Skip to main content
Log in

The cell cycle and the retinoblastoma protein family

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Tumor formation results from alterations in the control of normal cell proliferation. To further our understanding of the molecular mechanisms underlying the deregulation of cell proliferation much attention, over the past decade, has been focused on the function of proto-oncogenes. Cellular oncogenes are thought to be growth promoting. More recently, a class of genes known as tumor suppressors have come under intense study. Tumor suppressors are largely thought to restrain cell proliferation. The retinoblastoma protein (Rb) is one of a growing list of tumor suppressors. Concurrent with the study of tumor suppressor genes has been a rapid increase in our understanding of the cell cycle at the molecular level. Rb and a related protein p107 are involved in the processes of cell proliferation and differentiation. Each functionally interacts with and affects the activity of the transcription factor E2F as well as other transcription factors involved in cell proliferation and differentiation. Additionally, Rb and p107 are modified by, and/or form specific complexes with, several elements of the basic cell cycle machinery. Specifically, Rb and p107 interact with and are modified by various cyclins and cyclin dependent kinases (cdk), some of which have been shown to be essential for cell cycle progression and in some cases their deregulation has been implicated in the development of cancer. This review will attempt to convey our current functional and mechanistic understanding of the biological roles Rb and p107 play in proliferation, development and differentiation. A knowledge of the interplay between these positive and negative regulators of cell proliferation and differentiation, noted above, is central to our understanding of human cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Knudson AGJ: Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sic USA 68: 820–823, 1971

    Google Scholar 

  2. Benedict WF, Murphree AL, Banerjee A, Spina CA, Sparkes MC, Sparkes RS: Patient with chromosome 13 deletion: evidence that the retinoblastoma gene is a recessive cancer gene. Science 219: 973–975, 1983

    Google Scholar 

  3. Cavenee WK, Dryja TP, Phillips RA, Benedict WF, Godbout R, Gallie BL, Murphree AL, Strong LC, White RL: Expression of recessive alleles by chromosomal mechanisms in retinoblastoma. Nature 305: 779–784, 1983

    Google Scholar 

  4. Comings DE: A general theory of carcinogenesis. Proc Natl Acad Sci USA 70: 3324–3328, 1973

    Google Scholar 

  5. Godbout R, Dryja TP, Squire J, Gallie BL, Phillips RA: Somatic inactivation of genes on chromosome 13 is a common event in retinoblastoma. Nature 304: 451–453, 1983

    Google Scholar 

  6. Hansen MF, Koufos A, Gallie BL, Phillips RA, Fodstad O, Brogger A, Gedde-Dahl T, Cavenee WK: Osteosarcoma and retinoblastoma: a shared chromosomal mechanism revealing recessive predisposition. Proc Natl Acad Sci USA 82: 6216–6220, 1985

    Google Scholar 

  7. Sparkes RS, Murphree AL, Lingua RW, Sparkes MC, Field LL, Funderburk SJ, Bendict WF: Gene for hereditary retinoblastoma assigned to human chromosome 13 by linkage to esterase D. Science 219: 971–973, 1983

    Google Scholar 

  8. Dryja TP, Rapaport JM, Joyce JM, Petersen RA: Molecular detection of deletions involving band q14 of chromosome 13 in retinoblastoma. Proc Natl Acad Sci USA 83: 7391–7394, 1986

    Google Scholar 

  9. Friend SH, Bernards R, Rogelj S, Weinberg RA, Rapaport JM, Alberts DM, Dryja TP: A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature 323: 643–646, 1986

    Google Scholar 

  10. Lee W-H, Bookstein R, Hong F, Young L-H, Shew J-Y, Lee EY-HP: Human retinoblastoma susceptibility gene: cloning, identification, and sequence. Science 235: 1394–1399, 1987

    Google Scholar 

  11. Fung Y-KT, Murphree AL, T'Ang A, Qian J, Hinrichs SH, Benedict WF: Structural evidence for the authenticity of the human retinoblastoma gene. Science 236: 1657–1661, 1987

    Google Scholar 

  12. Lee W-H, Shew J-Y, Hong FD, Sery TW, Donoso LA, Young LJ, Bookstein R, Lee EY-HP: The retinoblastoma susceptibility gene encodes a nuclear phosphoprotein associated with DNA binding activity. Nature 329: 642–645, 1987

    Google Scholar 

  13. Friend SH, Horowitz HM, Gerber MR, Wang X, Bogenmann E, Li FP, Weinberg RA: Deletions of a DNA sequence in retinoblastomas and mesenchymal tumors: organization of the sequence and its encoded protein. Proc Natl Acad Sci USA 84: 9059–9063, 1987

    Google Scholar 

  14. Weinberg RA: Tumor suppressor genes. Science 254: 1138–1146, 1991

    Google Scholar 

  15. Huang H-JS, Yee J-K, Shew J-Y, Chen P-L, Bookstein R, Friedmann T, Lee EY-HP, Lee W-H: Suppression of the neoplastic phenotype by replacement of the RB gene in human cancer cells. Science 242: 1563–1566, 1988

    Google Scholar 

  16. Bookstein R, Shew J, Chen P, Scully P, Lee W: Suppression of tumorigenicity of human prostate carcinoma cells by replacing a mutated RB gene. Science 247: 712–715, 1990

    Google Scholar 

  17. Whyte P, Buchkovich KJ, Horowitz JM, Friend SH, Raybuck M, Weinberg RA, Harlow E: Association between an oncogene and an antioncogene: the adenovirus E1A proteins binds to the retinoblastoma gene product. Nature 334: 124–129, 1988

    Google Scholar 

  18. DeCaprio JA, Ludlow JW, Figge J, Shew J-Y, Huang C-M, Lee W-H, Marsilio E, Paucha E, Livingston DM: SV40 large T antigen forms a specific complex with the product of the retinoblastoma susceptibility gene. Cell 54: 275–283, 1988

    Google Scholar 

  19. Dyson N, Howley PM, Munger K, Harlow E: The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science 243: 934–937, 1989

    Google Scholar 

  20. Harlow E, Whyte P, Franza R Jr, Schley C: Association of adenovirus early-region 1A proteins with cellular polypeptides. Mol Cell Biol 6: 1579–1589, 1986

    Google Scholar 

  21. Yee S-P, Branton PE: Detection of cellular proteins associated with human adenovirus type 5 region 1A polypeptides. Virology 147: 142–153, 1985

    Google Scholar 

  22. Egan C, Bayley ST, Branton PE: Binding of theRb1protein to E1A products is required for adenovirus transformation. Oncogene 4: 383–388, 1989

    Google Scholar 

  23. Horowitz JM, Yandell DW, Park S, Canning S, Whyte P, Buchkovich K, Harlow E, Weinberg RA, Dryja TP: Point mutational inactivation of the retinoblastoma antioncogene. Science 243: 937–940, 1989

    Google Scholar 

  24. Kimelman D, Miller JS, Ponter D, Roberts BE: Ela regions of the human adenoviruses and of the highly oncogenic simian adenovirus 7 are closely related. J Virol 53: 399–409, 1985

    Google Scholar 

  25. Stabel S, Argos P, Philipson L: The release of growth arrest by microinjection of adenovirus E1A DNA. EMBO J 4: 2329–2336, 1985

    Google Scholar 

  26. Figge J, Webster T, Smith TF, Paucha E: Prediction of similar transforming regions in simian virus 40 large T, adenovirus E1A, and myc oncoproteins. J Virol 62: 1814–1818, 1988

    Google Scholar 

  27. Phelps WC, Yee CL, Munger K, Howley PM: The human papillomavirus type 16 E7 gene encodes transactivation and transformation functions similar to those of adenovirus E1A. Cell 53: 539–547, 1988

    Google Scholar 

  28. Kalderon D, Smith AE:In vitro mutagenesis of a putative DNA binding domain of SV40 large-T. Virology 139: 109–137, 1984

    Google Scholar 

  29. Moran E, Zerler B, Harrison TM, Mathews MB: Identification of separate domains in the adenovovirus E1A gene for immortalization activity and the activation of virus early genes. Mol Cell Biol 6: 3470–3480, 1986

    Google Scholar 

  30. Moran E, Mathews MB: Multiple functional domains in the adenovirus E1A gene. Cell 48: 177–178, 1987

    Google Scholar 

  31. Moran E: A region of SV40 large T antigen can substitute for a transforming domain of the adenovirus E1A products. Nature 334: 168–170, 1988

    Google Scholar 

  32. Whyte P, Ruley HE, Harlow E: Two regions of the adenovirus early region 1A proteins are required for transformation. J Virol 62: 257–265, 1988

    Google Scholar 

  33. Whyte P, Williamson NM, Harlow E: Cellular targets for transformation by the adenovirus E1A proteins. Cell 56: 67–75, 1989

    Google Scholar 

  34. Chen S, Paucha E: Identification of a region of simian virus 40 large T antigen required for cell transformation. J Virol 64: 3350–3357, 1990

    Google Scholar 

  35. Cherington V, Brown M, Paucha E, St. Louis J, Spiegelman BM, Roberts TM: Separation of simian virus 40 large-Tantigen-transforming and origin-binding functions from the ability to block differentiation. Mol Cell Biol 8: 1380–1384, 1988

    Google Scholar 

  36. Lillie JW, Loewenstein PM, Green MR, Green M: Functional domains of adenovirus type 5 Ela proteins. Cell 50: 1091–1100, 1987

    Google Scholar 

  37. McCormick F, Clark R, Harlow E, Tjian R: SV40 T antigen binds specifically to a cellular 53K proteinin vitro. Nature 292: 63–64, 1981

    Google Scholar 

  38. Finlay CA, Hinds PW, Levine A: The p53 proto-oncogene can act as a suppressor of transformation. Cell 57: 1083–1093, 1989

    Google Scholar 

  39. Hicks GG, Mowat M: Integration of Friend murine leukemia virus into both alleles of the p53 oncogene in an erythroleukemic cell line. J Virol 62: 4752–4755, 1988

    Google Scholar 

  40. Munroe DG, Rovinski B, Bernstein A, Benchimol S: Loss of a highly conserved domain of p53 as a result of a gene deletion during Freind virus-induced erythroleukemia. Oncogene 2: 621–624, 1988

    Google Scholar 

  41. Dyson N, Buchkovich K, Whyte P, Harlow E: The cellular 107K protein that binds to adenovirus E1A also associates with the large T antigens of SV40 and JC virus. Cell 58: 249–255, 1989

    Google Scholar 

  42. Ewen ME, Ludlow JW, Marsilio E, DeCaprio JA, Millikan RC, Cheng S, Paucha E, Livingston DM: An N-terminal transformation - governing sequence of SV40 large T antigen contributes to the binding of both p110RB and a second cellular protein, p120. Cell 58: 257–267, 1989

    Google Scholar 

  43. Ewen ME, Xing Y, Lawrence JB, Livingston DM: Molecular cloning chromosomal mapping, and expression of the cDNA for p107, a retin-oblastoma gene product-related protein. Cell 66: 1155–1164, 1991

    Google Scholar 

  44. DeCaprio JA, Ludlow JW, Lynch D, Furukawa Y, Griffin J, Piwnica-Worms H, Huang C-M, Livingston DM: The product of the retinoblastoma susceptibility gene has properties of a cell cycle regulatory element. Cell 58: 1085–1095, 1989

    Google Scholar 

  45. Buchkovich K, Duffy LA, Harlow E: The retinoblastoma protein is phosphorylated during specific phases of the cell cycle. Cell 58: 1097–1105, 1989

    Google Scholar 

  46. Chen P, Scully P, Shew J, ng JYJ, Lee W: Phosphorylation of the retinoblastoma gene product is modulated during the cell cycle and cellular differentiation. Cell 58: 1193–1198, 1989

    Google Scholar 

  47. Mihara K, Cao X, Yen A, Chandler S, Driscoll B, Murphree AL, T'Ang A, Fung Y: Cell cycle-dependent regulation of phosphorylation of the human retinoblastoma gene product. Science 246: 1300–1303, 1989

    Google Scholar 

  48. Ludlow JW, DeCaprio JA, Huang C, Lee W, Paucha E, Livingston DM: SV40 large T antigen binds preferentially to an underphosphorylated member of the retinoblastoma susceptibility gene product family. Cell 56: 57–65, 1989

    Google Scholar 

  49. Ludlow JW, Shon J, Pipas JM, Livingston D, DeCaprio JA: The retinoblastoma susceptibility gene product undergoes cell cycle-dependent dephosphorylation and binding to and release from SV40 large T. Cell 60: 387–396, 1990

    Google Scholar 

  50. Ludlow JW, Glendening CL, Livingston DM, DeCaprio JA: Specific enzymatic dephosphorylation of the retinoblastoma protein. Mol Cell Biol 13: 367–372, 1993

    Google Scholar 

  51. Durfee T, Becherer K, Chen P-L, Yeh S-H, Yang Y, Kilburn AE, Lee W-H, Elledge SJ: The retinoblastoma protein associates with the protein phosphatase type 1 catalytic subunit. Genes Dev 7: 555–569, 1993

    Google Scholar 

  52. DeCaprio JA, Furukawa Y, Ajchenbaum F, Griffen J, Livingston DM: The retinoblastoma-susceptibility gene product becomes phosphorylated in multiple stages during cell cycle entry and progression. Proc Natl Acad Sci USA 89: 1795–1798, 1992

    Google Scholar 

  53. Mittnacht S, Weinberg RA: G1/S phosphorylation of the retinoblastoma protein is associated with an altered affinity for the nuclear compartment. Cell 65: 381–393, 1991

    Google Scholar 

  54. Templeton DJ, Park SH, Lanier L, Weinberg RA: Nonfunctional mutants of the retinoblastoma protein are characterized by defects in phosphorylation, viral oncoprotein association, and nuclear tethering. Proc Natl Acad Sci USA 88: 3033–3037, 1991

    Google Scholar 

  55. Templeton DJ: Nuclear binding of purified retinoblastoma gene product is determined by cell cycle-regulated phosphorylation. Mol Cell Biol 12: 435–443, 1992

    Google Scholar 

  56. Hu Q, Dyson N, Harlow E: The regions of the retinoblastoma protein needed for binding to adenovirus E1A or SV40 large T antigen are common sites for mutations. EMBO J 9: 1147–1155, 1990

    Google Scholar 

  57. Huang S, Wang N, Tseng BY, Lee W, Lee EH: Two distinct and frequently mutated regions of retinoblastoma protein are required for binding to SV40 T antigen. EMBO J 9: 1815–1822, 1990

    Google Scholar 

  58. Kaelin WG Jr, Ewen ME, Livingston DM: Definition of the minimal simian virus 40 large T antigen- and adenovirus E1A-binding domain in the retinoblastoma gene product. Mol Cell Biol 10: 3761–3769, 1990

    Google Scholar 

  59. Horowitz JM, Park S, Bogenmann E, Cheng J, Yandell DW, Kaye FJ, Minna JD, Dryja TP, Weinberg RA: Frequent inactivation of the retinoblastoma anti-oncogene is restricted to a subset of human tumor cells. Proc Natl Acad Sci USA 87: 2775–2779, 1990

    Google Scholar 

  60. Kaye FJ, Kratzke RA, Gerster JL, Horowitz JM: A single amino acid substitution results in a retinoblastoma protein defective in phosphorylation and oncoprotein binding. Proc Natl Acad Sci USA 87: 6922–6926, 1990

    Google Scholar 

  61. Shew J, Chen P, Bookstein R, Lee EY, Lee W: Deletion of a splice donor site ablates expression of the following exon and produces an unphosphorylated RB protein unable to bind SV40 T antigen. Cell Growth Diff 1: 17–25, 1990

    Google Scholar 

  62. Shew J, Lin BT, Chen P, Tseng BY, Yang-Feng TL, Lee W: C-terminal truncation of the retinoblastoma gene product leads to functional inactivation. Proc Natl Acad Sci USA 87: 6–10, 1990

    Google Scholar 

  63. Scheffner M, Munger K, Byrne JC, Howley PM: The state of the p53 and retinoblastoma genes in human cervical carcinoma cell lines. Proc Natl Acad Sci USA 88: 5523–5527, 1991

    Google Scholar 

  64. Hamel PA, Cohen BL, Sorce LM, Gallie BL, Phillips RA: Hyperphosphorylation of the retinoblastoma gene product is determined by domains outside the simian virus 40 large-T-antigen-binding regions. Mol Cell Biol 10: 6586–6595, 1990

    Google Scholar 

  65. Lees JA, Buchkovich KJ, Marshak DR, Anderson CW, Harlow E: The retinoblastoma protein is phosphorylated on multiple sites by human cdc2. EMBO J 10: 4279–4290, 1991

    Google Scholar 

  66. Hamel PA, Gill RM, Phillips RA, Gallie BL: Regions controlling hyperphosphorylation and conformation of the retinoblastoma gene product are independent of domains required for transcriptional repression. Oncogene 7: 693–701, 1992

    Google Scholar 

  67. Qin X-Q, Chittenden T, Livingston DM, Kaelin WG: Identification of a growth suppression domain within the retinoblastoma gene product. Genes and Devel 6: 953–964, 1992

    Google Scholar 

  68. Goodrich DW, Wang NP, Qian Y-W, Lee EY-HP, Lee W-H: The retinoblastoma gene product regulates progression through the G1 phase of the cell cycle. Cell 67: 293–302, 1991

    Google Scholar 

  69. Hiebert SW, Chellappan SP, Horowitz JM, Nevins JR: The interaction of RB with E2F coincides with an inhibition of the transcriptional activity of E2F. Genes and Devel 6: 177–185, 1992

    Google Scholar 

  70. Ewen ME, Sluss HK, Sherr CJ, Matsushime H, Kato J-Y, Livingston DM: Functional interactions of the retinoblastoma protein with mammalian D-type cyclins. Cell 73: 487–497, 1993

    Google Scholar 

  71. Matsushime H, Ewen ME, Strom DK, Kato J-Y, Hanks SK, Roussel MF, Sherr CJ: Identification and properties of an atypical catalytic subunit (p34PSK-J3/cdk4) for mammalian D type cyclins. Cell 71: 323–334, 1992

    Google Scholar 

  72. Dowdy SF, Hinds PW, Louie K, Reed SI, Arnold A, Weinberg RA: Physical interaction of the retinoblastoma protein with human D cyclins. Cell 73: 499–511, 1993

    Google Scholar 

  73. Kaelin WG, Pallas DC, DeCaprio JA, Kaye FJ, Livingston DM: Identification of cellular proteins that can interact specifically with the T/E1A-binding region of the retinoblastoma gene product. Cell 64: 521–532, 1991

    Google Scholar 

  74. Huang S, Lee W-H, Lee Y-HP: A cellular protein that competes with SV40 T antigen for binding the retinoblastoma gene product. Nature 350: 160–162, 1991

    Google Scholar 

  75. Defeo-Jones D, Huang PS, Jones RE, Haskell KM, Vuuocolo GA, Hanobik MG, Huber HE, Oliff A: Cloning of cDNAs for cellular proteins that bind to the retinoblastoma gene product. Nature 352: 251–254, 1991

    Google Scholar 

  76. Helin K, Lees JA, Vidal M, Dyson N, Harlow E, Fattaey A: A cDNA encoding a pRB-binding protein with properties of the transcription factor E2F. Cell 70: 337–350, 1992

    Google Scholar 

  77. Kaelin WG, Krek W, Sellers WR, DeCaprio JA, Ajchenbaum F, Fuchs CS, Chittenden T, Li Y, Farnham PJ, Blanar MA, Livingston DM, Flemington EK: Expression cloning of a cDNA encoding a retinoblastoma-binding protein with E2F-like properties. Cell 70: 351–364, 1992

    Google Scholar 

  78. Shan B, Zhu X, Chen P-L, Durfee T, Yang Y, Sharp D, Lee W-H: Molecular cloning of cellular genes encoding retinoblastoma-associated proteins: identification of a gene with properties of the transcription factor E2F. Mol Cell Biol 12: 5620–5631, 1992

    Google Scholar 

  79. Kato J-Y, Matsushime H, Hiebert SW, Ewen ME, Sherr CJ: Direct binding of cyclin D to the retinoblastoma gene product and pRb phosphorylation by the cyclin D-dependent kinase, cdk4. Genes and Devel 7: 331–342, 1993

    Google Scholar 

  80. Wang C-Y, Petrynaik B, Thompson CB, Kaelin WG, Leiden JM: Regulation of an ETS-related transcription factor, Elf-1 binding to the retinoblastoma protein. Science in press, 1993

  81. Gu W, Schneider JW, Condorelli G, Kaushal S, Mahdavi V, Nadal-Ginard B: Interaction of myogenic factors and the retinoblastoma protein mediates muscle cell commitment and differentiation. Cell 72: 309–324, 1993

    Google Scholar 

  82. Rustgi AK, Dyson N, Bernards R: Amino-terminal Domains of c-myc and N-myc proteins mediate binding to the retinoblastoma gene product. Nature 352: 541–544, 1991

    Google Scholar 

  83. Kim S-J, Wagner S, Liu F, O'Reilly MA, Robbins PD, Green MR: Retinoblastoma gene product activates expression of the human TGF-β2 gene through transcription factor ATF-2. Nature 358: 331–334, 1992

    Google Scholar 

  84. Hagemeier C, Bannister AJ, Cook A, Kouzarides T: The activation domain of transcription factor PU.1 binds the retinoblastoma (RB) protein and the transcription factor TFIIDin vitro: RB shows sequence similarity to TFIID and TFIIB. Proc Natl Acad Sci USA 90: 1580–1584, 1993

    Google Scholar 

  85. Nevins JR: E2F: a link between Rb tumor supressor protein and viral oncoproteins. Science 258: 424–429, 1992

    Google Scholar 

  86. Bagchi S, Raychaudhuri P, Nevins JR: Adenovirus E1A can dissociate heteromeric complexes involving the E2F transcription factor: a novel mechanism for E1A trans-activation. Cell 62: 659–669, 1990

    Google Scholar 

  87. Chellappan SP, Hiebert S, Mudryj M, Horowitz JM, Nevins JR: The E2F transcription factor is a cellular target for the RB protein. Cell 65: 1053–1061, 1991

    Google Scholar 

  88. Bandara LE, La Thangue NB: Adenovirus E1A prevents the retinoblastoma gene product from complexing with a cellular transcription factor. Nature 351: 494–497, 1991

    Google Scholar 

  89. Bagchi S, Weinmann R, Raychaudhuri P: The retinoblastoma protein copurifies with E2F-I, an E1A-regulated inhibitor of the transcription factor E2F. Cell 65: 1063–1072, 1991

    Google Scholar 

  90. Chittenden T, Livingston DM, Kaelin WG: The T/E1A-binding domain of the retinoblastoma product can interact selectively with a sequence-specific DNA-binding protein. Cell 65: 1073–1082, 1991

    Google Scholar 

  91. Hiebert SW, Lipp M, Nevins JR: E1A-dependent trans-activation of the human MYC promoter is mediated by the E2F factor. Proc Natl Acad Sci USA 86: 3594–3598, 1989

    Google Scholar 

  92. Mudryj M, Hiebert SW, Nevins JR: A role for the adenovirus inducible E2F transcription factor in a proliferation dependent signal transduction pathway. EMBO J 9: 2179–2184, 1990

    Google Scholar 

  93. Hamel PA, Gill RM, Phillips RA, Gallie BL: Transcriptional repression of the E2-containing promoters EIIaE, c-myc, and RB1 by the product of the RB1 by the product of the RB1 gene. Mol Cell Biol 12: 3431–3438, 1992

    Google Scholar 

  94. Dalton S: Cell cycle regulation of the human cdc2 gene. EMBO J 11: 1797–1804, 1992

    Google Scholar 

  95. Slansky JE, Li Y, Kaelin WG, Farnham PJ: A protein synthesis-dependent increase in E2F1 mRNA correlates with growth regulation of the DHFR promoter. Mol Cell Biol 13: 1610–1618, 1993

    Google Scholar 

  96. Pearson BE, Nasheuer HP, Wang TSF: Human DNA polymerase alpha gene, sequences controlling expression in cycling and serum-stimulated cells. Mol Cell Biol 11: 2081–2095, 1991

    Google Scholar 

  97. Kim Y, Lees A: The identification of a 70 base pair cellcycle regulatory unit within the promoter of the human thymidine kinase gene and its interaction with cellular factors. Mol Cell Biol 11: 2296–2302, 1991

    Google Scholar 

  98. Blake M, Azizkhan JC: Transcription factor E2F is required for efficient expression of the hamster dihydrofolate reductase genein vitro andin vivo. Mol Cell Biol 9: 4994–5002, 1989

    Google Scholar 

  99. Brechot C: Oncogenic activation of cyclin A. Curr Opin Genet Devel 3: 11–18, 1993

    Google Scholar 

  100. Dou Q-P, Markell PJ, Pardee AB: Thymidine kinase transcription is regulated at G1-S phase by a complex that contains retinoblastoma-like protein and a cdc2 kinase. Proc Natl Acad Sci USA 89: 3256–3260, 1992

    Google Scholar 

  101. Means AL, Slansky JE, McMahon SL, Knuth MW, Farnham PJ: The HIP1 binding site is required for growth regulation of the dihydrofolate reductase gene promoter. Mol Cell Biol 12: 1054–1063, 1992

    Google Scholar 

  102. Weintraub SJ, Prater CA, Dean DC: Retinoblastoma protein switches the E2F site from positive to negative element. Nature 358: 259–261, 1992

    Google Scholar 

  103. Zamanian M, La Thangue NB: Adenovirus E1A prevents the retinoblastoma gene product from repressing the activity of a cellular transcription factor. EMBO J 11: 2603–2610, 1992

    Google Scholar 

  104. Flemington EK, Speck SH, Kaelin WG: E2F-1 mediated transactivation is inhibited by complex formation with the retinoblastoma susceptibility gene product. Proc Natl Acad Sci USA in press, 1993

  105. Huber HE, Edwards G, Goodhart PJ, Patrick DR, Huang PS, Ivey-Hoyle M, Barnett SF, Oliff A, Heimbrook DC: Transcription factor E2F binds DNA as a heterodimer. Proc Natl Acad Sci USA 90: 35–25, 1993

    Google Scholar 

  106. Girling R, Partridge JF, Bandara LR, Burden N, Totty NF, Hsuan JJ, La Thangue NB: A new component of the transcription factor DRTF1/E2F 1. Nature 362: 83–87, 1993

    Google Scholar 

  107. Shirodkar S, Ewen M, DeCaprio JA, Morgan J, Livingston DM, Chittenden T: The transcription factor E2F interacts with the retinoblastoma product and a p107-cyclin A complex in a cell cycle-regulated manner. Cell 68: 157–166, 1992

    Google Scholar 

  108. Devoto SH, Mudryj M, Pines J, Hunter T, Nevins JR: A cyclin A protein kinase complex possesses sequence specific DNA binding activity: p33cdk2 is a component of the E2F-cyclin A complex. Cell 68: 167–176, 1992

    Google Scholar 

  109. Cao L, Faha B, Dembski M, Tsai L-H, Harlow E, Dyson N: Independent binding of the retinoblastoma protein and p107 to the transcription factor E2F. Nature 355: 176–179, 1992

    Google Scholar 

  110. Lees E, Faha B, Dulic V, Reed SI, Harlow E: Cyclin E/cdk2 and cyclin A/cdk2 kinases associate with p107 and E2F in a temporally distinct manner. Genes and Devel 6: 1874–1885, 1992

    Google Scholar 

  111. Schwarz JK, Devoto SH, Smith EJ, Chellappan SP, Jakoi L, Nevins JR: Interactions of the p107 and Rb proteins with E2F during the cell proliferation response. EMBO J 12: 1013–1020, 1993

    Google Scholar 

  112. Chittenden T, Livingston DM, DeCaprio JA: Cell cycle analysis of E2F in primary human T cells reveals novel E2F complexes and biochemically distinct forms of ‘free’ E2F. Mol Cell Biol in press, 1993

  113. Boise LH, Petryniak B, Mao X, June CH, Wang C-Y, Lindsten T, Bravo R, Kovary K, Leiden JM, Thompson CB: The NFAT-1 DNA binding complex in activated T-cells contains Fra-1 and JunB. Mol Cell Biol 13: 1911–1919, 1993

    Google Scholar 

  114. Ajchenbaum F, Ando K, deCaprio JA, Griffin JD: Independent regulation of human D-type cyclin gene expression during G1 phase in primary human T lymphocytes. J Cell Biol 268: 4113–4119, 1992

    Google Scholar 

  115. Robbins PD, Horowitz JM, Mulligan RC: Negative regulation of human c-fos expression by the retinoblastoma gene product. Nature 346: 668–671, 1990

    Google Scholar 

  116. Kim S-J, Lee H-D, Robbins PD, Busam K, Spororn MB, Roberts AB: Regulation of transforming growth factor β1 gene expression by the product of the retinoblastoma-susceptibility gene. Proc Natl Acad Sci USA 88: 3052–3056, 1991

    Google Scholar 

  117. Kim S-J, Onwuta US, Lee YI, Li R, Botchan MR, Robbins PD: The retinoblastoma gene product regulates Sp-1 mediated transcription. Mol Cell Biol 12: 2455–2463, 1992

    Google Scholar 

  118. Laiho M, DeCaprio JA, Ludlow JW, Livingston DM, Massagué J: Growth inhibition by TGF-β linked to suppression of retinoblastoma protein phosphorylation. Cell 62: 175–185, 1990

    Google Scholar 

  119. Pietenpol JA, Holt JT, Stein RW, Moses HL: Transforming growth factor β1 supression of c-myc gene transcription: role in inhibition of keratinocyte proliferation. Proc Natl Acad Sci USA 87: 3758–3762, 1990

    Google Scholar 

  120. Pietenpol JA, Stein RW, Moran E, Yaciuk P, Schlegel R, Lyons RM, Pittelkow MR, Munger K, Howley PM, Moses HL: TGF-β inhibition of c-myc transcription and growth in keratinocytes is abrogated by viral transforming proteins with pRB binding domains. Cell 61: 777–785, 1990

    Google Scholar 

  121. Furukawa Y, Uenoyama S, Ohta M, Tsunoda A, Griffin JD, Saito M: Transforming growth factor-β inhibits phosphorylation of the retinoblastoma susceptibility gene product in human monocytic leukemia cell line JOSH-I. J Biol Chem 267: 17121–17127, 1992

    Google Scholar 

  122. Massagué J: The transforming growth factor-β family. Annu Rev Cell Biol 6: 597–641, 1990

    Google Scholar 

  123. Kimchi A, Wang X-F, Weinberg RA, Cheifetz S, Massagué J: Absence of TGF-β receptors and growth inhibitory responses in retinoblastoma cells. Science 240: 196–199, 1988

    Google Scholar 

  124. Pietenpol JA, Münger K, Howley PM, Stein RW, Moses HL: Factor-binding element in the human c-myc promoter involved in transcriptional regulation by transforming growth factor b1 and by the retinoblastoma gene product. Proc Natl Acad Sci USA 88: 10227–10231, 1991

    Google Scholar 

  125. Zentella A, Weis FMB, Ralph DA, Laiho M, Massagué J: Early gene responses to transforming growth factor-β in cells lacking growth suppressive RB function. Mol Cell Biol 11: 4952–4958, 1991

    Google Scholar 

  126. Goodrich DW, Lee W-H: Abrogation by c-myc of G1 phase arrest induced RB protein but not by p53. Nature 360: 177–179, 1992

    Google Scholar 

  127. Green MR: When the products of oncogenes and anti-oncogenes meet. Cell 56: 1–3, 1989

    Google Scholar 

  128. Furukawa Y, DeCaprio JA, Freedman A, Kanakura Y, Nakamura M, Ernst TJ, Livingston DM, Griffin JD: Expression and state of phosphorylation of the retinoblastoma susceptibility gene product in cycling and noncycling human hematopoetic cells. Proc Nat Acad Sci USA 87: 2770–2774, 1990

    Google Scholar 

  129. Stein GH, Beeson M, Gordon L: Failure to phosphorylate the retinoblastoma gene product in senescent human fibroblasts. Science 249: 666–668, 1990

    Google Scholar 

  130. Lee EY-HP, Chang C-Y, Hu N, Wang Y-CJ, Lai C-C, Herrup K, Lee W-H, Bradley A: Mice deficient for Rb are nonviable and show defects in neurogenesis and haematopoiesis. Nature 359: 288–294, 1992

    Google Scholar 

  131. Jacks T, Fazeli A, Schmitt EM, Bronson RT, Goodell MA, Weinberg RA: Effects oan Rb mutation in the mouse. Nature 359: 295–300, 1992

    Google Scholar 

  132. Clarke AR, Maandag ER, van Roon M, van der Lugt NMT, van der Valk M, Hooper ML, Berns A, Riele H: Requirement for a functional Rb-1 gene in murine development. Nature 359: 328–330, 1992

    Google Scholar 

  133. Harlow E: For our eyes only. Nature 359: 270–271, 1992

    Google Scholar 

  134. Bernards R, Schackleford GM, Gerber MR, Horowitz JM, Friend SH, Schartl M, Bogenmann E, Rapaport JM, McGee T, Dryja TP, Weinberg RA: Structure and expression of the murine retinoblastoma gene and characterization of its encoded protein. Proc Natl Acad Sci USA 86: 6474–6478, 1989

    Google Scholar 

  135. Norbury C, Nurse P: Animal cell cycles and their control Annu Rev Biochem 61: 441–470, 1992

    Google Scholar 

  136. Nurse P: Universal control mechanism regulating onset of M-phase. Nature 344: 503–508, 1990

    Google Scholar 

  137. Motokura T, Bloom T, Kim HG, Juppner H, Ruderman JV, Kronenberg HM, Arnold A: A novel cyclin encoded by a bcll-linked candidate oncogene. Nature 350: 512–515, 1991

    Google Scholar 

  138. Matsushime H, Roussel MF, Ashmun RA, Sherr CJ: Colony-stimulating factor 1 regulates novel cyclins during the G1 phase of the cell cycle. Cell 65: 701–713, 1991

    Google Scholar 

  139. Xiong Y, Connolly T, Futcher B, Beach D: Human D-type cyclin. 65: 691–699, 1991

    Google Scholar 

  140. Koff A, Cross F, Fisher A, Schumacher J, Leguellec K, Philippe M, Roberts JM: Human cyclin E, a new cyclin that interacts with two members of the CDC2 gene family. Cell 66: 1991

  141. Lew DJ, Dulic V, Reed SI: Isolation of three novel human cyclins by rescue of G1 cyclin (Cln) function in yeast. Cell 66: 1197–1206, 1991

    Google Scholar 

  142. Motokura T, Arnold A: Cyclin D and oncogenesis. Curr Opin Genet Devel 3: 5–10, 1993

    Google Scholar 

  143. Elledge SJ, Spottswood MR: A new human protein kinase, cdk2, identified by complementation of a cdc28 mutation in Saccharomyces cerevisiae, is a homologue of Xenopus Eg1. EMBO J 10: 2653–2659, 1991

    Google Scholar 

  144. Elledge SJ, Richman R, Hall FL, Williams RT, Lodgson N, Harper JW: CDK2 encodes a 33-kDa cyclin A associated protein kinase and is expressed before CDC2 in the cell cycle. Proc Natl Acad Sci USA 89: 2907–2911, 1992

    Google Scholar 

  145. Tsai LH, Harlow E, Meyerson M: Isolation of the human cdk2 gene that encodes the cyclin A- and adenovirus E1A-associated p33 kinase. Nature 353: 174–177, 1991

    Google Scholar 

  146. Ninomiya-Tsuji J, Nomoto S, Yasuda H, Reed SI, Matsumoto K: Cloning of a human cDNA encoding a CDC2-related kinase by complementation of a budding yeast cdc28 mutation. Proc Natl Acad Sci USA 88: 9006–9010, 1991

    Google Scholar 

  147. Meyerson M, Enders GH, Wu C-L, Su L-K, Gorka C, Nelson C, Harlow E, Tsai L-H: A family of human cdc2-related protein kinases. EMBO J 11: 2909–2917, 1992

    Google Scholar 

  148. Xiong Y, Zhang H, Beach D: D-type cyclins associate with multiple protein kinases and the DNA replication and repair factor PCNA. Cell 71: 505–514, 1992

    Google Scholar 

  149. Girard F, Strausfeld U, Fernandez A, Lamb NJC: Cyclin A is required for the onset of DNA replication in mammalian fibroblasts. Cell 67: 1169–1179, 1991

    Google Scholar 

  150. Pagano M, Pepperkokok R, Verde F, Ansorge W, Draetta G: Cyclin A is required at two points in the human cell cycle. EMBO J 11: 961–971, 1992

    Google Scholar 

  151. Blow JJ, Nurse P: A cdc2-like protein is involved in the initiation of DNA replication in xenopus egg extracts. Cell 62: 855–862, 1990

    Google Scholar 

  152. Fang F, Newport JW: Evidence that the G1-S and G2-M transitions are controlled by different cdc2 proteins in higher eukaryotes. Cell 66: 731–742, 1991

    Google Scholar 

  153. Zindy F, Lamas E, Chenivesse X, Sobczak J, Wang J, Fesquet DBH, Brechot C: Cyclin A is required in S phase in normal epithelial cells. Biochem Biophys Res Commun 182: 1144–1154, 1992

    Google Scholar 

  154. Arion D, Meijer L, Brizuela L, Beach D: cdc2 is a component of M phase-specific histone H1 kinase: evidence for identity with MPF. Cell 55: 371–378, 1988

    Google Scholar 

  155. Hu Q, Lees JA, Buchkovich KJ, Harlow E: The retinoblastoma protein physcially associates with the human cdc2 kinase. Mol Cell Biol 12: 971–980, 1992

    Google Scholar 

  156. Lin BT-Y, Gruenwald S, Morla AO, Lee W-H, Wang JYJ: Retinoblastoma cancer suppressor gene product is a substrate of the cell cycle regulator cdc2 kinase. EMBO J 10: 857–864, 1991

    Google Scholar 

  157. Taya Y, Yasuda H, Kamijo M, Nakaya K, Nakamura Y, Ohba Y, Nishimura S:In vitro phosphorylation of the tumor suppressor gene Rb protein by mitosis-specific histone H1 kinase. Biochem Biophys Res Commun 164: 580–586, 1989

    Google Scholar 

  158. Williams RT, Carbonaro-Hall DA, Hall FL: Co-purification of p34 cdc2/p58 cyclin A proline-directed protein kinase and the retinoblastoma tumor susceptibility gene product: interaction of an oncogenic serine-threonine protein kinase with a tumor-suppressor protein. Oncogene 7: 423–432, 1992

    Google Scholar 

  159. Hinds PW, Mittnacht S, Dulic V, Arnold A, Reed SI, Weinberg RA: Regulation of retinoblastoma protein functions by ectopic expression of human cyclins. Cell 70: 993–1006, 1992

    Google Scholar 

  160. Pines J, Hunter T: Human cyclin is A adenovirus E1A-associated protein p60 and behaves differently from cyclin. Nature 346: 760–763, 1990

    Google Scholar 

  161. Koff A, Giordano A, Desai D, Yamashita K, Harper JW, Elledge S, Nishimoto T, Morgan DO, Franza BR, Roberts JM: Formation and activation of a cyclin E-cdk2 complex during the G1 phase of the human cell cycle. Science 257: 1689–1694, 1992

    Google Scholar 

  162. Dulic V, Lees E, Reed SI: Association of human cyclin E with a periodic G1-S phase protein kinase. Science 257: 1958–1961, 1992

    Google Scholar 

  163. Wang J, Chenivesse X, Henglein B, Brrechot C: Hepatitis B virus integration in a cyclin A gene in a hepatocellular carcinoma. Nature 343: 555–557, 1990

    Google Scholar 

  164. Pagano M, Pepperkok R, Lukas J, Baldin V, Ansorge W, Bartek J, Draetta G: Regulation of the cell cycle by the cdk2 protein kinase in cultured human fibroblasts. J Cell Biol 121: 101–111, 1993

    Google Scholar 

  165. Ohtsubo M, Roberts JM: Cyclin-dependent regulation of G1 in mammalian fibroblasts. Science 259: 1908–1912, 1993

    Google Scholar 

  166. Ewen ME, Sluss HK, Whitehouse LL, Livingston DM: TGFβ inhibition of cdk4 synthesis is linked to cell cycle arrest. Cell, in press, 1993

  167. Koff A, Othsuki M, Polyak K, Roberts JM, Massague J: Negative regulation of G1 in mammalian cells: inhibition of cyclin E-dependent kinase by TGF-β1. Science 260: 536–539, 1993

    Google Scholar 

  168. Inaba T, Matsushime H, Valentine M, Roussel MF, Sherr CJ, Look AT: Genomic organization, chromosomal localization, and independent expression of human cyclin D genes. Genomics 13: 565–574, 1992

    Google Scholar 

  169. Kiyokawa H, Busquets X, Powell CT, Ngo L, Fifkind RA, Marks PA: Cloning of a D-type cyclin from murine erythroleukemia cells. Proc Natl Acad Sci USA 89: 2444–2447, 1992

    Google Scholar 

  170. Cocks BG, Vairo G, Bodrug SE, Hamilton JA: Suppression of growth factor-induced CYL1 cyclin gene expression by antiproliferative agents. J Biol Chem 267: 12307–12309, 1992

    Google Scholar 

  171. Won K-A, Xiong Y, Beach D, Gilman MZ: Growth-regulated expression of D-type cyclin genes in human diploid fibroblasts. Proc Natl Acad Sci USA 89: 9910–9914, 1992

    Google Scholar 

  172. Kinoshita N, Ohkura H, Yanagida M: Distinct, essential roles of type 1 and 2A protein phosphateses in control of the fission yeast cell division cycle. Cell 63: 405–415, 1990

    Google Scholar 

  173. Fernandez A, Brautigan DL, Lamb NJC: Protein phosphatase type 1 in mammalian cell mitosis: chromosomal localization and involvement in mitotic exit. J Biol Chem 116: 1421–1430, 1992

    Google Scholar 

  174. Ewen ME, Faha B, Harlow E, Livingston DM: Interaction of p107 with cyclin A independent of complex formation with viral oncoproteins. Science 255: 85–87, 1992

    Google Scholar 

  175. Giordano A, Whyte P, Harlow E, Franza BRJ, Beach D, Draetta G: A 60 kd cdc2-associated polypeptide complexes with the E1A proteins in adenovirus-infected cells. Cell 58: 981–990, 1989

    Google Scholar 

  176. Faha B, Ewen M, Tsai L, Livingston DM, Harlow E: Interaction between human cyclin A and adenovirus E1A-associated p107 protein. Science 255: 87–90, 1992

    Google Scholar 

  177. Peeper DS, Parker LL, Ewen ME, Toebes M, Frederick FL, Xu M, Zantema A, van der Eb AJ, Pinwica-Worms H: A- and B-type cyclins differentially modulate substrate specificity of cyclin-CDK complexes. EMBO J in press, 1993

  178. Walker DH, Maller JL: Role for cyclin A in the dependence of mitosis on completion of DNA replication. Nature 354: 314–317, 1991

    Google Scholar 

  179. Herrmann CH, Su L-K, Harlow E: Adenovirus E1A is associated with a serine/threonine protein kinase. J Virol 65: 5848–5859, 1991

    Google Scholar 

  180. Giordiano A, Lee JH, Scheppler JA, Herrmann C, Harlow E, Deuschle U, Beach D, Franza BR: Cell cycle regulation of histone H1 kinase activity associated with the adenoviral protein E. Science 253: 1271–1275, 1991

    Google Scholar 

  181. Zhu L, van der Heuvel S, Helin K, Fattaey A, Ewen M, Dyson N, Harlow E: Inhibition of cell proliferation by p107. Genes and Devel in press, 1993

  182. Chen P-L, Chen Y, Shan B, Bookstein R, Lee W-H: Stability of retinoblastoma gene expression determines the tumorigenicity of reconstituted retinoblastoma cells. Cell Growth Diff 3: 119–125, 1992

    Google Scholar 

  183. Banjeree A, Xu H-J, Hu S-X, Araujo D, Takahashi R, Stanbridge EJ, Benedict WF: Changes in growth and tumorigenicity following reconstitution of retinoblastoma gene function in various human cancer cell types by microcell transfer of chromosome 13. Cancer Res 52: 6297–6304, 1992

    Google Scholar 

  184. Pardee AB: G1 events and regulation of cell proliferation. Science 246: 603–608, 1989

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ewen, M.E. The cell cycle and the retinoblastoma protein family. Cancer Metast Rev 13, 45–66 (1994). https://doi.org/10.1007/BF00690418

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00690418

Key words

Navigation