing of chloroplast psbB-psbT-psbH-petB-petD RNAs. Plant Cell 15:1480–1495.

    Article  PubMed  CAS  Google Scholar 

  • Meurer, J., Grevelding, C., Westhoff, P., Reiss, B. 1998. The PAC protein affects the maturation of specific chloroplast mRNAs in Arabidopsis thaliana. Mol Gen Genet 258:342–351.

    Article  PubMed  CAS  Google Scholar 

  • Moreira, D., Philippe, H. 1999. Smr: a bacterial and eukaryotic homologue of the C-terminal region of the MutS2 family. Trends Biochem Sci 24:298–300.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura, T., Meierhoff, K., Westhoff, P., Schuster, G. 2003. RNA-binding properties of HCF152, an Arabidopsis PPR protein involved in the processing of chloroplast RNA. Eur J Biochem 270:4070–4081.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura, T., Ohta, M., Sugiura, M., Sugita, M. 1999. Chloroplast ribonucleoproteins are associated with both mRNAs and intron-containing precursor tRNAs. FEBS Lett 460:437–441.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura, T., Ohta, M., Sugiura, M., Sugita, M. 2001. Chloroplast ribonucleoproteins function as a stabilizing factor of ribosome-free mRNAs in the stroma. J Biol Chem 276:147–152.

    Article  PubMed  CAS  Google Scholar 

  • Ă“Toole, N., Hattori, M., Andres, C., Iida, K., Lurin, C., Schmitz-Linneweber, C., Sugita, M., Small, I. 2008. On the expansion of the pentatricopeptide repeat gene family in plants. Mol Biol Evol 25:1120–1128.

    Article  CAS  Google Scholar 

  • Ohta, M., Sugita, M., Sugiura, M. 1995. Three types of nuclear genes encoding chloroplast RNA-binding proteins (cp29, cp31, and cp33) are present in Arabidopsis thaliana: presence of cp31 in chloroplasts and its homologue in nuclei/cytoplasms. Plant Mol Biol 27:529–539.

    Article  PubMed  CAS  Google Scholar 

  • Okuda, K., Chateigner-Boutin, A. L., Nakamura, T., Delannoy, E., Sugita, M., Myouga, F., Motohashi, R., Shinozaki, K., Small, I., Shikanai, T. 2009. Pentatricopeptide repeat proteins with the DYW motif have distinct molecular functions in RNA editing and RNA cleavage in Arabidopsis chloroplasts. Plant Cell 21:146–156.

    Article  PubMed  CAS  Google Scholar 

  • Okuda, K., Myouga, F., Motohashi, R., Shinozaki, K., Shikanai, T. 2007. Conserved domain structure of pentatricopeptide repeat proteins involved in chloroplast RNA editing. Proc Natl Acad Sci USA 104:8178–8183.

    Article  PubMed  CAS  Google Scholar 

  • Okuda, K., Nakamura, T., Sugita, M., Shimizu, T., Shikanai, T. 2006. A pentatricopeptide repeat protein is a site recognition factor in chloroplast RNA editing. J Biol Chem 281:37661–37667.

    Article  PubMed  CAS  Google Scholar 

  • Ostersetzer, O., Cooke, A. M., Watkins, K. P., Barkan, A. 2005. CRS1, a chloroplast group II intron splicing factor, promotes intron folding through specific interactions with two intron domains. Plant Cell 17:241–255.

    Article  PubMed  CAS  Google Scholar 

  • Ostheimer, G. J., Hadjivasiliou, H., Kloer, D. P., Barkan, A., Matthews, B. W. 2005. Structural analysis of the group II intron splicing factor CRS2 yields insights into its protein and RNA interaction surfaces. J Mol Biol 345:51–68.

    Article  PubMed  CAS  Google Scholar 

  • Ostheimer, G. J., Rojas, M., Hadjivassiliou, H., Barkan, A. 2006. Formation of the CRS2-CAF2 group II intron splicing complex is mediated by a 22-amino acid motif in the COOH-terminal region of CAF2. J Biol Chem 281:4732–4738.

    Article  PubMed  CAS  Google Scholar 

  • Ostheimer, G. J., Williams-Carrier, R., Belcher, S., Osborne, E., Gierke, J., Barkan, A. 2003. Group II intron splicing factors derived by diversification of an ancient RNA-binding domain. EMBO J 22:3919–3929.

    Article  PubMed  CAS  Google Scholar 

  • Pfalz, J., Bayraktar, O. A., Prikryl, J., Barkan, A. 2009. Site-specific binding of a PPR protein defines and stabilizes 5′ and 3′ mRNA termini in chloroplasts. EMBO J 28:2042–2052.

    Article  PubMed  CAS  Google Scholar 

  • Pfalz, J., Liere, K., Kandlbinder, A., Dietz, K. J., Oelmuller, R. 2006. pTAC2, -6, and -12 are components of the transcriptionally active plastid chromosome that are required for plastid gene expression. Plant Cell 18:176–197.

    Article  PubMed  CAS  Google Scholar 

  • Prasad, A. M., Sivanandan, C., Resminath, R., Thakare, D. R., Bhat, S. R., Srinivasan, R. 2005. Cloning and characterization of a pentatricopeptide protein encoding gene (LOJ) that is specifically expressed in lateral organ junctions in Arabidopsis thaliana. Gene 353:67–79.

    Article  PubMed  CAS  Google Scholar 

  • Prikryl, J., Watkins, K. P., Friso, G., Wijk, K. J., Barkan, A. 2008. A member of the Whirly family is a multifunctional RNA- and DNA-binding protein that is essential for chloroplast biogenesis. Nucleic Acids Res 36:5152–5165.

    Article  PubMed  CAS  Google Scholar 

  • Raab, S., Toth, Z., de Groot, C., Stamminger, T., Hoth, S. 2006. ABA-responsive RNA-binding proteins are involved in chloroplast and stromule function in Arabidopsis seedlings. Planta 224:900–914.

    Article  PubMed  CAS  Google Scholar 

  • Reiland, S., Messerli, G., Baerenfaller, K., Gerrits, B., Endler, A., Grossmann, J., Gruissem, W., Baginsky, S. 2009. Large-scale Arabidopsis phosphoproteome profiling reveals novel chloroplast kinase substrates and phosphorylation networks. Plant Physiol 150:889–903.

    Article  PubMed  CAS  Google Scholar 

  • Rino, J., Carmo-Fonseca, M. 2009. The spliceosome: a self-organized macromolecular machine in the nucleus? Trends Cell Biol 19:375–384.

    Article  PubMed  CAS  Google Scholar 

  • Rivals, E., Bruyere, C., Toffano-Nioche, C., Lecharny, A. 2006. Formation of the Arabidopsis pentatricopeptide repeat family. Plant Physiol 141:825–839.

    Article  PubMed  CAS  Google Scholar 

  • Salone, V., Rudinger, M., Polsakiewicz, M., Hoffmann, B., Groth-Malonek, M., Szurek, B., Small, I., Knoop, V., Lurin, C. 2007. A hypothesis on the identification of the editing enzyme in plant organelles. FEBS Lett 581:4132–4138.

    Article  PubMed  CAS  Google Scholar 

  • Sane, A. P., Stein, B., Westhoff, P. 2005. The nuclear gene HCF107 encodes a membrane-associated R-TPR (RNA tetratricopeptide repeat)-containing protein involved in expression of the plastidial psbH gene in Arabidopsis. Plant J 42:720–730.

    Article  PubMed  CAS  Google Scholar 

  • Schein, A., Sheffy-Levin, S., Glaser, F., Schuster, G. 2008. The RNase E/G-type endoribonuclease of higher plants is located in the chloroplast and cleaves RNA similarly to the E. coli enzyme. RNA 14:1057–1068.

    Article  PubMed  CAS  Google Scholar 

  • Schmitz-Linneweber, C., Small, I. 2008. Pentatricopeptide repeat proteins: a socket set for organelle gene expression. Trends Plant Sci 13:663–670.

    Article  PubMed  CAS  Google Scholar 

  • Schmitz-Linneweber, C., Williams-Carrier, R., Barkan, A. 2005. RNA immunoprecipitation and microarray analysis show a chloroplast Pentatricopeptide repeat protein to be associated with the 5′ region of mRNAs whose translation it activates. Plant Cell 17:2791–2804.

    Article  PubMed  CAS  Google Scholar 

  • Schmitz-Linneweber, C., Williams-Carrier, R., Williams, P., Kroeger, T., Vichas, A., Barkan, A. 2006. A pentatricopeptide repeat protein binds to and facilitates the trans-splicing of the maize chloroplast rps12 pre-mRNA. Plant Cell 18:2650–2663.

    Article  PubMed  CAS  Google Scholar 

  • Schuster, G., Gruissem, W. 1991. Chloroplast mRNA 3′ end processing requires a nuclear-encoded RNA-binding protein. EMBO J 10:1493–1502.

    PubMed  CAS  Google Scholar 

  • Small, I., Peeters, N. 2000. The PPR motif – a TPR-related motif prevalent in plant organellar proteins. Trends Biochem Sci 25:46–47.

    Article  PubMed  CAS  Google Scholar 

  • Strittmatter, G., Kossel, H. 1984. Cotranscription and processing of 23S, 4.5S and 5S rRNA in chloroplasts from Zea mays. Nucleic Acids Res 12:7633–7647.

    Article  PubMed  CAS  Google Scholar 

  • Sugiyama, N., Nakagami, H., Mochida, K., Daudi, A., Tomita, M., Shirasu, K., Ishihama, Y. 2008. Large-scale phosphorylation mapping reveals the extent of tyrosine phosphorylation in Arabidopsis. Mol Syst Biol 4:193.

    Article  PubMed  Google Scholar 

  • Susek, R. E., Ausubel, F. M., Chory, J. 1993. Signal transduction mutants of Arabidopsis uncouple nuclear CAB and RBCS gene expression from chloroplast development. Cell 74:787–799.

    Article  PubMed  CAS  Google Scholar 

  • Till, B., Schmitz-Linneweber, C., Williams-Carrier, R., Barkan, A. 2001. CRS1 is a novel group II intron splicing factor that was derived from a domain of ancient origin. RNA 7:1227–1238.

    Article  PubMed  CAS  Google Scholar 

  • Tillich, M., Hardel, S. L., Kupsch, C., Armbruster, U., Delannoy, E., Gualberto, J. M., Lehwark, P., Leister, D., Small, I. D., Schmitz-Linneweber, C. 2009. Chloroplast ribonucleoprotein CP31A is required for editing and stability of specific chloroplast mRNAs. Proc Natl Acad Sci USA 106:6002–6007.

    Article  PubMed  CAS  Google Scholar 

  • van der Graaff, E., Schwacke, R., Schneider, A., Desimone, M., Flugge, U. I., Kunze, R. 2006. Transcription analysis of Arabidopsis membrane transporters and hormone pathways during developmental and induced leaf senescence. Plant Physiol 141:776–792.

    Article  PubMed  CAS  Google Scholar 

  • Wang, B. C., Wang, H. X., Feng, J. X., Meng, D. Z., Qu, L. J., Zhu, Y. X. 2006. Post-translational modifications, but not transcriptional regulation, of major chloroplast RNA-binding proteins are related to Arabidopsis seedling development. Proteomics 6:2555–2563.

    Article  PubMed  CAS  Google Scholar 

  • Watkins, K. P., Kroeger, T. S., Cooke, A. M., Williams-Carrier, R. E., Friso, G., Belcher S. E., van Wijk, K. J., Barkan, A. 2007. A ribonuclease III domain protein functions in group ii intron splicing in maize chloroplasts. Plant Cell 19:2606–2623.

    Article  PubMed  CAS  Google Scholar 

  • Westhoff, P., Hermann, R. G. 1988. Complex RNA maturation in chloroplasts. The psbB operon from spinach. Eur J Biochem 171:551–564.

    Article  PubMed  CAS  Google Scholar 

  • Williams-Carrier, R., Kroeger, T., Barkan, A. 2008. Sequence-specific binding of a chloroplast pentatricopeptide repeat protein to its native group II intron ligand. RNA 14:1930–1941.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, C. G., Kajander, T., Regan, L. 2005. The crystal structure of NlpI. A prokaryotic tetratricopeptide repeat protein with a globular fold. Febs J 272:166–179.

    Article  PubMed  CAS  Google Scholar 

  • Woodson, J. D., Chory, J. 2008. Coordination of gene expression between organellar and nuclear genomes. Nat Rev Genet 9:383–395.

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki, H., Tasaka, M., Shikanai, T. 2004. PPR motifs of the nucleus-encoded factor, PGR3, function in the selective and distinct steps of chloroplast gene expression in Arabidopsis. Plant J 38:152–163.

    Article  PubMed  CAS  Google Scholar 

  • Ye, L., Sugiura, M. 1992. Domains required for nucleic acid binding activities in chloroplast ribonucleoproteins. Nucleic Acids Res 20:6275–6279.

    Article  PubMed  CAS  Google Scholar 

  • Ye, L. H., Li, Y. Q., Fukami-Kobayashi, K., Go, M., Konishi, T., Watanabe, A., Sugiura, M. 1991. Diversity of a ribonucleoprotein family in tobacco chloroplasts: two new chloroplast ribonucleoproteins and a phylogenetic tree of ten chloroplast RNA-binding domains. Nucleic Acids Res 19:6485–6490.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Schmitz-Linneweber .

Editor information

Editors and Affiliations

Glossary

Arm-repeat:

Helical hairpin repeat protein named after the armadillo protein. The repeat is about 40 amino acids long and repeated in tandem. It was first identified in the Drosophila melanogaster segment polarity gene armadillo.

Co-IP and slot-blot:

A technique related to RIP-Chip. However, instead of using a microarray for detection, co-precipitated RNA is blotted on a membrane using a vacuum manifold. DNA probes (e.g., PCR products) are labeled radioactively and hybridized to the membrane similar to an RNA gel blot hybridization experiment.

EMSA:

The electrophoretic mobility shift assay (EMSA), also referred to as the gel retardation assay or gel shift assay, is a common technique used to characterize protein–RNA interactions (also done with DNA). EMSA takes advantage of the fact that complexes of protein and RNA migrate through a nondenaturing polyacrylamide gel more slowly than free RNA fragments. The assay is carried out by incubating a purified protein with labeled RNA containing the putative protein binding site and nonspecific competitor RNA.

Filter binding assay:

Filter binding assays measure affinities between RNA (or DNA) and protein molecules using a double layer of different filters. The top filter is made of nitrocellulose and binds proteins but not nucleic acids. However, if RNA is sticking to the protein it will be retained on this filter already. The second, bottom filter is a highly positively charged nylon membrane that will bind all nucleic acids that have passed the first filter. The exact amount of RNA sticking to each of the two filters can be quantified if the RNA was radioactively labeled, for example. The ratio of bound to unbound RNA together can be correlated with protein input and competitor RNA in the initial binding reaction. Among others, the data can be used to determine the binding constant for protein–RNA interactions.

HEAT-repeat:

Four proteins with simple, iterated helical-hairpin repeat domains gave rise to this acronym (Huntingtin, elongation factor 3 [EF3], protein phosphatase 2A [PP2A], and PI3-kinase [TOR1]). The domain is often found in proteins involved in transport processes.

Hydroxyradical footprinting:

Hydroxyradical footprinting is a technique to determine the binding site of an RNA binding protein on its RNA target (also done with DNA-binding proteins). The recombinant purified protein is incubated with its cognate target and attacked with hydroxyl radicals. The radicals will destroy single-stranded RNA by attacking the phosphodiester connections between ribonucleotides in single-stranded areas.

KH-domain:

The K homology (KH) domain was first identified in the human heterogeneous nuclear ribonucleoprotein (hnRNP) K. It is a wide-spread RNA binding motif of around 70 amino acids and is often found in multiple copies within one protein.

Puf-repeat:

Named after the human Pumilio protein, the Puf proteins contain a C-terminal domain that consist of repeated helical hairpin repeat domains, the Puf domains. Puf proteins regulate various aspects of development by controlling mRNA stability and translation through sequence-specific interactions, often with sequence elements in the 3′ untranslated region of target mRNAs.

Ribonucleoprotein (RNP):

Ribonucleoprotein (RNP) originally referred to proteins localized to the nucleus and associated with RNA. A more recent definition includes all particles that combine ribonucleic acid and protein together.

RIP-Chip:

RNA-coimmunoprecipitation and chip analysis refers to a technique that couples immunoprecipitation of an RNP with subsequent analysis of the bound RNA using a microarray. This allows detecting targets of an RNA binding protein across an entire genome.

SMR-Domain:

The small MutS-related (SMR) domain has been implicated in recombination and repair processes. It is related to the C-terminal part of the bacterial MutS2 domain and is found in bacteria as well as eukaryotes.

UV-cross-linking:

A technique related to EMSAs, where protein–nucleic acid complexes are irradiated with ultraviolet light. This causes covalent bonds to form between the nucleic acid and proteins that are in close contact with the nucleic acid. The protein–RNA adduct is often treated with RNAses to remove non-cross-linked RNA. For detection, the RNA is often labeled and can be visualized in a denaturing polyacrylamide gel.

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Zoschke, R., Kupsch, C., Schmitz-Linneweber, C. (2011). RNA-Binding Proteins Required for Chloroplast RNA Processing. In: Kempken, F. (eds) Plant Mitochondria. Advances in Plant Biology, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-0-387-89781-3_8

Download citation

Publish with us

Policies and ethics