Skip to main content

Part of the book series: Cancer Treatment and Research ((CTAR,volume 146))

  • 1200 Accesses

Tissue homeostasis in the mature organism results from the net effects of cell proliferation and programmed cell death (apoptosis) and is guaranteed by highly complex extracellular and intracellular control of cell cycle and apoptosis. It is a hallmark of malignant cells to grow in the absence of appropriate extracellular signals such as growth factors or cytokines, which are either not sensed or not required as a consequence of disturbed intracellular control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fantl WJ, Johnson DE, Williams LT. Signalling by receptor tyrosine kinases. Annu Rev Biochem 1993; 62:453–81.

    PubMed  CAS  Google Scholar 

  2. Hill CS, Treisman R. Transcriptional regulation by extracellular signals: mechanisms and specificity. Cell 1995; 80:199–211.

    Article  PubMed  CAS  Google Scholar 

  3. Hunter T. Oncoprotein networks. Cell 1997; 88:333–46.

    Article  PubMed  CAS  Google Scholar 

  4. Nurse P, Masui Y, Hartwell L. Understanding the cell cycle. Nat Med 1998; 4:1103–6.

    Article  PubMed  CAS  Google Scholar 

  5. Ko LJ, Prives C. p53: puzzle and paradigm. Genes Dev 1996; 10:1054–72.

    Article  PubMed  CAS  Google Scholar 

  6. Ewen ME. The cell cycle and the retinoblastoma protein family. Cancer Metastasis Rev 1994; 13:45–66.

    Article  PubMed  CAS  Google Scholar 

  7. Danial NN, Korsmeyer SJ. Cell death: critical control points. Cell 2004; 116:205–19.

    Article  PubMed  CAS  Google Scholar 

  8. White E. Life, death, and the pursuit of apoptosis. Genes Dev 1996; 10:1–15.

    Article  PubMed  CAS  Google Scholar 

  9. Muzio M, Chinnaiyan AM, Kischkel FC, et al. FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death-inducing signaling complex. Cell 1996; 85:817–27.

    Article  PubMed  CAS  Google Scholar 

  10. Zur Hausen H. Infections causing human cancer. Weinheim: Wiley-VCH Verlag, 2006.

    Book  Google Scholar 

  11. Campo MS, Moar MH, Sartirana ML, et al. The presence of bovine papillomavirus type 4 DNA is not required for the progression to, or the maintenance of, the malignant state in cancers of the alimentary canal in cattle. EMBO J 1985; 4:1819–25.

    PubMed  CAS  Google Scholar 

  12. Campo MS, O’Neil BW, Barron RJ, et al. Experimental reproduction of the papilloma-carcinoma complex of the alimentary canal in cattle. Carcinogenesis 1994; 15:1597–601.

    Article  PubMed  CAS  Google Scholar 

  13. IARC. Hepatitis virus. In: IARC (ed) IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Lyon: IARC, 1994.

    Google Scholar 

  14. IARC. Epstein–Barr virus. In: IARC (ed) IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Lyon: IARC, 1997:47–373.

    Google Scholar 

  15. IARC. Human papillomaviruses. In: IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Lyon: IARC, 2007:90.

    Google Scholar 

  16. IARC. Kaposi’s sarcoma herpesvirus/human herpesvirus 8. In: IARC (ed) IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Lyon: IARC, 1997:375–492.

    Google Scholar 

  17. Tyler K, Nathanson N. Pathogenesis of viral infections. In: Knipe DM, Howley PM (eds) Fields Virology, 4th edn. Philadelphia: Lippincott Williams & Wilkins, 2001:199–243.

    Google Scholar 

  18. Kieff E, Rickinson A. Epstein–Barr virus and its replication. In: Knipe DM, Howley PM (eds) Fields Virology, 4th edn. Philadelphia: Lippincott Williams & Wilkins; 2001:2511–73.

    Google Scholar 

  19. Moore P, Chang Y. Kaposi’s sarcoma-associated herpesvirus. In: Knipe DM, Howley PM (eds) Fields Virology, 4th edn. Philadelphia: Lippincott Williams & Wilkins; 2001:2803–33.

    Google Scholar 

  20. Major M, Rehermann B, Feinstone S. Hepatitis C viruses. In: Knipe DM, Howley PM (eds) Fields Virology, 4th edn. Philadelphia: Lippincott Williams & Wilkins; 2001:1127–61.S

    Google Scholar 

  21. Ganem D, Schneider R. Hepadnaviridae: the viruses and their replication. In: Knipe DM, Howley PM (eds) Fields Virology, 4th edn. Philadelphia: Lippincott Williams & Wilkins; 2001:2923–69.

    Google Scholar 

  22. Howley P, Lowy D. Papillomaviruses and their replication. In: Knipe DM, Howley PM (eds) Fields Virology, 4th edn. Philadelphia: Lippincott Williams & Wilkins; 2001:2197–229.

    Google Scholar 

  23. Nevins J. Cell transformation by viruses. In: Knipe DM, Howley PM (eds) Fields Virology, 4th edn. Philadelphia: Lippincott Williams & Wilkins; 2001:245–83.

    Google Scholar 

  24. Hoover RN. Lymphoma risks in populations with altered immunity: a search for mechanism. Cancer Res 1992; 52:5477s–8s.

    PubMed  CAS  Google Scholar 

  25. Young LS, Rickinson AB. Epstein–Barr virus: 40 years on. Nat Rev Cancer 2004; 4:757–68.

    Article  PubMed  CAS  Google Scholar 

  26. Kuppers DA, Lan K, Knight JS, et al. Regulation of matrix metalloproteinase 9 expression by Epstein–Barr virus nuclear antigen 3C and the suppressor of metastasis Nm23-H1. J Virol 2005; 79:9714–24.

    Article  PubMed  CAS  Google Scholar 

  27. Szekely L, Selivanova G, Magnusson KP, et al. EBNA-5, an Epstein–Barr virus-encoded nuclear antigen, binds to the retinoblastoma and p53 proteins. Proc Natl Acad Sci USA 1993; 90:5455–9.

    Article  PubMed  CAS  Google Scholar 

  28. Humme S, Reisbach G, Feederle R, et al. The EBV nuclear antigen 1 (EBNA1) enhances B cell immortalization several thousandfold. Proc Natl Acad Sci USA 2003; 100:10989–94.

    Article  PubMed  CAS  Google Scholar 

  29. Kennedy G, Komano J, Sugden B. Epstein–Barr virus provides a survival factor to Burkitt’s lymphomas. Proc Natl Acad Sci U S A 2003; 100:14269–74.

    Article  PubMed  CAS  Google Scholar 

  30. Murakami M, Lan K, Subramanian C, et al. Epstein-Barr virus nuclear antigen 1 interacts with Nm23-H1 in lymphoblastoid cell lines and inhibits its ability to suppress cell migration. J Virol 2005; 79:1559–68.

    Article  PubMed  CAS  Google Scholar 

  31. Nanbo A, Inoue K, Adachi-Takasawa K, et al. Epstein–Barr virus RNA confers resistance to interferon-alpha-induced apoptosis in Burkitt’s lymphoma. EMBO J 2002; 21:954–65.

    Article  PubMed  CAS  Google Scholar 

  32. Nanbo A, Yoshiyama H, Takada K. Epstein–Barr virus-encoded poly(A)– RNA confers resistance to apoptosis mediated through Fas by blocking the PKR pathway in human epithelial intestine 407 cells. J Virol 2005; 79:12280–5.

    Article  PubMed  CAS  Google Scholar 

  33. Pfeffer S, Zavolan M, Grasser FA, et al. Identification of virus-encoded microRNAs. Science 2004; 304:734–6.

    Article  PubMed  CAS  Google Scholar 

  34. Steenbergen RD, de Wilde J, Wilting SM, et al. HPV-mediated transformation of the anogenital tract. J Clin Virol 2005; 32(Suppl 1):S25–33.

    Article  PubMed  CAS  Google Scholar 

  35. Smola-Hess S, Pfister H. Interaction of papillomaviral oncoproteins with cellular factors. In: Holzenburg A, Bogner E (eds) Structure–Function Relationships of Human Pathogenic Viruses. New York: Kluwer, 2002:431–61.

    Chapter  Google Scholar 

  36. Garner-Hamrick PA, Fostel JM, Chien WM, et al. Global effects of human papillomavirus type 18 E6/E7 in an organotypic keratinocyte culture system. J Virol 2004; 78:9041–50.

    Article  PubMed  CAS  Google Scholar 

  37. Nevins JR. E2F: a link between the Rb tumor suppressor protein and viral oncoproteins. Science 1992; 258:424–9.

    Article  PubMed  CAS  Google Scholar 

  38. Longworth MS, Laimins LA. Pathogenesis of human papillomaviruses in differentiating epithelia. Microbiol Mol Biol Rev 2004; 68:362–72.

    Article  PubMed  CAS  Google Scholar 

  39. Thomas M, Banks L. Human papillomavirus (HPV) E6 interactions with Bak are conserved amongst E6 proteins from high and low risk HPV types. J Gen Virol 1999; 80(pt 6):1513–7.

    PubMed  CAS  Google Scholar 

  40. Duensing S, Münger K. Centrosome abnormalities and genomic instability induced by human papillomavirus oncoproteins. Prog Cell Cycle Res 2003; 5:383–91.

    PubMed  Google Scholar 

  41. Schmitt A, Harry JB, Rapp B, et al. Comparison of the properties of the E6 and E7 genes of low- and high-risk cutaneous papillomaviruses reveals strongly transforming and high Rb-binding activity for the E7 protein of the low-risk human papillomavirus type 1. J Virol 1994; 68:7051–9.

    PubMed  CAS  Google Scholar 

  42. Caldeira S, Zehbe I, Accardi R, et al. The E6 and E7 proteins of the cutaneous human papillomavirus type 38 display transforming properties. J Virol 2003; 77:2195–206.

    Article  PubMed  CAS  Google Scholar 

  43. Akgül B, Ghali L, Davies D, et al. HPV8 early genes modulate differentiation and cell cycle of primary human adult keratinocytes. Exp Dermatol 2007:16:590–599.

    Article  PubMed  Google Scholar 

  44. Smola-Hess S, Pahne J, Mauch C, et al. Expression of membrane type 1 matrix metalloproteinase in papillomavirus-positive cells: role of the human papillomavirus (HPV) 16 and HPV8 E7 gene products. J Gen Virol 2005; 86:1291–6.

    Article  PubMed  CAS  Google Scholar 

  45. Steger G, Pfister H. In vitro expressed HPV 8 E6 protein does not bind p53. Arch Virol 1992; 125:355–60.

    Article  PubMed  CAS  Google Scholar 

  46. Kiyono T, Hiraiwa A, Fujita M, et al. Binding of high-risk human papillomavirus E6 oncoproteins to the human homologue of the Drosophila discs large tumor suppressor protein. Proc Natl Acad Sci USA 1997; 94:11612–6.

    Article  PubMed  CAS  Google Scholar 

  47. Iftner T, Bierfelder S, Csapo Z, et al. Involvement of human papillomavirus type 8 genes E6 and E7 in transformation and replication. J Virol 1988; 62:3655–61.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Pfister, H. (2009). Oncogenic Viruses. In: Stockfleth, E., Ulrich, C. (eds) Skin Cancer after Organ Transplantation. Cancer Treatment and Research, vol 146. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-78574-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-78574-5_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-78573-8

  • Online ISBN: 978-0-387-78574-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics