Skip to main content

Indirect Effects of Phenolics on Plant Performance by Altering Nitrogen Cycling: Another Mechanism of Plant–Plant Negative Interactions

  • Chapter
Allelopathy in Sustainable Agriculture and Forestry

Abstract

Negative interactions among plants have been explained by two main mechanisms, competition and allelopathy. Here, I focus on a third mechanism resulting from the interaction of the previous two, and based upon changes in nutrient availability caused by the release of phenolic compounds into the soil. Phenolic compounds globally decrease soil N availability by changing microbial activity. The relevance of these processes in natural conditions, and the consequences that changes in N availability might have on the distribution of plant species in the ecosystem, remains to be evaluated. Here I describe the specific mechanisms by which phenolics change soil N cycling and the factors that might alter the fate and role of phenolics in the ecosystem. I review five examples in which species with high concentrations of phenolic compounds known to interfere with growth of other plants (Cistus albidus, Ledum palustre, Empetrum hermaphroditum, Populus balsamifera and Kalmia angustifolia) decrease N availability in natural conditions. In those studies, phenolics do not affect N cycling in natural systems by forming complexes with proteins, as traditionally stated, but by increasing microbial activity after being degraded by microorganisms. The presence of phenolics in plants could be a result of a selective pressure in situations where changing soil chemical properties increase plant competitive ability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aguilera, L.E., Gutiérrez, J.R. and Meserve, P.L. (1999) Variation in soil micro-organisms and nutrients underneath and outside the canopy of Adesmia bedwellii (Papilionaceae) shrubs in arid coastal Chile following drought and above average of rainfall. J. Arid Environ. 42, 61–70.

    Article  Google Scholar 

  • Appel, H.M. (1993) Phenolics in ecological interactions: the importance of oxidation. J. Chem. Ecol. 19, 1521–1552.

    Article  CAS  Google Scholar 

  • Baldwin, I.T., Olson, R.K. and Reiners, W.A. (1983) Protein binding phenolics and the inhibition of nitrification in subalpine balsam fir soils. Soil Biol. Biochem. 15, 419–423.

    Article  CAS  Google Scholar 

  • Ballester, A., Vieitez, A.M. and Vieitez, E. (1982) Allelopathic potential of Erica vagans, Calluna vulgaris and Daboecia cantabrica. J. Chem. Ecol. 8, 851–857.

    Article  Google Scholar 

  • Bending, G.D. and Read, D.J. (1995) The structure and function of the vegetative mycelium of ectomycorrhizal plants. New Phytol. 130, 401–409.

    Article  CAS  Google Scholar 

  • Bending, G.D. and Read, D.J. (1996) Effects of the soluble polyphenol tannic acid on the activities of ectomycorrhizal fungi. Soil Biol. Biochem. 28, 1595–1602.

    Article  CAS  Google Scholar 

  • Bloom, R.G. and Mallik, A.U. (2004) Indirect effects of blach spruce (Picea mariana) cover community structure and function in sheep laurel (Kalmia angustifolia) dominated heath of eastern Canada. Plant Soil. 265, 279–293.

    Article  CAS  Google Scholar 

  • Blum, U. (1998) Effects of microbial utilization of phenolic acids and their phenolic acid breakdown products on allelopathic interactions. J. Chem. Ecol. 24, 685–708.

    Article  CAS  Google Scholar 

  • Blum, U. and Shafer, S.R. (1988) Microbial populations and phenolic acids in soil. Soil Biol. Biochem. 20, 793–800.

    Article  CAS  Google Scholar 

  • Boufalis, A. and Pellissier, F. (1994) Allelopathic effects of phenolic mixtures on respiration of two spruce mycorrhizal fungi. J. Chem. Ecol. 20, 2283–2289.

    Article  CAS  Google Scholar 

  • Bradley, R.L., Fyles, J.W. and Titus, B. (1997) Interactions between Kalmia humus quality and chronic low C inputs in controlling microbial and soil nutrient dynamics. Soil Biol. Biochem. 29, 1275–1283.

    Article  CAS  Google Scholar 

  • Bradley, R.L., Titus, B.D. and Preston, C.P. (2000) Changes to mineral N cycling and microbial communities in black spruce humus after additions of (NH4)2SO4 and condensed tannins extracted from Kalmia angustifolia and balsam fir. Soil Biol. Biochem. 32, 1227–1240.

    Article  CAS  Google Scholar 

  • Callaway, R.M. and Aschehoug, E.T. (2000) Invasive plants versus their new and old neighbors: a mechanism of toxic invasion. Science 290, 521–523.

    Article  PubMed  CAS  Google Scholar 

  • Castells, E. and Peñuelas, J. (2003) Is there a feedback between soil N availability in siliceous and calcareous soils and Cistus albidus leaf chemical composition? Oecologia 136, 183–192.

    Google Scholar 

  • Castells, E., Peñuelas, J. and Valentine, D.W. (2003) Interaction between the phenolic compound bearing species Ledum palustre and soil N cycling in a hardwood forest. Plant Soil. 251, 155–166.

    Article  CAS  Google Scholar 

  • Castells, E., Peñuelas, J. and Valentine, D.W. (2004) Are phenolic compounds released from the Mediterranean shrub Cistus albidus responsible for changes in N cycling in siliceous and calcareous soils? New Phytol. 162, 187–195.

    Article  CAS  Google Scholar 

  • Castells, E., Peñuelas, J. and Valentine, D.W. (2005) Effects of plant leachates from four Boreal understory species on soil N cycling mineralization, and white spruce (Picea glauca) germination and seedlig growth. Ann. Bot. 95, 1247–1252.

    Article  PubMed  CAS  Google Scholar 

  • Chaves, N. and Escudero, J.C. (1997) Allelopathic effect of Cistus ladanifer on seed germination. Funct. Ecol. 11, 432–440.

    Article  Google Scholar 

  • Chaves, N., Sosa, T. and Escudero, J.C. (2001) Plant growth inhibiting flavonoids in exudate of Cistus ladanifer and in associated soils. J. Chem. Ecol. 27, 623–631.

    Article  PubMed  CAS  Google Scholar 

  • Claus, H. and Filip, Z. (1990) Effects of clays and other solids on the activity of phenoloxidases produced by some fungi and actinomycetes. Soil Biol. Biochem. 22, 483–488.

    Article  CAS  Google Scholar 

  • Clein, J.S. and Schimel, J.P. (1995) Nitrogen turnover and availability during succession from Alder to Poplar in Alaskan taiga. Soil Biol. Biochem. 27, 743–752.

    Article  CAS  Google Scholar 

  • Cole, E., Youngblood, A. and Newton, M. (2003) Effects of competing vegetation on juvenile white spruce (Picea glauca (Moench) Voss) growth in Alaska. Ann. For. Sci. 60, 573–583.

    Article  Google Scholar 

  • Coté, J.F. and Thibault, J.R. (1988) Allelopathic potential of raspberry foliar leachates on growth of ectomycorrhizal fungi associated with black spruce. Am. J. Bot. 75, 966–970.

    Article  Google Scholar 

  • DeLuca, T.H., Nilsson, M.C. and Zackrisson, O. (2002) Nitrogen mineralization and phenol accumulation along a fire chronosequence in northern Sweden. Oecologia 133, 206–214.

    Article  Google Scholar 

  • De Luis, M., Raventos, J. and Gonzalez-Hidalgo, J.C. (2006) Post-fire vegetation succession in Mediterranean gorse shrublands. Acta Oecol. 30, 54–61.

    Google Scholar 

  • Einhellig, F.A. (1995) Allelopathy: current status and future goals. In: Inderjit, K.M.M. Dakshini and F.A. Einhellig (Eds.), Allelopathy: Organisms, Processes and Applications. American Chemical Society, Washington, DC, pp. 1–24.

    Google Scholar 

  • Facelli, J.M. and Pickett, S.T.A. (1991) Plant litter: its dynamics and effects on plant community structure. Bot. Rev. 57, 1–32.

    Article  Google Scholar 

  • Fierer, N., Schimel, J.P., Cates, R.G., Zou, J. (2001) Influence of balsam poplar tannin fractions on carbon and nitrogen dynamics in Alaskan taiga floodplain soils. Soil Biol. Biochem. 33:1827–1839.

    Article  CAS  Google Scholar 

  • Fox, R.H., Myers, R.J.K. and Vallis, I. (1990) The nitrogen mineralization rate of legume residues in soil as influenced by their polyphenol, lignin, and nitrogen contents. Plant Soil 129, 251–259.

    CAS  Google Scholar 

  • Gallardo, A. and Merino, J. (1992) Nitrogen immobilization in leaf litter at two Mediterranean ecosystems of SW Spain. Biogeochemistry 15, 213–228.

    Article  CAS  Google Scholar 

  • Gallet, C. (1994) Allelopathic potential in bilberry-spruce forests: influence of phenolic compounds on spruce seedlings. J. Chem. Ecol. 20, 1009–1024.

    Article  CAS  Google Scholar 

  • Gallet, C. and Pellissier, F. (1997) Phenolic compounds in natural solutions of a coniferous forest. J. Chem. Ecol. 23, 2401–2412.

    Article  CAS  Google Scholar 

  • Grace, J.B. and Tilman, D. (1990) Pespectives in Plant Competition. John Wiley, New York.

    Google Scholar 

  • Hagerman, A.E. and Butler, L.G. (1991) Tannins and lignins. In: G.A. Rosenthal and M.R. Berenbau (Eds.), Herbivores: Their Interactions with Secondary Plant Metabolites. Academic Press, Inc., New York, pp. 389–429.

    Google Scholar 

  • Harborne, J.B. (1997) Role of phenolic secondary metabolites in plants and their degradation in nature. In: G. Cadisch and K.E. Giller (Eds.), Plant Litter Quality and Decomposition. Cab International, Wallingford, UK, pp. 67–74.

    Google Scholar 

  • Harrison, A.F. (1971) The inhibitory effect of oak litter tannins on the growth of fungi, in relation to litter decomposition. Soil Biol. Biochem. 3, 167–172.

    Article  CAS  Google Scholar 

  • Hart, S.C., Stark, J.M., Davidson, E.A. and Firestone, M.K. (1994) Nitrogen mineralization, immobilization and nitrification. In: J.M. Bigham (Ed.), Methods of Soil Analysis, Vol. 2. Soil Science Society of America, Madison, WI, pp. 985–1018.

    Google Scholar 

  • Hartley, R.D. and Whitehead, D.C. (1985) Phenolic acids in soils and their influence on plant growth and soil microbial processes. In: D. Vaughan and R.E. Malcolm (Eds.) Soil Organic Matter and Biological Activity. Martinus Nijhoff and Dr. W. Junk, Dordrecht, pp. 10—149.

    Google Scholar 

  • Hobbie, S.E. (1992) Effects of plant species on nutrient cycling. Trends Ecol. Evol. 336–339.

    Google Scholar 

  • Hook, P.B., Burke, I.C. and Lauenroth, W.K. (1991) Heterogenity of soil and plant N and C associated with individual plants and openings in North American shortgrass steppe. Plant Soil 138, 247–256.

    Google Scholar 

  • Horner, J.D., Gosz, J.R. and Cates, R.G. (1988) The role of carbon-based plant secondary metabolites in decomposition in terrestrial ecosystems. Am. Nat. 132, 869–883.

    Google Scholar 

  • Inderjit (1996) Plant phenolics and allelopathy. Bot. Rev. 62, 186–202.

    Google Scholar 

  • Inderjit and Callaway, R.M. (2003) Experimental designs for the study of allelopathy. Plant Soil 256, 1–11.

    Google Scholar 

  • Inderjit and Del Moral, R. (1997) Is separating resource competition from allelopathy realistic? Bot. Rev. 63, 221–230.

    Google Scholar 

  • Inderjit and Mallik, A.U. (1996a) The nature of interference potential of Kalmia angustifolia. Can. J. For. Res. 26, 1899–1904.

    Google Scholar 

  • Inderjit and Mallik, A.U. (1996b) Growth and physiological responses of black spruce (Picea mariana) to sites dominated by Ledum groenlandicum. J. Chem. Ecol. 22, 575–585

    Google Scholar 

  • Inderjit and Mallik, A.U. (1997) Effects of Ledum groenlandicum amendments on soil characteristics and black spruce seedling growth. Plant Ecol. 133, 29–36.

    Google Scholar 

  • Inderjit and Mallik, A.U. (1999) Nutrient status of black spruce (Picea mariana [mill.] BSP) forest soils dominated by Kalmia angustifolia L. Acta Oecol. 20, 87–92.

    Google Scholar 

  • Inderjit and Mallik, A.U. (2002) Can Kalmia angustifolia interference to black spruce (Picea mariana) be explained by allelopathy? For. Ecol. Manage. 160, 75–84.

    Google Scholar 

  • Inderjit and Weiner, J. (2001) Plant allelochemical interference or soil chemical ecology? Perspect. Plant Ecol. Evol. Syst. 4, 3–12.

    Google Scholar 

  • Juhren, M.C. (1966) Ecological observations on Cistus in the Mediterranean vegetation. For. Sci. 12, 415–426.

    Google Scholar 

  • Kraus, T.E.C., Dahlgren, R.A. and Zasoski, R.J. (2003) Tannins in nutrient dynamics of forest ecosystems. Plant Soil 256, 41–66.

    Google Scholar 

  • Kuiters, A.T. (1990) Role of phenolic substances from decomposing forest litter in plant–soil interactions. Acta Bot.Neerl. 39, 329–348.

    Google Scholar 

  • Kuiters, A.T. and Sarink, H.M. (1986) Leaching of phenolic compounds from leaf and needle litter of several deciduous and coniferous trees. Soil Biol. Biochem. 18, 475–480.

    Google Scholar 

  • Leake, J.R. and Read, D.J. (1990) Proteinase activity in mycorrhizal fungi. I. The effect of extracellular pH on the production and activity of proteinase by ericoid endophytes from soils of contrasted pH. New Phytol. 115, 243–250.

    Google Scholar 

  • MacKenzie, M.D., DeLuca, T.H. and Sala, A. (2004) Forest structure and organic horizon analysis along a fire chronosequence in the low elevation forests of Western Montana. For. Ecol. Manage. 203, 331–343.

    Google Scholar 

  • Magill, A.H. and Aber, J.D. (2000) Variation in soil net mineralization rates with dissolved organic carbon additions. Soil Biol. Biochem. 32, 597–601.

    Google Scholar 

  • Mallik, A.U. (1995) Conversion of temperate forests into heaths: role of ecosystem disturbance and Ericaceous plants. Environ. Manage. 19, 675–684.

    Google Scholar 

  • Mallik, A.U. (2003) Conifer regeneration problems in Boreal and Temperate forests with Ericaceous understory: role of disturbance, seedbed limitation, and keystone species change. Crit. Rev. Plant Sci. 22, 341–366.

    Google Scholar 

  • Mallik, A.U. (2005) Allelopathy: advances, challenges and opportunities. In: J.D.I. Harper, M. An, H. Wu and J.H. Kent (Eds.), Proceedings of the 4th World Congress on Allelopathy. Charles Sturt University, Wagga Wagga, NSW, Australia. International Allelopathy Society.

    Google Scholar 

  • Martin, J.P. and Haider, K. (1980) Microbial degradation and stabilization of 14C-labeled lignins, phenols and phenolic polymers in relation to soil humus formation. In: T.K. Kirk, T. Higuchi and H. Chang (Eds.), Lignin Biodegradation: Microbiology, Chemistry and Potential Applications. CRC Press, Boca Raton, FL, pp. 77–100.

    Google Scholar 

  • McCarty, G.W., Bremner, J.M. and Schmidt, E.L. (1991) Effects of phenolic acids on ammonia oxidation by terrestrial autotrophic nitrifying bacteria. FEMS Microbiol. Ecol. 85, 345–450.

    Article  CAS  Google Scholar 

  • Michelsen, A., Schmidt, I.K., Jonasson, S., Dighton, J., Jones, H.E. and Callaghan, T.V. (1995) Inhibition of growth, and effects on nutrient uptake of arctic graminoids by leaf extracts- allelopathy or resource competition between plants and microbes? Oecologia 103, 407–418.

    Article  Google Scholar 

  • Muller, R.N., Kalisz, P.J. and Kimmerer, T.W. (1987) Intraspecific variation in production of astringent phenolics over a vegetation-resource availability gradient. Oecologia 72, 211–215.

    Article  Google Scholar 

  • Nicolai, V. (1988) Phenolic and mineral content of leaves influences decomposition in European forest ecosystems. Oecologia 75, 575–579.

    Article  Google Scholar 

  • Nilsson, M.C. (1994) Separation of allelopathy and resources competition by the boreal dwarf shurb Empetrum hermaproditum Hagerup. Oecologia 98, 1–7.

    Article  Google Scholar 

  • Nilsson, M.C. and Zackrisson, O. (1992) Inhibition of scots pine seedling establishment by Empetrum hermaproditum. J. Chem. Ecol. 18, 1857–1870.

    Article  CAS  Google Scholar 

  • Nommik, H. and Vahtras, K. (1982) Retention and fixation of ammonium and ammonia in soils. In: F.J. Stevenson (Ed.), Nitrogen in Agricultural Soils. ASA-CSSA, Madison, WI, pp. 123–171.

    Google Scholar 

  • Northup, R.R., Dahlgren, R.A. and Yu, Z. (1995) Intraspecific variation of conifer phenolic concentration on a marine terrace soil acidity gradient; a new interpretation. Plant Soil 171, 255–262.

    Article  CAS  Google Scholar 

  • Northup, R.R., Dahlgren, R.A. and McColl, J.G. (1998) Polyphenols as regulators of plant–litter–soil interactions in northern California’s pygmy forest: a positive feedback? Biogeochemistry 42, 189–220.

    Google Scholar 

  • Oades, J.M. (1988) The retention of organic matter in soils. Biogeochemistry 5, 35–70.

    Article  CAS  Google Scholar 

  • Palm, C.A. and Sanchez, P.A. (1990) Decomposition and nutrient release patterns of the leaves of three tropical legumes. Biotropica 22, 330–338.

    Article  Google Scholar 

  • Palm, C.A., Sanchez, P.A. (1991) Nitrogen release from the leaves of some tropical legumes as affected by their lignin and polyphenolics contents. Soil Biol. Biochem. 23:83–88.

    Article  CAS  Google Scholar 

  • Pellissier, F. (1993) Allelopathic inhibition of spruce germination. Acta Oecol. 14, 211–218.

    Google Scholar 

  • Pellissier, F. (1998) The role of soil community in plant population dynamics: is allelopathy a key component? Trends Ecol. Evol. 13, 407.

    Article  Google Scholar 

  • Pind, A., Freeman, C. and Lock, M.A. (1994) Enzymic degradation of phenolic materials in peatlands- measurement of phenol oxidase activity. Plant Soil 159, 227–231.

    Article  CAS  Google Scholar 

  • Ponge, J.F., André, J., Zackrisson, O., Bernier, N., Nilsson, M.C. and Gallet, C. (1998) The forest regeneration puzzle. Biological mechanisms in humus layer and forest vegetation dynamics. Bioscience 48, 523–530.

    Article  Google Scholar 

  • Read, D.J. (1991) Mycorrhizas in ecosystems. Experientia 47, 376–391.

    Article  Google Scholar 

  • Rice, E.L. (1974) Allelopathy. Academic Press, New York.

    Google Scholar 

  • Rice, E.L. (1984) Allelopathy. Academic Press, Orlando, FL.

    Google Scholar 

  • Rice, E.L. and Pancholy, S.K. (1973). Inhibition of nitrification by climax vegetation ecosystems. II. Additional evidence and possible role of tannins. Am. J. Bot. 60, 691–702.

    Article  CAS  Google Scholar 

  • Ridenour, W.M. and Callaway, R.M. (2001) The relative importance of allelopathy in interference: the effects of an invasive weed on a native bunchgrass. Oecologia 126, 444–450.

    Article  Google Scholar 

  • Riha, S.J., Campbell, G.S. and Wolfe, J. (1986) A model of competition for ammonium among heterotrophs, nitrifiers and roots. Soil Sci. Soc. Am. J. 50, 1463–1466.

    CAS  Google Scholar 

  • Robles, C., Bonin, G. and Garzino, S. (1999) Potentialités autotoxiques et allélopathiques de Cistus albidus L. Biologie et Pathologie végétals 322, 677–685.

    CAS  Google Scholar 

  • Scalbert, A. (1991) Antimicrobial properties of tannins. Phytochemistry 30, 3875–3883.

    Article  CAS  Google Scholar 

  • Schimel, J.P., van Cleve, K., Cates, R.G., Clausen, T.P. and Reichardt, P.B. (1996) Effects of balsam poplar (Populus balsamifera) tannins and low molecular weight phenolics on microbial activity in taiga floodplain soil: implications for changes in N cycling during succession. Can. J. Bot. 74, 84–90.

    Article  CAS  Google Scholar 

  • Schimel, J.P., Cates, R.G. and Ruess, R. (1998) The role of Balsam poplar secondary chemicals in controlling soil nutrient dynamics through succession in the Alaskan taiga. Biogeochemistry 42, 221–234.

    Article  CAS  Google Scholar 

  • Shafer, S.R. and Blum, U. (1991) Influence of phenolic acids on microbial populations in the rhizosphere of cucumber. J. Chem. Ecol. 17, 369–388.

    Article  CAS  Google Scholar 

  • Singh, A., Tamma, R.V. and Herbert, N.N. (1989) HPLC identification of allelopathic compounds from Lantana camara. J. Chem. Ecol. 15, 81–89.

    Article  CAS  Google Scholar 

  • Souto, X.C., Chiapusio, G., and Pellissier, F. (2000) Relationships between phenolics and soil microorganisms in Spruce forests: significance for natural regeneration. J. Chem. Ecol. 26, 2025–2034.

    Article  CAS  Google Scholar 

  • Sparling, G.P., Ord, B.G. and Vaughan, D. (1981) Changes in microbial biomass and activity in soils amended with phenolic acids. Soil Biol. Biochem. 13, 455–460.

    Article  CAS  Google Scholar 

  • Stevenson, F.J. (1982) Humus Chemistry. Willey & Sons, New York.

    Google Scholar 

  • Stienstra, A.W., Gunnewiek, P.K. and Laanbroek, H.J. (1994) Repression of nitrification in soils under a climax grassland vegetation. FEMS Microbiol. Ecol. 14, 45–52.

    Article  CAS  Google Scholar 

  • Sugai, S.F. and Schimel, J.P. (1993) Decomposition and biomass incorporation of 14C-labeled glucose and phenolics in taiga forest-floor: effect of substrate quality, successional state, and season. Soil Biol. Biochem. 25, 1379–1389.

    Article  CAS  Google Scholar 

  • Vinton, A.M. and Burke, I.C. (1995) Interactions between individual plant species and soil nutrient status in shortgrass steppe. Ecology 76, 1116–1133.

    Article  Google Scholar 

  • Vitousek, P.M. and Howarth, R.W. (1991) Nitrogen limitation on land and sea: how can it occur? Biogeochemistry 13, 87–115.

    Article  Google Scholar 

  • Wallstedt, A., Nilsson, M.C., Odham, G. and Zackrisson, O. (1997) A method to quantify the allelopathic compound batatasin-III in extracts from Empetrum hermaphroditum using gas chromatography: applied on extracts from leaves of different ages. J. Chem. Ecol. 23, 2345–2355.

    Article  CAS  Google Scholar 

  • Wardle, D.A. and Nilsson, M.C. (1997) Microbe-plant competition, allelopathy and arctic plants. Oecologia 109, 291–293.

    Article  Google Scholar 

  • Wardle, D.A., Nilsson, M.C., Gallet, C. and Zackrisson, O. (1998) An ecosystem-level perspective of allelopathy. Biol. Rev. 73, 305–319.

    Article  Google Scholar 

  • Waterman, P.G. and Mole, S. (1994) Analysis of Phenolic Plant Metabolites. Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Watkinson, A.R. (1998) Reply from A.R. Watkinson. Trends Ecol. Evol. 13, 407.

    Article  Google Scholar 

  • Weidenhamer, J.D., Hartnett, D.C. and Romeo, J.T. (1989) Density-dependent phytotoxicity: distinguishing resource competition and allelopathic interference in plants. J. Appl. Ecol. 26, 613–624.

    Article  CAS  Google Scholar 

  • Zackrisson, O. and Nilsson, M.C. (1992) Allelopathic effects by Empetrum hermaphroditum on seed germination of two boreal tree species. Can. J. For. Res. 22, 1310–1319.

    Article  Google Scholar 

  • Zackrisson, O., Nilsson, M.C., Dahlberg, A. and Jöderlund, A. (1997) Interference mechanisms in conifer-Ericaceae-feathermoss communities. OIKOS 78, 209–220.

    Google Scholar 

  • Zeng, R.S. and Mallik, A.U. (2006) Selected ectomycorrhizal fungi of black spruce (Picea mariana) can detoxify phenolic compounds of Kalmia angustifolia. J. Chem. Ecol. 32, 1473–1489.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, H. and Mallik, A.U. (1994) Interactions between Kalmia and black spruce: isolation and identification of allelopathic compounds. J. Chem. Ecol. 20, 407–421.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media LLC

About this chapter

Cite this chapter

Castells, E. (2008). Indirect Effects of Phenolics on Plant Performance by Altering Nitrogen Cycling: Another Mechanism of Plant–Plant Negative Interactions. In: Zeng, R.S., Mallik, A.U., Luo, S.M. (eds) Allelopathy in Sustainable Agriculture and Forestry. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77337-7_7

Download citation

Publish with us

Policies and ethics