Skip to main content

Computational Resources for Studying Recoding

  • Chapter
  • First Online:
Recoding: Expansion of Decoding Rules Enriches Gene Expression

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 24))

Abstract

The rapid growth in the quantity of available sequence data has made necessary the development of efficient computational tools for its analysis. Substantial progress has been made in the development of tools for the identification and prediction of genes that are expressed via standard decoding. However, since recoded genes embrace only a minority of all genes and since their prediction requires different approaches, they are frequently neglected and as a result are often mis-annotated in the public databases or even left undetected during the annotation process. This chapter aims to describe available computer tools designed for the identification and analysis of recoded genes and public databases that collect information related to recoding. In addition, we also discuss how standard tools for sequence analysis can be used for these purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403ā€“410

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman D J (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl Acids Res 25:3389ā€“3402

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Athanasiadis A, Rich A, Maas S (2004) Widespread A-to-I RNA editing of Alu-containing mRNAs in the human transcriptome. PLoS Biol 2:e391

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Baranov PV, Fayet O, Hendrix RW, Atkins JF (2006) Recoding in bacteriophages and bacterial IS elements. Trends Genet 22:174āˆ’181

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Baranov PV, Gesteland RF, Atkins JF (2002a) Recoding: translational bifurcations in gene expression. Gene 286:187ā€“201

    Google ScholarĀ 

  • Baranov PV, Gesteland RF, Atkins JF (2002b) Release factor 2 frameshifting sites in different bacteria. EMBO Rep 3:373ā€“377

    Google ScholarĀ 

  • Baranov PV, Gurvich OL, Fayet O, Prere MF, Miller WA, Gesteland RF, Atkins JF, Giddings MC (2001) RECODE: a database of frameshifting, bypassing and codon redefinition utilized for gene expression. Nucl Acids Res 29:264ā€“267

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Baranov PV, Gurvich OL, Hammer AW, Gesteland RF, Atkins JF (2003) Recode 2003. Nucl Acids Res 31:87ā€“89

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Bekaert M, Atkins JF, Baranov PV (2006) ARFA: a program for annotating bacterial release factor genes, including prediction of programmed ribosomal frameshifting. Bioinformatics 22:2463ā€“2465

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Bekaert M, Bidou L, Denise A, Duchateau-Nguyen G, Forest JP, Froidevaux C, Hatin I, Rousset JP, Termier M (2003) Towards a computational model for -1 eukaryotic frameshifting sites. Bioinformatics 19:327ā€“335Bekaert M, Firth AE, Zhang Y, Gladyshev VN, Atkins JF, Baranov PV (2009) Recode-2: new design, new search tools, andmany more genes. Nucl Acids Res e-pul ahead of print

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Bekaert M, Ivanov IP, Atkins JF, Baranov PV (2008) Ornithine decarboxylase antizyme finder (OAF): fast and reliable detection of antizymes with frameshifts in mRNAs. BMC Bioinformatics 9:178

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Belcourt MF, Farabaugh PJ (1990) Ribosomal frameshifting in the yeast retrotransposon Ty: tRNAs induce slippage on a 7 nucleotide minimal site. Cell 62:339ā€“352

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Belew AT, Hepler NL, Jacobs JL, Dinman JD (2008) PRFdb: a database of computationally predicted eukaryotic programmed āˆ’1 ribosomal frameshift signals. BMC Genomics9:339

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Brierley I, Pennell S (2001) Structure and function of the stimulatory RNAs involved in programmed eukaryotic-1 ribosomal frameshifting. Cold Spr Harb Symp Quant Biol 66:233ā€“248

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Byun Y, Han K (2006) PseudoViewer: web application and web service for visualizing RNA pseudoknots and secondary structures. Nucl Acids Res 34:W416ā€“W422

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Byun Y, Moon S, Han K (2007) A general computational model for predicting ribosomal frameshifts in genome sequences. Comput Biol Med 37:1796ā€“1801

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Castellano S, Gladyshev VN, Guigo R, Berry MJ (2008) SelenoDB 1.0 : a database of selenoprotein genes, proteins and SECIS elements. Nucl Acids Res 36:D332ā€“338

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Castellano S, Morozova N, Morey M, Berry MJ, Serras F, Corominas M, Guigo R (2001) In silico identification of novel selenoproteins in the Drosophila melanogaster genome. EMBO Rep 2:697ā€“702

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Castellano S, Novoselov SV, Kryukov GV, Lescure A, Blanco E, Krol A, Gladyshev VN, Guigo R (2004) Reconsidering the evolution of eukaryotic selenoproteins: a novel nonmammalian family with scattered phylogenetic distribution. EMBO Rep 5:71ā€“77

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Chen SH, Habib G, Yang CY, Gu ZW, Lee BR, Weng SA, Silberman SR, Cai SJ, Deslypere JP, Rosseneu M et al. (1987) Apolipoprotein B-48 is the product of a messenger RNA with an organ-specific in-frame stop codon. Science 238:363ā€“366

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Chung BY, Miller WA, Atkins JF, Firth AE (2008) An overlapping essential gene in the Potyviridae. Proc Nat Acad Sci USA 105:5897ā€“5902

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Chung WY, Wadhawan S, Szklarczyk R, Pond SK, Nekrutenko A (2007) A first look at ARFome: dual-coding genes in mammalian genomes. PLoS Comput Biol 3:e91

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Dsouza M, Larsen N, Overbeek R (1997) Searching for patterns in genomic data. Trends Genet 13:497ā€“498

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Eddy SR (1998) Profile hidden Markov models. Bioinformatics 14:755ā€“763

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Eddy SR, Durbin R (1994) RNA sequence analysis using covariance models. Nucl Acids Res 22:2079ā€“2088

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Firth AE, Brown CM (2005) Detecting overlapping coding sequences with pairwise alignments. Bioinformatics 21:282ā€“292

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Firth AE, Brown CM (2006) Detecting overlapping coding sequences in virus genomes. BMC Bioinformatics 7:75Firth AE, Chung BY, Fleeton MN, Atkins JF (2008) Discovery of frameshifting in Alphavirus 6ā€“K resolves a 20-year enigma. Virol J 5:108

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Freyhult EK, Bollback JP, Gardner PP (2007) Exploring genomic dark matter: a critical assessment of the performance of homology search methods on noncoding RNA. Genome Res 17: 117ā€“125

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Gardner PP, Giegerich R (2004) A comprehensive comparison of comparative RNA structure prediction approaches. BMC Bioinformatics 5:140

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Gruber AR, Bernhart SH, Hofacker IL, Washietl S (2008a) Strategies for measuring evolutionary conservation of RNA secondary structures. BMC Bioinformatics 9:122

    Google ScholarĀ 

  • Gruber AR, Lorenz R, Bernhart SH, Neubock R, Hofacker IL (2008b) The vienna RNA websuite. Nucl Acids Res 36:W70ā€“74

    Google ScholarĀ 

  • Gurvich OL, Baranov PV, Zhou J, Hammer AW, Gesteland RF, Atkins JF (2003) Sequences that direct significant levels of frameshifting are frequent in coding regions of Escherichia coli. EMBO J 22:5941ā€“5950

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Hammell AB, Taylor RC, Peltz SW, Dinman JD (1999) Identification of putative programmed -1 ribosomal frameshift signals in large DNA databases. Genome Res 9:417ā€“427

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Han K, Byun Y (2003) PSEUDOVIEWER2: Visualization of RNA pseudoknots of any type. Nucl Acids Res 31:3432ā€“3440

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Han K, Lee Y, Kim W (2002) PseudoViewer: automatic visualization of RNA pseudoknots. Bioinformatics 18(Suppl 1):S321ā€“S328

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Harrison PM, Carriero N, Liu Y, Gerstein M (2003) A ā€œpolyORFomicā€ analysis of prokaryote genomes using disabled-homology filtering reveals conserved but undiscovered short ORFs. J Mol Biol 333:885ā€“892

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Havgaard JH, Lyngso RB, Gorodkin J (2005) The FOLDALIGN web server for pairwise structural RNA alignment and mutual motif search. Nucl Acids Res 33:W650ā€“653

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Herr AJ, Atkins JF, Gesteland RF (2000) Coupling of open reading frames by translational bypassing. Annu Rev Biochem 69:343ā€“372

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Hofacker IL (2003) Vienna RNA secondary structure server. Nucl Acids Res 31:3429ā€“3431

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Hofacker IL, Fekete M, Stadler PF (2002) Secondary structure prediction for aligned RNA sequences. J Mol Biol 319:1059ā€“1066

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Ivanov IP, Atkins JF (2007) Ribosomal frameshifting in decoding antizyme mRNAs from yeast and protists to humans: close to 300 cases reveal remarkable diversity despite underlying conservation. Nucl Acids Res 35:1842ā€“1858

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Jacobs JL, Belew AT, Rakauskaite R, Dinman JD (2007) Identification of functional, endogenous programmed -1 ribosomal frameshift signals in the genome of Saccharomyces cerevisiae. Nucl Acids Res 35:165ā€“174

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Karolchik D, Kuhn RM, Baertsch R, Barber GP, Clawson H, Diekhans M, Giardine B, Harte RA, Hinrichs AS, Hsu F, Kober KM, Miller W, Pedersen JS, Pohl A, Raney BJ, Rhead B, Rosenbloom KR, Smith KE, Stanke M, Thakkapallayil A, Trumbower H, Wang T, Zweig AS, Haussler D, Kent WJ (2008) The UCSC Genome Browser Database: 2008 update. Nucl Acids Res 36:D773ā€“779

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Kellis M, Patterson N, Endrizzi M, Birren B, Lander ES (2003) Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature 423:241ā€“254

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Kim DD, Kim TT, Walsh T, Kobayashi Y, Matise TC, Buyske S, Gabriel A (2004) Widespread RNA editing of embedded alu elements in the human transcriptome. Genome Res 14:1719ā€“1725

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Klein RJ, Eddy SR (2003) RSEARCH: finding homologs of single structured RNA sequences. BMC Bioinformatics 4:44

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Knudsen B, Hein J (2003) Pfold: RNA secondary structure prediction using stochastic context-free grammars. Nucl Acids Res 31:3423ā€“3428

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Korf I, Yandell M, Bedell J (2003) BLAST: Oā€™Reilly and Associates Inc

    Google ScholarĀ 

  • Krogh A, Brown M, Mian IS, Sjolander K, Haussler D (1994) Hidden Markov models in computational biology. Applications to protein modeling. J Mol Biol 235:1501ā€“1531

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Kryukov GV, Castellano S, Novoselov SV, Lobanov AV, Zehtab O, Guigo R, Gladyshev VN (2003) Characterization of mammalian selenoproteomes. Science 300:1439ā€“1443

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Kryukov GV, Kryukov VM, Gladyshev VN (1999) New mammalian selenocysteine-containing proteins identified with an algorithm that searches for selenocysteine insertion sequence elements. J Biol Chem 274:33888ā€“33897

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Lescure A, Gautheret D, Carbon P, Krol A (1999) Novel selenoproteins identified in silico and in vivo by using a conserved RNA structural motif. J Biol Chem 274:38147ā€“38154

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Levanon EY, Eisenberg E, Yelin R, Nemzer S, Hallegger M, Shemesh R, Fligelman ZY, Shoshan A, Pollock SR, Sztybel D, Olshansky M, Rechavi G, Jantsch MF (2004) Systematic identification of abundant A-to-I editing sites in the human transcriptome. Nature Biotech 22:1001ā€“1005Li JB, Levanon EY, Yoon JK, Aach J, Xie B, Leproust E, Zhang K, Gao Y, Church GM (2009) Genome-wide identification of human RNA editing sites by parallel DNA capturing and sequencing. Science 324:1210ā€“1213

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Lin MF, Carlson JW, Crosby MA, Matthews BB., Yu C, Park S, Wan KH, Schroeder AJ, Gramates LS, St Pierre SE, Roark M, Wiley KL Jr, Kulathinal RJ, Zhang P, Myrick KV, Antone JV, Celniker SE, Gelbart WM, Kellis M (2007) Revisiting the protein-coding gene catalog of Drosophila melanogaster using 12 fly genomes. Genome Res 17:1823ā€“1836

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Lin MF, Deoras AN, Rasmussen MD, Kellis M (2008) Performance and scalability of discriminative metrics for comparative gene identification in 12 Drosophila genomes. PLoS Computat Biol 4:e1000067

    ArticleĀ  Google ScholarĀ 

  • Lipman DJ, Pearson WR (1985) Rapid and sensitive protein similarity searches. Science 227:1435ā€“1441Macke TJ, Ecker DJ, Gutell RR, Gautheret D, Case DA, Sampath R (2001) RNAMotif, an RNA secondary structure definition and search algorithm.Nucleic Acids Res 29:4724ā€“4735

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Mathews DH, Turner DH (2002) Dynalign: an algorithm for finding the secondary structure common to two RNA sequences. J Mol Biol 317:191ā€“203

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Matsufuji S, Matsufuji T, Miyazaki Y, Murakami Y, Atkins JF, Gesteland RF, Hayashi S (1995) Autoregulatory frameshifting in decoding mammalian ornithine decarboxylase antizyme. Cell 80:51ā€“60

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • McCaskill JS (1990) The equilibrium partition function and base pair binding probabilities for RNA secondary structure. Biopolymers 29:1105ā€“1119

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Moon S, Byun Yand Han K (2007) FSDB: a frameshift signal database. Computat Biol Chem 31:298ā€“302

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Moon S, Byun Y, Kim HJ, Jeong S, Han K (2004) Predicting genes expressed via -1 and +1 frameshifts. Nucl Acids Res 32:4884ā€“4892

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Namy O, Duchateau-Nguyen G, Hatin I, Hermann-Le Denmat S, Termier M, Rousset JP (2003) Identification of stop codon readthrough genes in Saccharomyces cerevisiae. Nucl Acids Res 31:2289ā€“2296

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Nawrocki EP, Eddy SR (2007) Query-dependent banding (QDB) for faster RNA similarity searches. PLoS Computat Biol 3:e56

    ArticleĀ  Google ScholarĀ 

  • Nekrutenko A, Wadhawan S, Goetting-Minesky P, Makova KD (2005) Oscillating evolution of a mammalian locus with overlapping reading frames: an XLalphas/ALEX relay. PLoS Genetics 1:e18

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Pedersen JS, Bejerano G, Siepel A, Rosenbloom K, Lindblad-Toh K, Lander ES, Kent J, Miller W, Haussler D (2006) Identification and classification of conserved RNA secondary structures in the human genome. PLoS Computat Biol 2:e33

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Pedersen JS, Meyer IM, Forsberg R, Simmonds P, Hein J (2004) A comparative method for finding and folding RNA secondary structures within protein-coding regions. Nucl Acids Res 32:4925ā€“4936

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Reeder J, Giegerich R (2004) Design, implementation and evaluation of a practical pseudoknot folding algorithm based on thermodynamics. BMC Bioinformatics 5:104

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Reeder J, Reeder J, Giegerich R (2007a) Locomotif: from graphical motif description to RNA motif search. Bioinformatics 23:i392ā€“400

    Google ScholarĀ 

  • Reeder J, Steffen P, Giegerich R (2007b) pknotsRG: RNA pseudoknot folding including near-optimal structures and sliding windows. Nucl Acids Res 35:W320ā€“324

    Google ScholarĀ 

  • Rivas E, Eddy SR (1999) A dynamic programming algorithm for RNA structure prediction including pseudoknots. J Mol Biol 285:2053ā€“2068

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Rivas E, Eddy SR (2000) Secondary structure alone is generally not statistically significant for the detection of noncoding RNAs. Bioinformatics 16:583ā€“605

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Romano P (2008) Automation of in-silico data analysis processes through workflow management systems. Briefings Bioinformat 9:57ā€“68

    ArticleĀ  Google ScholarĀ 

  • Ruan J, Stormo GD, Zhang W (2004) ILM: a web server for predicting RNA secondary structures with pseudoknots. Nucl Acids Res 32:W146ā€“149

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Sankoff D (1985) Simultaneous solution of the RNA folding, alignment and protosequence problems. Siam J Appl Math 45:810ā€“825

    ArticleĀ  Google ScholarĀ 

  • Schuster P, Fontana W, Stadler PF, Hofacker IL (1994) From sequences to shapes and back: a case study in RNA secondary structures. Proc Royal Soc London B 255:279ā€“284

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Shah AA., Giddings MC, Parvaz JB, Gesteland RF, Atkins JF, Ivanov IP (2002) Computational identification of putative programmed translational frameshift sites. Bioinformatics 18:1046ā€“1053

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Siguier P, Perochon J, Lestrade L, Mahillon J, Chandler M (2006) ISfinder: the reference centre for bacterial insertion sequences. Nucl Acids Res 34:D32ā€“36

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Skuzeski JM, Nichols LM, Gesteland RF, Atkins JF (1991) The signal for a leaky UAG stop codon in several plant viruses includes the two downstream codons. J Mol Biol 218:365ā€“373

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Smith TF, Waterman MS (1981) Identification of common molecular subsequences. J Mol Biol 147:195ā€“197

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Strabo, Hamilton HC, Falconer W (1854) The geography of Strabo. H. G. Bohn, London

    Google ScholarĀ 

  • Theis C, Reeder J, Giegerich R (2008) KnotInFrame: prediction of -1 ribosomal frameshift events. Nucl Acids Res 36:6013ā€“6020

    Google ScholarĀ 

  • Touzet H, Perriquet O (2004) CARNAC: folding families of related RNAs. Nucl Acids Res 32:W142ā€“W145

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • van Batenburg FH, Gultyaev AP, Pleij CW (2001) PseudoBase: structural information on RNA pseudoknots. Nucl Acids Res 29:194ā€“195

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Washietl S, Hofacker IL (2004) Consensus folding of aligned sequences as a new measure for the detection of functional RNAs by comparative genomics. J Mol Biol 342:19ā€“30

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Washietl S, Hofacker IL, Lukasser M, Huttenhofer A, Stadler PF (2005a) Mapping of conserved RNA secondary structures predicts thousands of functional noncoding RNAs in the human genome. Nature Biotech 23:1383ā€“1390

    Google ScholarĀ 

  • Washietl S, Hofacker IL, Stadler PF (2005b) Fast and reliable prediction of noncoding RNAs. Proc Natl Acad Sci USA 102:2454ā€“2459

    Google ScholarĀ 

  • Will S, Reiche K, Hofacker IL, Stadler PF, Backofen R (2007) Inferring noncoding RNA families and classes by means of genome-scale structure-based clustering. PLoS Computat Biol 3:e65

    ArticleĀ  Google ScholarĀ 

  • Wills NM, Moore B, Hammer A, Gesteland RF, Atkins JF (2006) A functional -1 ribosomal frameshift signal in the human paraneoplastic Ma3 gene. J Biol Chem 281:7082ā€“7088

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucl Acids Res 31:3406ā€“3415

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Zuker M, Stiegler P (1981) Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucl Acids Res 9:133ā€“148

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

Download references

Acknowledgments

We are grateful to Drs. Sergi Castellano and Kyungsook Han for careful reading of the manuscript and useful comments. This work was supported by funds from Science Foundation Ireland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel V. Baranov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Firth, A.E., Bekaert, M., Baranov, P.V. (2010). Computational Resources for Studying Recoding. In: Atkins, J., Gesteland, R. (eds) Recoding: Expansion of Decoding Rules Enriches Gene Expression. Nucleic Acids and Molecular Biology, vol 24. Springer, New York, NY. https://doi.org/10.1007/978-0-387-89382-2_20

Download citation

Publish with us

Policies and ethics