Skip to main content

Part of the book series: Plant Genetics and Genomics: Crops and Models ((PGG,volume 6))

Pear, like the other pip fruit species apple and quince, belongs to the sub-family Maloideae in the Rosaceae, sharing a basic chromosome number of x = 17 which indicates a polyploidy origin. The genus Pyrus is believed to have arisen during the Tertiary period in the mountainous regions of western China. Dispersal and speciation is believed to have followed the mountain chains both east and west (Rubzov, 1944; Zeven and Zhukovsky, 1975). Wild pears can be found in the entire Eurasian zone. In Europe they are mostly Pyrus communis L. subsp. pyraster (L.) and in the Caucasus, P. caucasica (Fed.) Browicz. These pear trees produce small fruits of variable characteristics, which were probably picked and preserved dried by early humans. Domestication occurred from the better-fruited trees. As for apple, grafting played a key role in the diffusion of improved genotypes in Central Asia and in Eastern Mediterranean area. According to Hedrick et al. (1921), European pear culture was well established in Greece and cultivars with distinct names were propagated as early as 300 B.C. Oriental pears, which arose independently, were also grown in China for more than 2000 years (Kikuchi, 1946).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe K, and Kotobuki K (1998) Inheritance of high resistance to Venturia nashicola Tanaka et Yamamoto in Japanese pear (Pyrus pyrifolia Nakai) and Chinese pear (P. ussuriensis Maxim.). J Japan Soc Hort Sci 67: 677–680

    Article  Google Scholar 

  • Banno K, Ishikawa H, Hamauzu Y, and Tabira H (1999) Identification of a RAPD marker linked to the susceptible gene of black spot disease in Japanese pear. J Japan Soc Hortic Sci 68: 476–481

    Article  CAS  Google Scholar 

  • Bao L, Chen K, Zhang D, Cao Y, Yamamoto T, and Teng T (2007) Genetic diversity and similarity of pear (Pyrus L.) cultivars native to East Asia revealed by SSR (simple sequence repeat) markers. Genet Resour Crop Evol 54: 959–971

    Article  CAS  Google Scholar 

  • Bell RL (1990) Pears (Pyrus). In: Moore JN, Ballington JR Jr. (eds), Genetic resources of temperate fruit and nut crops I. International Society for Horticultural Science, Wageningen, The Netherlands, pp655–697

    Google Scholar 

  • Bell RL, Quamme HA, Layne REC, and Skirvin RM (1996) Pears. In: Janick J, Moore JN (eds), Fruit breeding, volume I: tree and tropical fruits. John Wiley and Sons Inc, UK, pp441–514

    Google Scholar 

  • Bell RL, Scorza R, Srinivasan C, and Webb K (1999) Transformation of “Beurre Bosc” pear with the rolC gene., J Amer Soc Hortic Sci 124: 570–574

    CAS  Google Scholar 

  • Bellini E (1995) Pear breeding and genetics (Pyrus communis L.). In Bellini E (ed), State of the art and perspectives of world genetic improvement of fruit tree species (peach, plum, apricot and pear), Societa Orticola Italiana, Firenze, pp99–157

    Google Scholar 

  • Bellini E, and Nin S (2002) Breeding for new traits in pear. Acta Hort 596: 217–224

    Google Scholar 

  • Bouvier L, Zhang YZ, and Lespinasse Y (1993) Two methods of haploidization in pear, Pyrus communis L., greenhouse seedling selection and in situ parthenogenesis induced by irradiated pollen. Theor Appl Genet 87: 229–232

    Article  Google Scholar 

  • Chevreau E, and Bell R (2005) Pyrus spp. pear and Cydonia spp. Quince. In Litz RE (ed), Biotechnology of Fruit and Nut Crops, C.A.B. International, Wallingford, UK, pp543–565

    Chapter  Google Scholar 

  • Chevreau E, Decourtye L, and Skirvin RM (1989) A review of pear chimeras: their identification and separation into pure types. HortSci 24: 32–34

    Google Scholar 

  • Djennane S, Cesbron C, Sourice S, Loridon K, and Chevreau E (2007) Marker-free transgenic pear production by inducible expression of R-recombinase. ISHS International Symposium on Genetic transformations – challenges and possibilities for horticulture of the world. 16–20 September 2007, Ski, Norvège. (poster)

    Google Scholar 

  • Dolatowski J, Nowosielski J, Podyma W, Szymanska M, and Zych M (2004) Molecular studies on the variability of Polish semi-wild pears (Pyrus) using AFLP. J Fruit Orna Plant Res 12: 331–337

    Google Scholar 

  • Dondini L, Pierantoni L, Gaiotti F, Chiodini R, Tartarini S, Bazzi C, and Sansavini S (2004) Identifying QTLs for fire-blight resistance via a European pear (Pyrus communis L.) genetic linkage map. Mol Breed 14: 407–418

    Article  CAS  Google Scholar 

  • Downie SR, and Palmer JD (1992) Use of chloroplast rearrangements in reconstructing plant phylogeny. In: Soltis PS, Soltis DE, Doyle JJ (eds) Molecular systematics of plants. Chapman and Hall, New York, pp14–35

    Google Scholar 

  • Evans RC, and Campbell CS (2002) The origin of the apple subfamily (Maloideae; Rosaceae) is clarified by DNA sequence data from duplicated GBSSI genes. Am J Bot 89: 1478–1484

    Article  CAS  Google Scholar 

  • FAOSTAT 2007 http://faostat.fao.org/

  • Fernandez-Fernandez F, Harvey NG, and James CM (2006) Isolation and characterization of polymorphic microsatellite markers from European pear (Pyrus communis L.). Mol Ecol Notes 6: 1039–1041

    Article  CAS  Google Scholar 

  • Flaishman MA, Shlizerman L, Cohen Y, Kerem Z, and Sivan L (2005) Expression of the health-beneficial stilbenes in transgenic ‘Spadona’ pear (Pyrus communis L.). Acta Hortic 671: 283–288

    CAS  Google Scholar 

  • Flaishman M, Cohen Y, Freeman A, Golubowicz S, Korchinsky R, and Yablowicz Z (2007) Development of a fast and compact breeding system in pear by the use of juvenile free transgenic plants. EUCARPIA XII Fruit section Symposium, September 16–20, 2007, Zaragoza, Spain, Abstract book, p200

    Google Scholar 

  • Gao M, Matsuta N, Murayama N, Toyomasu T, Mitsuhashi W, Dandekar A, Tao R, and Nishimura K (2007) Gene expression and ethylene production in transgenic pear (Pyrus communis cv. ‘La France’) with sense or antisense cDNA encoding ACC oxidase. Plant Sci 173: 32–42

    Article  CAS  Google Scholar 

  • Hedrick UP, Howe GH, Taylor OM, Francis EH, and Tukey HB (1921) The pears of new York. New York Dept. Agric. 29th Annu. Rep. Vol2, part2

    Google Scholar 

  • Hemmat M, Weeden NF, and Brown SK (2003) Mapping and evaluation of Malus × domestica microsatellites in apple and pear. J Amer Soc Hort Sci 128: 515–520

    CAS  Google Scholar 

  • Iketani H, Manabe T, Matsuta N, Akihama T, and Hayashi T (1998) Incongruence between RFLPs of chloroplast DNA and morphological classification in east Asian pear (Pyrus spp.). Genet Resour Crop Evol 45: 533–539

    Article  Google Scholar 

  • Iketani H, Abe K, Yamamoto T, Kotobuki K, Sato Y, Saito T, Terai O, Matsuta N, and Hayashi T (2001) Mapping of disease-related genes in Japanese pear using a molecular linkage map with RAPD markers. Breed Sci 51: 179–184

    Article  CAS  Google Scholar 

  • Inoue E, Kasumi M, Sakuma F, Anzai H, Amano K, and Hara H (2006) Identification of RAPD marker linked to fruit skin color in Japanese pear (Pyrus pyrifolia Nakai). Sci Hortic 107: 254–258

    Article  CAS  Google Scholar 

  • Inoue E, Matsuki Y, Anzai H, and Evans K (2007) Isolation and characterization of microsatellite markers in Japanese pear (Pyrus pyrifolia Nakai). Mol Ecol Notes 7: 445–447

    Article  CAS  Google Scholar 

  • Ishii H, Udagawa H, Nishimoto S, Tsuda T, and Nakashima H (1992) Scab resistance in pear species and cultivars. Acta Phytopathol Entomol Hung 27: 293–298

    Google Scholar 

  • Ishii H, Watanabe H, and Tanabe K (2002) Venturia nashicola: Pathological specialization on pears and control trial with resistance inducers. Acta Hort 587: 613–621

    CAS  Google Scholar 

  • Ishimizu T, Shinkawa T, Sakiyama F, and Norioka S (1998) Primary structural features of rosaceous S-RNase associated with gametophytic self-incompatibility. Plant Mol Biol 37: 931–941

    Article  CAS  PubMed  Google Scholar 

  • Ishimizu T, Inoue K, Shimonaka M, Saito T, Terai O, and Norioka S (1999) PCR-based method for identifying the S-genotypes of Japanese pear cultivars. Theor Appl Genet 98: 961–967

    Article  CAS  Google Scholar 

  • Itai A, Kawata T, Tanabe K, Tamura F, Uchiyama M, Tomomitsu M, and Shiraiwa N (1999) Identification of 1-aminocyclopropane-1-carboxylic acid synthase genes controlling the ethylene level of ripening fruit in Japanese pear (Pyrus pyrifolia Nakai). Mol Gen Genet 261: 42–49

    Article  CAS  PubMed  Google Scholar 

  • Itai A, Tanabe K, Tamura F, and Tomomitsu M (2003a) Cloning and characterization of a cDNA encoding 1-aminocyclopropane-1-carboxylate (ACC) synthase (PPACS3) from ripening fruit of Japanese pear (Pyrus pyrifolia Nakai). J Japan Soc Hort Sci 72: 99–106

    Google Scholar 

  • Itai A, Kotaki T, Tanabe K, Tamura F, Kawaguchi D, and Fukuda M (2003b) Rapid identification of ACC synthase genotypes in cultivars of Japanese pear (Pyrus pyrifolia Nakai) using CAPS markers. Theor Appl Genet 106: 1266–1272

    Google Scholar 

  • Katayama H, and Uematsu C (2003) Comparative analysis of chloroplast DNA in Pyrus species: physical map and gene localization. Theor Appl Genet 106: 303–310

    CAS  PubMed  Google Scholar 

  • Kikuchi A (1946) Speciation and taxonomy of Chinese pears. Collected Records of Hort. Res. 3, 1–8. Kyoto Univ. (Trans. by K. Park; ed. by M. N. Westwood)

    Google Scholar 

  • Kim CS, Lee GP, Han DH, Ryu KH, and Lee CH (2000a) Classification and identification of Pyrus pyrifolia using RAPD. J Kor Soc Hortic Sci 41: 119–124

    Google Scholar 

  • Kim CS, Lee GP, Han DH, Ryu KH, and Lee CH (2000b) SCARs markers derived from RAPD for cultivar identification in Pyrus pyrifolia. J Kor Soc Hortic Sci 41: 125–128

    Google Scholar 

  • Kim D, and Ko KC (2004) Identification markers and phylogenetic analysis using RAPD in Asian pears (Pyrus spp.). J Kor Soc Hortic Sci 45: 194–200

    Google Scholar 

  • Kimura T, Shi Y, Shoda M, Kotobuki K, Matsuta N, Hayashi T, Ban Y, and Yamamoto T (2002) Identification of Asian pear varieties by SSR analysis. Breed Sci 52: 115–121

    Article  CAS  Google Scholar 

  • Kimura T, Iketani H, Kotobuki K, Matsuta N, Ban Y, Hayashi T, and Yamamoto T (2003) Genetic characterization of pear varieties revealed by chloroplast DNA sequences. J Horti Sci Biotech 78: 241–247

    CAS  Google Scholar 

  • Kozaki I. (1973) Black spot disease resistance in Japanese pear. I. Heredity of the disease resistance. Bull Hort Res Stn A12: 17–27. (in Japanese with English summary)

    Google Scholar 

  • Lebedev VG, Taran SA, and Dolgov SV (2002a) Pear transformation by gene of supersweet protein Thaumatin II for fruit taste modification. Acta Hort 596: 199–202

    Google Scholar 

  • Lebedev VG, Lavrova N, Lunin VG, and Dolgov SV (2002b) Plant-Defensin genes introduction for improvement of pear phytopathogen resistance. Acta Hort 596: 167–172

    Google Scholar 

  • Lee GP, Lee CH, and Kim CS (2004). Molecular markers derived from RAPD, SCAR, and the conserved 18S rDNA sequences for classification and identification in Pyrus pyrifolia and P. communis. Theor Appl Genet 108: 1487–1491

    Article  CAS  PubMed  Google Scholar 

  • Liebhard R, Gianfranceschi L, Koller B, Ryder CD, Tarchini R, Van De Weg E, and Gessler C (2002) Development and characterisation of 140 new microsatellites in apple (Malus × domestica Borkh.). Mol Breed 10: 217–241

    Article  CAS  Google Scholar 

  • Liebhard R, Koller B, Gianfranceschi L, and Gessler C (2003) Creating a saturated reference map for the apple (Malus × domestica Borkh.) genome. Theor Appl Genet 106: 1497–1508

    CAS  PubMed  Google Scholar 

  • Maliepaard C, Alston FH, van Arkel G, Brown LM, Chevreau E, Dunemann F, Evans KM, Gardiner S, Guilford P, van Heusden AW, Janse J, Laurens F, Lynn JR, Manganaris AG, den Nijs APM, Periam N, Rikkerink E, Roche P, Ryder C, Sansavini S, Schmidt H, Tartarini S, Verhaegh JJ, Vrielink-van Ginkel M, and J. King G (1998) Aligning male and female linkage maps of apple (Malus pumila Mill.) using multi-allelic markers. Theor Appl Genet 97: 60–73

    Google Scholar 

  • Malnoy M, Reynoird JP, and Chevreau E (2000) Preliminary evaluation of new gene transfer strategies for resistance to fire blight in pear. Acta Hort 538: 635–638

    CAS  Google Scholar 

  • Malnoy M, Venisse JS, Brisset MN, and Chevreau E (2003a) Expression of bovine lactoferrin cDNA confers resistance to Erwinia amylovora in transgenic pear. Mol Breed 12: 231–244

    Google Scholar 

  • Malnoy M, Venisse JS, Reynoird JP, and Chevreau E (2003b) Activation of three pathogen-inducible promoters of tobacco in transgenic pears (Pyrus communis L.) after biotic and abiotic elicitation. Planta 216: 802–814

    Google Scholar 

  • Malnoy M, Faize M, Venissse JS, Geider K, and Chevreau E (2005a) Expression of viral EPS-depolymerase reduces fire blight susceptibility in transgenic pear. Plant Cell Rep 23: 632–638

    Google Scholar 

  • Malnoy M, Venisse JS, and Chevreau E (2005b) Expression of a bacterial effector, Harpin N, causes increased resistance to fire blight in Pyrus communis. Tree Genet Genomes 1: 41–49

    Google Scholar 

  • Matsuda N, Ikeda K, Kurosaka M, Isuzugawa K, Endo T, Omura M, and Takashina T (2006) In vitro flowering of transgenic pears (Pyrus communis L.) expressing CiFT, a Citrus ortholog of the Arabidopsis FT gene. 3rd International Rosaceae Genomics Conference, Napier, New Zealand (poster)

    Google Scholar 

  • Monte-Corvo L, Cabrita L, Oliveira C, and Leitao J (2000) Assessment of genetic relationships among Pyrus species and cultivars using AFLP and RAPD markers. Genet Resour Crop Evol 47: 257–265

    Article  Google Scholar 

  • Monte-Corvo L, Goulao L, and Oliveira C (2001) ISSR analysis of cultivars of pear and suitability of molecular markers for clone discrimination. J Am Soc Hortic Sci 126: 517–522

    CAS  Google Scholar 

  • Morgan DR, Soltis DE, and Robertson KR (1994) Systematic and evolutionary implications of rbcL sequence variation in Rosaceae. Am J Bot 81: 890–903

    Article  CAS  Google Scholar 

  • Mourgues F, Chevreau E, Lambert C, and De Bondt A (1996) Efficient Agrobacterium-mediated transformation and recovery of transgenic plants from pear (Pyrus communis L.). Plant Cell Rep 16: 245–249

    CAS  Google Scholar 

  • Nakashima T, Ueno T, Fukami H, Taga T, Masuda H, Osaki K, Otani H, Kohmoto K, and Nishimura S (1985) Isolation and structures of AK-toxin I and II, host-specific phytotoxic metabolites produced by Alternaria alternata Japanese pear pathotype. Agri Biol Chem 49: 807–815

    CAS  Google Scholar 

  • Ochatt SJ, and Caso OH (1986) Shoot regeneration from leaf mesophyll protoplasts of wild pear (Pyrus communis var. Pyraster L.). J Plant Physiol 122: 243–249

    CAS  Google Scholar 

  • Ochatt SJ, Patat-Ochatt EM, Rech EL, Davey MR, and Power JB (1989) Somatic hybridization of sexually incompatible top-fruit tree rootstocks, wild pear (Pyrus communis var. pyraster L.) and Colt cherry (Prunus avium X pseudocerasus). Theor Appl Genet 78: 35–41

    Article  Google Scholar 

  • Oliveira CM, Mota M, Monte-Corvo L, Goulao L, and Silva DL (1999) Molecular typing of Pyrus based on RAPD markers. Sci Hortic 79: 163–174

    Article  CAS  Google Scholar 

  • Palmer JD, Jorgensen RA, and Thompson WF (1985) Chloroplast DNA variation and evolution in Pisum; patterns of change and phylogenetic analysis. Genetics 109: 195–213

    CAS  PubMed  Google Scholar 

  • Patocchi A, Walser M, Tartarini S, Broggini GA, Gennari F, Sansavini S, and Gessler C (2005) Identification by genome scanning approach (GSA) of a microsatellite tightly associated with the apple scab resistance gene Vm. Genome 48: 630–636

    Article  CAS  PubMed  Google Scholar 

  • Pierantoni L, Cho KH, Shin IS, Chiodini R, Tartarini S, Dondini L, Kang SJ, and Sansavini S (2004) Characterisation and transferability of apple SSRs to two European pear F1 populations. Theor Appl Genet 109: 1519–1524

    Article  CAS  PubMed  Google Scholar 

  • Predieri S, and Zimmerman RH (2001) Pear mutagenesis, In vitro treatments with gamma-rays and field selection for productivity and fruit traits. Euphytica 117: 217–227

    Article  Google Scholar 

  • Reynoird JP, Mourgues F, Norelli J, Aldwinckle HS, Brisset MN, and Chevreau E (1999) First evidence for improved resistance to fire blight in transgenic pear expressing the attacin E gene from Hyalophora cecropia. Plant Sci 149: 13–22

    Article  Google Scholar 

  • Rubzov GA (1944) Geographical distribution of the genus Pyrus and trends and factors in its evolution. Am Naturalist 78: 358–366

    Article  Google Scholar 

  • Sanzol J, and Herrero M (2002) Identification of self-incompatibility alleles in pear cultivars (Pyrus communis L.). Euphytica 128: 325–331

    Article  CAS  Google Scholar 

  • Sassa H, Hirano H, Nishio T, and Koba T (1997) Style-specific self-compatible mutation caused by deletion of the S-RNase gene in Japanese pear (Pyrus serotina). Plant J 12: 223–227

    Article  CAS  Google Scholar 

  • Sassa H, Kakui H, Miyamoto M, Suzuki Y, Hanada T, Ushijima K, Kusaba M, Hirano H, and Koba T (2007) S locus F-box brothers: Multiple and pollen-specific F-box genes with S haplotype-specific polymorphisms in apple and Japanese pear. Genetics 175: 1869–1881

    Article  CAS  PubMed  Google Scholar 

  • Sawamura Y, Saito T, Takada N, Yamamoto T, Kimura T, Hayashi T, and Kotobuki K (2004) Identification of parentage of Japanese pear ‘Housui’. J Japan Soc Hort Sci 73: 511–518

    Article  CAS  Google Scholar 

  • Schmidt H, and van de Weg WE (2005) Breeding, In Tromp J, Webster AD, and Wertheim SJ (eds), Fundamentals of Temperate Zone Tree Fruit Production, Backhuys Publishers, Leiden, pp136–155

    Google Scholar 

  • Takasaki T, Okada K, Castillo C, Moriya Y, Saito T, Sawamura Y, Norioka N, Norioka S, and Nakanishi T (2004) Sequence of the S9-RNase cDNA and PCR-RFLP for discriminating S1- to S9-alleles in Japanese pear. Euphytica 135: 157–167

    Article  CAS  Google Scholar 

  • Tang SH, Sun M, Lia ZH, Zhou QG, and Li DG (2007) Production of transgenic Xueqing pear plants with a synthetic Cry1Ac gene mediated by Agrobacterium tumefaciens. Acta Hortic Sinica 34: 56–62

    Google Scholar 

  • Teng Y, Tanabe K, Tamura F, and Itai A (2001) Genetic relationships of pear cultivars in Xinjiang, China as measured by RAPD markers. J Hortic Sci Biotech 76: 771–779

    CAS  Google Scholar 

  • Teng Y, Tanabe K, Tamura F, and Itai A (2002) Genetic relationships of Pyrus species and cultivars native to East Asia revealed by randomly amplified polymorphic DNA markers. J Am Soc Hortic Sci 127: 262–270

    CAS  Google Scholar 

  • Terakami S, Shoda M, Adachi Y, Gonai T, Kasumi M, Sawamura Y, Iketani H, Kotobuki K, Patocchi A, Gessler C, Hayashi T, and Yamamoto T (2006) Genetic mapping of the pear scab resistance gene Vnk of Japanese pear cultivar Kinchaku. Theor Appl Genet 113: 743–752

    Article  CAS  PubMed  Google Scholar 

  • Terakami S, Adachi Y, Iketani H, Sato Y, Sawamura Y, Takada N, Nishitani C, and Yamamoto T (2007) Genetic mapping of genes for susceptibility to black spot disease in Japanese pears. Genome 50: 735–741

    Article  CAS  PubMed  Google Scholar 

  • Ushijima K, Sassa H, Tao R, Yamane H, Dandekar AM, Gradziel TM, and Hirano H (1998) Cloning and characterization of cDNAs encoding S-RNases from almond (Prunus dulcis): primary structural features and sequence diversity of the S-RNases in Rosaceae. Mol Gen Genet 260: 261–268

    Article  CAS  PubMed  Google Scholar 

  • Volk GM, Richards CM, Henk AD, Reilley AA, Bassil NV, and Postman JD (2006) Diversity of wild Pyrus communis based on microsatellite analyses. J Am Soc Hortic Sci 131: 408–417

    CAS  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, and Kuiper M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23: 4407–4414

    Article  CAS  PubMed  Google Scholar 

  • Weber JL, and May PE (1989) Abundant class of human DNA polymorphism which can be typed using the polymerase chain reaction. Am J Hum Genet 44: 388–396

    CAS  PubMed  Google Scholar 

  • Wen XP, Pang XM, Matsuda N, Kita M, Inoue H, Hao YJ, Honda C, and Moriguchi T (2008) Over-expression of the apple spermidine synthase gene in pear confers multiple abiotic stress tolerance by altering polyamine titers. Transgenic Res 17: 251–263

    Article  CAS  PubMed  Google Scholar 

  • Wertheim SJ (2002) Rootstocks for European pear : a review. Acta Hort 596: 299–307

    Google Scholar 

  • Westwood MN, and Bjornstad HO (1971) Some fruit characteristics of interspecific hybrids and extent of self-sterility in Pyrus. Bull Torrey Bot Club 98: 22–24

    Article  Google Scholar 

  • Yamamoto T, Kimura T, Shoda M, Ban Y, Hayashi T, and Matsuta N (2002a) Development of microsatellite markers in Japanese pear (Pyrus pyrifolia Nakai). Mol Ecol Notes 2: 14–16

    Google Scholar 

  • Yamamoto T, Kimura T, Sawamura Y, Manabe T, Kotobuki K, Hayashi T, Ban Y, and Matsuta N (2002b) Simple sequence repeats for genetic analysis in pear. Euphytica 124: 129–137

    Google Scholar 

  • Yamamoto T, Kimura T, Shoda M, Imai T, Saito T, Sawamura Y, Kotobuki K, Hayashi T, and Matsuta N (2002c) Genetic linkage maps constructed by using an interspecific cross between Japanese and European pears. Theor Appl Genet 106: 9–18

    Google Scholar 

  • Yamamoto T, Kimura T, Saito T, Kotobuki K, Matsuta N, Liebhard R, Gessler C, van de Weg WE, and Hayashi T (2004) Genetic linkage maps of Japanese and European pears aligned to the apple consensus map. Acta Hort 663: 51–56

    CAS  Google Scholar 

  • Yamamoto T, Kimura T, Terakami S, Nishitani C, Sawamura Y, Saito T, Kotobuki K, and Hayashi T (2007) Integrated reference genetic linkage maps of pear based on SSRs and AFLPs. Breed Sci 57: 321–329

    Article  CAS  Google Scholar 

  • Yoshioka T, Masuda T, Kotobuki K, Sanada T, and Ito Y (1998) Gamma-ray-induced mutation breeding in fruit trees: breeding of mutant cultivars resistant to black spot disease in Japanese pear. Japan Agricultural Research Quarterly – Tsukuba Ibaraki 33: 227–234

    Google Scholar 

  • Zeven AC, Zhukovsky M (1975) Dictionary of cultivated plants and their centres of diversity. Centre for Agricultural Publishing and Documentation, Wageningen

    Google Scholar 

  • Zhao RH, Liu QZ, Sung QR, and Zhang XS (2004) Obtaining transgenic Fertility pear (Pyrus communis L.) plants with antifungal gamma-thionin Rs-afp1 gene. J Agric Biotech 12: 729–730

    Google Scholar 

  • Zhu LH, Ahlman A, and Welander M (2003) The rooting ability of the dwarfing rootstock BP10030 (Pyrus communis) was significantly increased by introduction of the rolB gene. Plant Sci 135: 829–835

    Article  Google Scholar 

  • Zisovich AH, Stern RA, Shafir S, and Goldway M (2004) Identification of seven S-alleles form the European pear (Pyrus communis) and the determination of compatibility among cultivars. J Hort Sci Biotech 79: 101–106

    CAS  Google Scholar 

  • Zuccherelli S, Tassinari P, Broothaerts W, Tartarini S, Dondini L, and Sansavini S (2002) S-allele characterization in self incompatible pear (Pyrus communis L.). Sex Plant Reprod 15: 153–158

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Yamamoto, T., Chevreau, E. (2009). Pear Genomics. In: Folta, K.M., Gardiner, S.E. (eds) Genetics and Genomics of Rosaceae. Plant Genetics and Genomics: Crops and Models, vol 6. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77491-6_8

Download citation

Publish with us

Policies and ethics