Skip to main content

Protein Immobilization by Crystallization and Precipitation: An Alternative to Lyophilization

  • Chapter
  • First Online:
Current Trends in Monoclonal Antibody Development and Manufacturing

Part of the book series: Biotechnology: Pharmaceutical Aspects ((PHARMASP,volume XI))

Abstract

Of the 26 currently approved drug products containing monoclonal antibodies as active substance for therapy or in vivo diagnosis about a quarter are freeze-dried preparations that require reconstitution before use (product survey as of December 2008) (Wang et al. 2007).

cGMP compliant freeze drying units have been available for several decades and biopharmaceutical companies have at their disposal a selection of modern lyophilizers as part of their standard operating equipment. Lyophilizers are operated aseptically by being equipped with clean in place (CIP)/steam in place (SIP) technology, utilizing sterile air or sterile nitrogen, and by stoppering the vials still in the lyophilizer through collapsing shelves. Automated loading or unloading or the coupling of the lyophilizer to filling isolators are becoming common at the production scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andya J, Cleland JL, Hsu CC, Lam XM, Overcashier DE, Shire SJ, Yang JYF, Wu SSY (2006) Protein formulation. US Patent US2006275306

    Google Scholar 

  • Arakawa T, Prestrelski SJ, Kenney WC, Carpenter JF (2001) Factors affecting short-term and long-term stabilities of proteins. Adv Drug Deliv Rev 46:307–326

    Article  PubMed  CAS  Google Scholar 

  • Asherie N (2004) Protein crystallization and phase diagrams. Methods 34:266–272

    Article  PubMed  CAS  Google Scholar 

  • Bean BA, Matthews TC (2007) Crystallization of therapeutic proteins and antibodies at Genentech: purification and bulk storage applications. 234th ACS National Meeting, Boston, 19–23 August 2007

    Google Scholar 

  • Bechtold-Peters K (2005) Precipitation technologies – alternative approach to formulation of proteins for inhalation. Presentation at the AAPS workshop on nasal and pulmonary delivery: technology and future directions, San Francisco Marriott, CA, 9–10 June 2005

    Google Scholar 

  • Bhatnagarab BS, Bogner RH, Pikal MJ (2007) Protein stability during freezing: separation of stresses and mechanisms of protein stabilization. Pharm Dev Technol 12:505–523

    Article  Google Scholar 

  • Bouchard A, Jovanic N, Hofland GW, Jiskoot W, Mendes E, Crommelin DJA, Wirkamp GJ (2008) Supercritical fluid drying of carbohydrates: selection of suitable excipients and process conditions. Eur J Pharm Biopharm 68:781–794

    Article  PubMed  CAS  Google Scholar 

  • Brady D, Jordaan J, Simpson C, Chetty A, Arumugam C, Moolman FS (2008) Spherezymes: a novel structured self-immobilisation enzyme technology. BMC Biotechnol. doi:10.1186/1472-6750-8-8

  • Brange J, Lankjaer L, Havelund S, Vølund A (1992) Chemical stability of insulin. 1. Hydrolytic degradation during storage of pharmaceutical preparations. Pharm Res 9:715–726

    Article  PubMed  CAS  Google Scholar 

  • Braun M, Teichert O, Zweck A (2006) Ãœbersichtsstudie Biokatalyse in der industriellen Produktion, VDI, Zukünftige Technologien Nr. 57

    Google Scholar 

  • Breen ED, Curley JG, Overcashier DE, Hsu CC, Shire SJ (2001) Effect of moisture on the stability of a lyophilized humanized monoclonal antibody formulation. Pharm Res 18:1345–1353

    Article  PubMed  CAS  Google Scholar 

  • Brown SL, Cormack PAG, Coyle M, Vos J, Moore BD (2006) Biomolecular imprinting using PCMC to produce highly selective binding sites in synthetic polymers. Poster at the AAPS NBC 2006, Boston, MA, 18–21 June 2006

    Google Scholar 

  • Cao L, van Langen L, Sheldon RA (2003) Immobilised enzymes: carrier-bound of carrier-free? Curr Opin Biotechnol 14:387–394

    Article  PubMed  CAS  Google Scholar 

  • Chang LL, Shepherd D, Sun J, Ouellette D, Grant KL, Tang XC, Pikal MJ (2005a) Mechanism of protein stabilization by sugars during freeze-drying and storage: native structure preservation, specific interaction, and/or immobilization in a glassy matrix? J Pharm Sci 94:1427–1444

    Article  PubMed  CAS  Google Scholar 

  • Chang LL, Shepherd D, Sun J, Tang XC, Pikal MJ (2005b) Effect of Sorbitol and residual moisture on the stability of lyophilized antibodies: implications for the mechanism of protein stabilization in the solid state. J Pharm Sci 94:1445–1455

    Article  PubMed  CAS  Google Scholar 

  • Chen B, Bautista R, Yu K, Zapata GA, Mulkerrin MG, Chamow SM (2003) Influence of histidine on the stability and physical properties of a fully human antibody in aqueous and solid form. Pharm res 12:1952–1959

    Article  Google Scholar 

  • Dua RD, Kumar S, Vasudevan O (1985) Carboxypeptidase – a immobilization on activated styrene-maleic anhydride systems. Biotechnol Bioeng 27:675–680

    Article  PubMed  CAS  Google Scholar 

  • Earle JP, Bennett PS, Larson KA, Shaw R (1991) The effects of stopper drying on moisture levels of haemophilus influenzae conjugate vaccine. International symposium on biological product freeze-drying and formulation, Bethesda, USA, 1990. Develop Biol Standard 74:203–210

    Google Scholar 

  • Foster NR, Dehghani F, Charoenchaitrakool KM, Warwick B (2003) Application of dense gas techniques for the production of fine particles. AAPS PharmSci 5:article 11

    Google Scholar 

  • Franks F (1998) Freeze-drying of bioproducts: putting principles into practice. Eur J Pharm Biopharm 45:221–229

    Article  PubMed  CAS  Google Scholar 

  • Gianfreda L, Scarfi MR (1991) Enzyme stabilization: state of the art. Mol Cell Biochem 100:97–128

    Article  PubMed  CAS  Google Scholar 

  • Gieseler H (2003) Microbalance study of drying rate and morphology of spray freeze-dried powders. Poster at the annual conference of the AAPS 2003. Salt Lake City, UT, 23–30 October 2003

    Google Scholar 

  • Gieseler H (2004) Product morphology and drying behaviour delineated by a new freeze-drying microbalance. Thesis, University of Nuremberg-Erlangen

    Google Scholar 

  • Hagewiesche A, Fukami J, Cromwell M, Dinges R (2006) Crystallization of antibodies or fragments thereof. PCT application WO 2006/012500

    Google Scholar 

  • Hermansen K, Vaaler S, Madsbad S, Dalgaard M, Zander M, Begtrup K, Soendergaard K (2002) Postprandial glycemic control with biphasic insulin aspart in patients with type 1 diabetes. Metabolism 51:896–900

    Article  PubMed  CAS  Google Scholar 

  • Hofmeister F (1888) Arch Exp Pathol Pharmacol 24:247–260

    Article  Google Scholar 

  • Jovanovic N, Bouchard A, Hofland GW, Wirkamp GJ, Crommelin DJA, Jiskoot W (2004) Stabilization of proteins in dry powder formulations using supercritical fluid technology. Pharm Res 21:1955–1969

    Article  PubMed  CAS  Google Scholar 

  • Jovanovic N, Bouchard A, Hofland GW, Witkamp GJ, Crommelin DJA, Jiskoot W (2008a) Stabilization of IgG by supercritical fluid drying: optimization of formulation and process paramaters. Eur J Pharm Biopharm 68:183–190

    Article  PubMed  CAS  Google Scholar 

  • Jovanovic N, Bouchard A, Sutter M, Van Speybroeck M, Hofland GW, Witkamp GJ, Crommelin DJA, Jiskoot W (2008b) Stable sugar-based protein formulations by supercritical fluid drying. Int J Pharm 346:102–108

    Article  PubMed  CAS  Google Scholar 

  • Jung J, Perrut M (2001) Particle design using supercritical fluids: literature and patent survey. J Supercritical Fluids 20:179–219

    Article  CAS  Google Scholar 

  • Kreiner M, Moore BD, Parker MC (2001) Enzyme-coated microcrystals: a 1-step method for high activity biocatalyst preparations. Chem Commun 1096–1097, doi: 10.1039/b100722j

  • Kaur N, Zhou B, Breitbeil F, Hardy K, Kraft KS, Trantcheva I, Phanstiel OA (2007) Delineation of diketopiperazine self-assembly processes: understanding the molecular events involved in N′-(Fumaroyl)diketopiperazine of L-Lys (FDKP) interactions. Mol Pharm 5:294–315

    Article  Google Scholar 

  • Kogoy JM (2008) http://www.bio.davidson.edu/courses/MolBio/MolStudents/spring2003/Kogoy/protein.html. Accessed June 2008

  • Kreiner M, Fuglevand G, Moore BD, Parker MC (2005) DNA-coated microcrystals. Chem Commun 2675–2676

    Google Scholar 

  • Laane C (1987) Medium-engineering for bio-organic synthesis. Biocatalysis 1:17–22

    Article  CAS  Google Scholar 

  • Lian H, Steiner SS, Sofia RD, Woodhead JH, Wolf HH, White HS, Shen GS, Rhodes CA, McCabe RT (2000) A self-complementary, self-assembling microsphere system: application for intravenous delivery of the antiepileptic and neuroprotectant compound felbamate. J Pharm Sci 89:867–875

    Article  PubMed  CAS  Google Scholar 

  • Lyle C, Vos J, Partridge J, Moore BD (2006) Hyaluronidase: formulation and stability of dry powder hyaluronidase-coated micro-crystals. Poster at the AAPS NBC 2006, Boston, MA, 18–21 June 2006

    Google Scholar 

  • Maa YF, Nguyen PA, Sit K, Hsu CC (1998) Spray-drying performance of a bench-top spray dryer for protein aerosol powder preparation. Biotechnol Bioengineer 60:301–309

    Article  CAS  Google Scholar 

  • Matheus S, Mahler HC (2005) Solid forms of anti-EGF-antibodies. PCT application WO 2005/051355

    Google Scholar 

  • Maury M, Murphy K, Kumar S, Mauerer A, Lee G (2005a) Spray-drying of proteins: effects of sorbitol and trehalose on aggregation and FT-IR amide I spectrum of an immunoglobulin G. Eur J Pharm Biopharm 59:251–261

    Article  PubMed  CAS  Google Scholar 

  • Maury M, Murphy K, Kumar S, Shi L, Lee G (2005b) Effect of process variables on the powder yield of spray-dried trehalose on a laboratory spray-dryer. Eur J Pharm Biopharm 59:565–573

    Article  PubMed  CAS  Google Scholar 

  • McCoy AJ (2008) http://www.structmed.cimr.cam.ac.uk/Course/Crystals/Theory/phases.html. Accessed June 2008

  • McPherson A (1978) The growth and preliminary investigation of protein and nucleic acid crystals by X-ray diffraction techniques. In: Glick D (ed) Methods of Biochemical Analysis. Academic, New York, pp 249–345

    Google Scholar 

  • McPherson A (1982) Preparation and analysis of protein crystals. Wiley, New York 371

    Google Scholar 

  • McPherson A, Friedman ML, Halsall HB (1984) Crystallization of alpha 1-acid glycoprotein. Biochem Biophys Res Commun 124:619–624

    Article  PubMed  CAS  Google Scholar 

  • McPherson A, Shlicta P (1988) Heterogeneous and epitaxial nucleation of protein crystals on mineral surfaces. Science 239:385–387

    Article  PubMed  CAS  Google Scholar 

  • McPherson A (1999) Crystallization of biological macromolecules. Cold Spring Harbor Laboratory Press, New York, p 586

    Google Scholar 

  • McPherson A (2001) A comparison of salts for the crystallization of macromolecules. Protein Sci 10:418–422

    Article  PubMed  CAS  Google Scholar 

  • McPherson A, Cudney B (2006) Searching for silver bullets: an alternative strategy for crystallizing macromolecule. J Struct Biol 156:387–406

    Article  PubMed  CAS  Google Scholar 

  • Miller D (2001) Crystallization of intact monoclonal antibodies. Poster at the IBC’s antibody production and donstream processing conference 2001, San Diego, CA, January 31–February 2, 2001

    Google Scholar 

  • Moore BD, Parker MC, Halling PJ, Partridge J (2000) Rapid dehydration of proteins. PCT application WO 00/69887

    Google Scholar 

  • Moore BD, Parker MC, Partridge J, Vos J, Kreiner MM, Stevens HNE, Flores MV (2004) Pharmaceutical composition. PCT application WO 2004/062560

    Google Scholar 

  • Moore BD, Vos J (2006) Process for preparing microcrystals. PCT application WO 2006/010921

    Google Scholar 

  • Nesta DP, Elliott JS, Warr JP (2000) Supercritical fluid precipitation of recombinant human immunoglobulin from aqueous solutions. Biotechnol Bioeng 67:457–464

    Article  PubMed  CAS  Google Scholar 

  • Pal P, Lesoine JF, Lieb AM, Novotny L, Knauf PA (2005) A novel immobilization method for single protein spFRET sudies. Biophys J. doi:10.1529/biophysj.105.062794

  • Partridge J, Lyle C, Vos J, Parker MC, Moore BD (2005) Antibody-coated microcrystals. Poster at the annual conference of the AAPS 2005, Nashville, TN, 5–10 November 2005

    Google Scholar 

  • Partridge J, Ganesan A, O’Farell N, Parker MC, Moore BD (2005) Stabilization without sugars. Poster at the annual conference of the AAPS 2005, Nashville, TN, 5–10 November 2005

    Google Scholar 

  • Partridge J, Vos J, Lyle C, Parker MC, Moore BD (2006) Continuous flow coprecipitation of IgG-coated microcrystals using a novel three-line system. Poster at the AAPS NBC 2006, Boston, MA, 18–21 June 2006

    Google Scholar 

  • Partridge J, Lyle C, Vos J, Moore BD (2007) Protein coated microcrystal dry powder formulations with payloads of 30 %w/w to 0.01 %w/w. Poster at the AAPS NBC 2007, San Diego, CA, 24–27 June 2007

    Google Scholar 

  • Pfützner A, Flacke F, Pohl R, Linkie D, Engelbach M, Woods R, Forst T, Beyer J, Steiner SS (2003) Pilot study with technosphere/PTH(1–34) – a new approach for effective pulmonary delivery of parathyroid hormone (1–34). Horm Metab Res 35:319–323

    Article  PubMed  Google Scholar 

  • Pfützner A, Mann AE, Steiner SS (2002) Technosphere/insulin – a new approach for effective delivery of human insulin via the pulmonary route. Diabetes Technol Ther 4:589–594

    Article  PubMed  Google Scholar 

  • Press release dated May 6, 2006 on: http://www.xstalbio.com/site/press/boehringer/page. Accessed June 2008

  • Presser I (2003) Innovative online measurement procedures for optimization of freeze-drying processes. Thesis written in German, University of Munich

    Google Scholar 

  • Remacle J, Michel G (2005) Method for stabilizing proteins on a microarray. US patent application US 2005/0112687

    Google Scholar 

  • Roy I, Gupta MN (2004) Freeze-drying of proteins: some emerging concerns. Biotechnol Appl Biochem 39:165–177

    Article  PubMed  CAS  Google Scholar 

  • Sarup L, Servistas MT, Sloan R, Hoare M, Humphreys CO (2000) Shorter communication: investigation of supercritical fluid technology to produce dry particulate formulations of antibody fragments. Food Bioproduct Process 78:101–104

    Article  CAS  Google Scholar 

  • Schüle S, Schultz-Fademrecht T, Bassarab S, Bechtold-Peters K, Garidel P, Friess W (2005) Development of an huIgG 1 Formulation for Inhalative Application. Poster at the AAPS NBC 2005, San Diego, CA, 24–27 June 2005

    Google Scholar 

  • Schüle S (2005) Stabilization of antibodies in spray-dried powders for inhalation, Chapter 3.3.2. Thesis, University of Munich

    Google Scholar 

  • Schüle S, Friess W, Bechtold-Peters K, Garidel P (2007) Conformational analysis of protein secondary structure during spray-drying of antibody/mannitol formulations. Eur J Pharm Biopharm 65:1–9

    Article  PubMed  Google Scholar 

  • Schüle S, Schultz-Fademrecht T, Garidel P, Bechtold-Peters K, Friess W (2008) Stabilization of IgG1 in spray-dried powders for inhalation. Eur J Pharm Biopharm 69:793–807

    Article  PubMed  Google Scholar 

  • Sellers SP, Clark GS, Sievers RE, Carpenter JF (2001) Dry powders stable protein formulations from aqueous solutions prepared using supercritical CO2-assisted aerosolization. J Pharm Sci 90:785–797

    Article  PubMed  CAS  Google Scholar 

  • Shamblin SL, Hancock BC, Zografi G (1998) Water vapor sorption by peptides, proteins and their formulations. Eur J Pharm Biopharm 45:239–247

    Article  PubMed  CAS  Google Scholar 

  • Sheldon RA (2007) Enzyme immobilisation: the quest for optimum performance. Adv Synth Catal 349:387–394

    Article  Google Scholar 

  • Shenoy B, Wang Y, Shan W, Margolin AL (2001) Stability of Crystalline Proteins. Biotechnol Bioeng 73:358–369

    Article  PubMed  CAS  Google Scholar 

  • Shenoy B (2002) Crystals of whole antibodies and fragments thereof and methods for making and using them. PCT application WO 02/072636

    Google Scholar 

  • Steiner SS, Rhodes CA, Shen GS, McCabe RT (1996) Method for making self-assembling diketopiperazine drug delivery system. US patent US5,503,852

    Google Scholar 

  • Stura EA, Graille M, Charbonnier JB (2001) Crystallization of macromolecular complexes: combinatorial complex crystallization. J Cryst Growth 232:573–579

    Article  CAS  Google Scholar 

  • Tang XC, Nail SL, Pikal MJ (2005) Freeze-drying process design by manometric temperature measurement: design of a smart freeze-dryer. Pharm Res 22:685–700

    Article  PubMed  CAS  Google Scholar 

  • Thiering R, Dehghani F, Foster NR (2000) Micronization of model proteins using compressed carbon dioxide. Proceedings of the 5th international symposium on supercritical fluids, Atlanta, GA

    Google Scholar 

  • Valsesia A, Colpo P, Meziani T, Lisboa P, Lejeune M, Rossi F (2006) Immobilization of antibodies on biosensing devices by nanoarrayed self-assembled monolayers. Langmuir 22:1763–1767

    Article  PubMed  CAS  Google Scholar 

  • Vemavarapu C, Mollan MJ, Lodaya M, Needham TE (2005) Design and process aspects of laboratory scale SCF particle formation systems. Int J Pharm 292:1–6

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Singh S, Zeng DL, King K, Nema S (2007) Antibody structure, instability and formulation. J Pharm Sci 96:1–26

    Article  PubMed  CAS  Google Scholar 

  • Website of Avant Immunotherapeutics, http://www.avantimmune.com. Accessed June 2008

  • Website of XstalBio, http://www.xstalbio.com. Accessed June 2008

  • Yang MX, Shenoy B, Disttler M, Patel R, McGrath M, Pechenov S, Margolin AL (2003) Crystalline monoclonal antibodies for subcutaneous delivery. Proc Natl Acad Sci USA 100:6934–6939

    Article  PubMed  CAS  Google Scholar 

  • Zhu DW, Garneau A, Mazumdar M, Zhou M, Xu GJ, Lin SX (2006) Attempts to rationalize protein crystallization using relative crystallizability. J Struct Biol 154:297–302

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments:

Udo Heinzelmann, Torsten Schultz-Fademrecht and Beate Fischer, Boehringer Ingelheim Pharma GmbH&Co.KG, as well as Johann Patridge, Jan Vos und Barry Moore, XstalBio Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karoline Bechtold-Peters .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Bechtold-Peters, K. (2010). Protein Immobilization by Crystallization and Precipitation: An Alternative to Lyophilization. In: Shire, S., Gombotz, W., Bechtold-Peters, K., Andya, J. (eds) Current Trends in Monoclonal Antibody Development and Manufacturing. Biotechnology: Pharmaceutical Aspects, vol XI. Springer, New York, NY. https://doi.org/10.1007/978-0-387-76643-0_10

Download citation

Publish with us

Policies and ethics