Skip to main content

Tumors of the Liver and Biliary Tract

  • Chapter
  • First Online:
Nuclear Oncology

Abstract

Hepatoma or hepatocellular carcinoma (HCC), a tumor arising from hepatocytes, is one of the most common tumors worldwide, with approximately one million new cases diagnosed/year. Five-year survival ranges from 70% for stage I to <20% for stage III. HCC is often associated with cirrhosis and chronic hepatitis. The tumor is staged using the AJCC TNM classification, which considers tumor size, vascular invasion, lymph node status, and metastatic disease. The tumor is usually advanced at the time of diagnosis. CT and MRI are usually used for staging used for this purpose. Several reports indicated low sensitivity of [18F]FDG for detecting HCC due to a relatively low [18F]FDG uptake within the tumor, due to the presence of glucose-6-phosphatase (G-6-Pase), an enzyme present in normal liver, which converts [18F]FDG-6-P to [18F]FDG, allowing the tracer to diffuse out of tumor cells. [18F]FDG-PET has clinical value for identifying distant metastases and identifying poorly differentiated HCC in patients with multiple lesions, since these lesions show higher [18F]FDG uptake.

Cholangiocarcinoma is a neoplasm that arises from the cholangiocyte, the epithelial cells lining the bile ducts. It has an incidence of 1–2 per 100,000 in the western world. The majority of lesions are adenocarcinomas. The first clinical symptom is often painless jaundice. The role of [18F]FDG-PET/CT in these tumors is not clear, since the periductal-infiltrating type may have minimal [18F]FDG uptake, while those that form masses concentrate [18F]FDG. Ampulla of Vater cancer and gallbladder carcinoma are usually associated with masses and are [18F]FDG positive. However, areas of cholangitis may cause false-positive findings. [18F]FDG-PET may have limited value for N staging due to difficulty in separating lymph node lesions from adjacent areas of the primary tumor. On the other hand, [18F]FDG-PET has a high diagnostic value for detecting distant lymph node involvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Parkin M, Brady F, Fertay J, Pisani P. Estimating the world cancer burden: globocan 2000. Int J Cancer. 2001;94:153–6.

    Article  PubMed  CAS  Google Scholar 

  2. Pisani P, Parkin DM, Bray F, Ferlay J. Estimates of the worldwide mortality from 25 cancers in 1990. Int J Cancer. 1999;83:18–29.

    Article  PubMed  CAS  Google Scholar 

  3. Röcken C, Carl-McGrath S. Pathology and pathogenesis of hepatocellular carcinoma. Dig Dis. 2001;19:269–78.

    Article  PubMed  Google Scholar 

  4. Esteves FP, Schuster DM, Halkar RK. Gastrointestinal tract malignancies and positron emission tomography: an overview. Semin Nucl Med. 2006;36:169–81.

    Article  PubMed  Google Scholar 

  5. Llovet JM, Fuster J, Bruix J. Intention-to-treat analysis of surgical treatment for early hepatocellular carcinoma: resection versus transplantation. Hepatology. 1999;30:1434–40.

    Article  PubMed  CAS  Google Scholar 

  6. Jonas S, Bechstein WO, Steinmüller T, et al. Vascular invasion and histopathologic grading determine outcome after liver transplantation for hepatocellular carcinoma in cirrhosis. Hepatology. 2001;33:1080–6.

    Article  PubMed  CAS  Google Scholar 

  7. Cormier JN, Thomas KT, Chari RS, Pinson CW. Management of hepatocellular carcinoma. J Gastrointest Surg. 2006;10:761–80.

    Article  PubMed  Google Scholar 

  8. Therasse P, Arbuck SG, Eisenhauer EA, et al. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst. 2000;92:205–16.

    Article  PubMed  CAS  Google Scholar 

  9. Okazumi S, Isono K, Enomoto K, et al. Evaluation of liver tumors using fluorine-18-fluorodeoxyglucose PET: characterization of tumor and assessment of effect of treatment. J Nucl Med. 1992;33:333–9.

    PubMed  CAS  Google Scholar 

  10. Schröder O, Trojan J, Zeuzem S, Baum RP. Limited value of fluorine-18-fluorodeoxyglucose PET for the differential diagnosis of focal liver lesions in patients with chronic hepatitis C virus infection. Nuklearmedizin. 1998;37:279–85.

    PubMed  Google Scholar 

  11. Delbeke D, Martin WH, Sandler MP, Chapman WC, Wright Jr JK, Pinson CW. Evaluation of benign vs malignant hepatic lesions with positron emission tomography. Arch Surg. 1998;133:510–5.

    Article  PubMed  CAS  Google Scholar 

  12. Trojan J, Schroeder O, Raedle J, et al. Fluorine-18 [18F]FDG positron emission tomography for imaging of hepatocellular carcinoma. Am J Gastroenterol. 1999;94:3314–9.

    Article  PubMed  CAS  Google Scholar 

  13. Khan MA, Combs CS, Brunt EM, et al. Positron emission tomography scanning in the evaluation of hepatocellular carcinoma. J Hepatol. 2000;32:792–7.

    Article  PubMed  CAS  Google Scholar 

  14. Jeng LB, Changlai SP, Shen YY, Lin CC, Tsai CH, Kao CH. Limited value of 18F-2-deoxyglucose positron emission tomography to detect hepatocellular carcinoma in hepatitis B virus carriers. Hepatogastroenterology. 2003;50:2154–6.

    PubMed  Google Scholar 

  15. Higashi T, Saga T, Nakamoto Y, et al. Diagnosis of pancreatic cancer using fluorine-18 fluorodeoxyglucose positron emission tomography (FDG PET)—usefulness and limitations in “clinical reality”. Ann Nucl Med. 2003;17:261–79.

    Article  PubMed  Google Scholar 

  16. Torizuka T, Tamaki N, Inokuma T, et al. In vivo assessment of glucose metabolism in hepatocellular carcinoma with [18F]FDG-PET. J Nucl Med. 1995;36:1811–7.

    PubMed  CAS  Google Scholar 

  17. Caracó C, Aloj L, Chen LY, Chou JY, Eckelman WC. Cellular release of [18F]2-fluoro-2-deoxyglucose as a function of the ­glucose-6-phosphatase enzyme system. J Biol Chem. 2000;275:18489–94.

    Article  PubMed  Google Scholar 

  18. Seo S, Hatano E, Higashi T, et al. Fluorine-18 fluorodeoxyglucose positron emission tomography predicts tumor differentiation, P-glycoprotein expression, and outcome after resection in hepatocellular carcinoma. Clin Cancer Res. 2007;13:427–33.

    Article  PubMed  CAS  Google Scholar 

  19. Hatano E, Ikai I, Higashi T, et al. Preoperative positron emission tomography with fluorine-18-fluorodeoxyglucose is predictive of prognosis in patients with hepatocellular carcinoma after resection. World J Surg. 2006;30:1736–41.

    Article  PubMed  Google Scholar 

  20. Imamura H, Matsuyama Y, Tanaka E, et al. Risk factors contributing to early and late phase intrahepatic recurrence of hepatocellular carcinoma after hepatectomy. J Hepatol. 2003;38:200–7.

    Article  PubMed  Google Scholar 

  21. Miyaaki H, Nakashima O, Kurogi M, Eguchi K, Kojiro M. Lens culinaris agglutinin-reactive alpha-fetoprotein and protein induced by vitamin K absence II are potential indicators of a poor prognosis: a histopathological study of surgically resected hepatocellular carcinoma. J Gastroenterol. 2007;42:962–8.

    Article  PubMed  CAS  Google Scholar 

  22. De Carlis L, Giacomoni A, Lauterio A, et al. Liver transplantation for hepatocellular cancer: should the current indication criteria be changed? Transpl Int. 2003;16:115–22.

    Article  PubMed  Google Scholar 

  23. O’Suilleabhain CB, Poon RT, Yong JL, Ooi GC, Tso WK, Fan ST. Factors predictive of 5-year survival after transarterial chemoembolization for inoperable hepatocellular carcinoma. Br J Surg. 2003;90:325–31.

    Article  PubMed  Google Scholar 

  24. Delbeke D, Martin WH. PET and PET-CT for evaluation of colorectal carcinoma. Semin Nucl Med. 2004;34:209–23.

    Article  PubMed  Google Scholar 

  25. Weber WA. Use of PET for monitoring cancer therapy and for predicting outcome. J Nucl Med. 2005;46:983–95.

    PubMed  CAS  Google Scholar 

  26. Specht L. 2-[18F]fluoro-2-deoxyglucose positron-emission tomography in staging, response evaluation, and treatment planning of lymphomas. Semin Radiat Oncol. 2007;17:190–7.

    Article  PubMed  Google Scholar 

  27. Higashi T, Hatano E, Ikai I, et al. [18F]FDG-PET as a prognostic predictor in the early post-therapeutic evaluation for unresectable hepatocellular carcinoma. Eur J Nucl Med Mol Imaging. 2010;37:468–82.

    Article  PubMed  Google Scholar 

  28. Torizuka T, Tamaki N, Inokuma T, et al. Value of fluorine-18-FDG-PET to monitor hepatocellular carcinoma after interventional therapy. J Nucl Med. 1994;35:1965–9.

    PubMed  CAS  Google Scholar 

  29. Shiomi S, Nishiguchi S, Ishizu H, et al. Usefulness of positron emission tomography with fluorine-18-fluorodeoxyglucose for predicting outcome in patients with hepatocellular carcinoma. Am J Gastroenterol. 2001;96:1877–80.

    Article  PubMed  CAS  Google Scholar 

  30. Diercks R, Maes A, Peeters M, Van De Wiele C. [18F]FDG PET for monitoring response to local and locoregional therapy in HCC and liver metastasis. Q J Nucl Med Mol Imaging. 2009;53:336–42.

    Google Scholar 

  31. Sugiyama M, Sahkahara H, Torizula T, et al. 18F-FDG PET in the detection of extrahepatic metastasis from hepatocellular carcinoma. J Gastroenterol. 2004;39:961–8.

    Article  PubMed  CAS  Google Scholar 

  32. Han AR, Gwak GY, Choi MS, Lee JH, Koh KC, Paik SW, Yoo BC. The clinical value of 18F-FDG PET/CT for investigating unexplained serum AFP elevation following interventional therapy for hepatocellular carcinoma. Hepatogastroenterology. 2009;56:1111–6.

    PubMed  Google Scholar 

  33. Kim YK, Lee KW, Cho SY, Han SS, Kim SH, Kim SK, Park SJ. Usefulness 18F-FDG positron emission tomography/computed tomography for detecting recurrence of hepatocellular carcinoma in posttransplant patients. Liver Transpl. 2010;16:767–72.

    Article  PubMed  Google Scholar 

  34. Lee JW, Paeng JC, Kang KW, Kwon HW, Suh KS, Chung JK, Lee MC, Lee DS. Prediction of tumor recurrence by 18F-FDG PET in liver transplantation for hepatocellular carcinoma. J Nucl Med. 2009;50:682–7.

    Article  PubMed  Google Scholar 

  35. Wolfort RM, Papillon PW, Turnahe RH, Lillien DL, Ramaswamy MR, Zibari GB. Role of [18F]FDG-PET in the evaluation and staging of hepatocellular carcinoma with comparison of tumor size, AFP level, and histologic grade. Int Surg. 2010;95:67–75.

    PubMed  CAS  Google Scholar 

  36. Lin WY, Tsai SC, Hung GU. Value of delayed 18F-FDG-PET imaging in the detection of hepatocellular carcinoma. Nucl Med Commun. 2005;26:315–21.

    Article  PubMed  Google Scholar 

  37. Ho CL, Yu SC, Yeung DW. 11C-acetate PET imaging in hepatocellular carcinoma and other liver masses. J Nucl Med. 2003;44:213–21.

    PubMed  Google Scholar 

  38. Park JW, Kim JH, Kim SK, et al. A prospective evaluation of 18F-FDG and 11C-acetate PET/CT for detection of primary and metastatic hepatocellular carcinoma. J Nucl Med. 2008;49:1912–21.

    Article  PubMed  Google Scholar 

  39. Yun M, Bang SH, Kim JW, Park JY, Kim KS, Lee JD. The importance of acetyl coenzyme A synthetase for 11C-acetate uptake and cell survival in hepatocellular carcinoma. J Nucl Med. 2009;50:1222–8.

    Article  PubMed  CAS  Google Scholar 

  40. Wu HL, Wu Z, Zhuang H, Fu Z, Dang Y. Dual time point C-11 acetate PET imaging can potentially distinguish focal nodular hyperplasia from primary hepatocellular carcinoma. Clin Nucl Med. 2009;34:874–7.

    Article  PubMed  Google Scholar 

  41. Harmeet M, Gres GJ. Cholangiocarcinoma: modern advances in understanding a deadly old disease. J Hepatol. 2008;45:856–67.

    Google Scholar 

  42. Landis S, Murray T, Bolden S, et al. Cancer statistics, 1998. CA Cancer J Clin. 1998;48:6–29.

    Article  PubMed  CAS  Google Scholar 

  43. Bergquist A, Ekbom A, Olsson R, et al. Hepatic and extrahepatic malignancies in primary sclerosing cholangitis. J Hepatol. 2002;36:321–7.

    Article  PubMed  Google Scholar 

  44. Holzinger F, Z’graggen K, Buchler M. Mechanisms of biliary carcinogenesis: a pathogenetic multi-stage cascade towards cholangiocarcinoma. Ann Oncol. 1999;10 Suppl 4:122–6.

    Article  PubMed  Google Scholar 

  45. Nakeeb A, Pitt H, Sohn T, et al. Cholangiocarcinoma. A spectrum of intrahepatic, perihilar, and distal tumors. Ann Surg. 1996;224:463–73.

    Article  PubMed  CAS  Google Scholar 

  46. Nakagohri T, Asano T, Kinoshita H, et al. Aggressive surgical resection for hilar-invasive and peripheral intrahepatic cholangiocarcinoma. World J Surg. 2003;27:289–93.

    Article  PubMed  Google Scholar 

  47. Weber S, Jarnagin W, Klimstra D, et al. Intrahepatic cholangiocarcinoma: resectability, recurrence pattern, and outcomes. J Am Coll Surg. 2001;193:384–91.

    Article  PubMed  CAS  Google Scholar 

  48. Burke E, Jarnagin W, Hochwald S, et al. Hilar Cholangiocarcinoma: patterns of spread, the importance of hepatic resection for curative operation, and a presurgical clinical staging system. Ann Surg. 1998;228:385–94.

    Article  PubMed  CAS  Google Scholar 

  49. Tsao J, Nimura Y, Kamiya J, et al. Management of hilar cholangiocarcinoma: comparison of an American and a Japanese experience. Ann Surg. 2000;232:166–74.

    Article  PubMed  CAS  Google Scholar 

  50. Washburn W, Lewis W, Jenkins R. Aggressive surgical resection for cholangiocarcinoma. Arch Surg. 1995;130:270–6.

    Article  PubMed  CAS  Google Scholar 

  51. Nagino M, Nimura Y, Kamiya J, et al. Segmental liver resections for hilar cholangiocarcinoma. Hepatogastroenterology. 1998;45:7–13.

    PubMed  CAS  Google Scholar 

  52. Rea D, Munoz-Juarez M, Farnell M, et al. Major hepatic resection for hilar cholangiocarcinoma: analysis of 46 patients. Arch Surg. 2004;139:514–23.

    Article  PubMed  Google Scholar 

  53. Takamura A, Saito H, Kamada T, et al. Intraluminal low-dose-rate 192Ir brachytherapy combined with external beam radiotherapy and biliary stenting for unresectable extrahepatic bile duct carcinoma. Int J Radiat Oncol Biol Phys. 2003;57:1357–65.

    Article  PubMed  Google Scholar 

  54. Kubicka S, Rudolph KL, Tietze MK, et al. Phase II study of systemic gemcitabine chemotherapy for advanced unresectable hepatobiliary carcinomas. Hepatogastroenterology. 2001;48:783–9.

    PubMed  CAS  Google Scholar 

  55. Anderson CD, Rice MH, Pinson CW, et al. Fluorodeoxyglucose PET imaging in the evaluation of gall bladder carcinoma and cholangiocarcinoma. J Gastrointest Surg. 2004;8:90–7.

    Article  PubMed  Google Scholar 

  56. Petrowsky H, Wildbrett P, Huasrik DB, et al. Impact of integrated positron emission tomography and computed tomography on staging and management of gallbladder and cholangiocarcinoma. J Hepatol. 2006;45:43–50.

    Article  PubMed  Google Scholar 

  57. Kim JY, Kim MH, Lee TY, et al. Clinical role of 18F-FDG PET/CT in suspected and potentially operable cholangiocarcinoma a ­prospective study compared with conventional imaging. Am J Gastroenterol. 2008;103:1145–51.

    Article  PubMed  Google Scholar 

  58. Corvera CU, Blumgart LH, Akhurst T, et al. 18F-fluorodeoxyglycose positron emission tomography influences management decision in patients with biliary cancer. J Am Coll Surg. 2008;206:57–65.

    Article  PubMed  Google Scholar 

  59. Moon CM, Bang S, Chung JB, et al. Usefulness of 18F-fluorodeoxyglucose positron emission tomography in ­differential diagnosis and staging of cholangiocarcinomas. J Gastroenterol Hepatol. 2008;23:759–65.

    Article  PubMed  Google Scholar 

  60. Furukawa H, Ikuma H, Asakura-Yokoe K, et al. Preoperative ­staging of biliary carcinoma using 18F-fluorodeoxyglucose PET; prospective comparison with PET  +  CT, MDCT and histopathology. Eur Radiol. 2008;18:2841–7.

    Article  PubMed  Google Scholar 

  61. Kato T, Tsukamoto E, Kuge Y, et al. Clinical role of 18F-FDG PET for initial staging of patients with extrahepatic bile duct cancer. Eur J Nucl Med. 2002;29:1047–54.

    Article  CAS  Google Scholar 

  62. Nishiyama Y, Yamamoto Y, Kimura N, et al. Comparison of early and delayed [18F]FDG PET for evaluation of biliary stricture. Nucl Med Commun. 2007;28:914–9.

    Article  PubMed  Google Scholar 

  63. Li J, Kuehl H, Grabellus F, et al. Preoperative assessment of hilar cholangiocarcinoma by dual-modality PET/CT. J Surg Oncol. 2008;98:438–43.

    Article  PubMed  Google Scholar 

  64. Makino I, Yamaguchi T, Sato N, Yasui T, Kita I. Xanthogranulomatous cholecystitis mimicking gallbladder carcinoma with a false-positive result on fluorodeoxyglucose PET. World J Gastroenterol. 2009;15(29):3691–3.

    Article  PubMed  Google Scholar 

  65. Seo S, Hatano E, Higashi T, et al. Fluorine-18 fluorodeoxyglucose positron emission tomography predicts lymph node metastasis, P-glycoprotein expression, and recurrence after resection in mass-forming intrahepatic cholangiocarcinoma. Surgery. 2008;143:769–77.

    Article  PubMed  Google Scholar 

  66. Padhani AR, Ollivier L. The RECIST (Response Evaluation Criteria in Solid Tumors) criteria: implications for diagnostic radiologists. Br J Radiol. 2001;74:983–6.

    PubMed  CAS  Google Scholar 

  67. Eisenhauera EA, Therasseb P, Bogaerts J, et al. New response evaluation criteria in solid tumors: revised RECIST guideline. Eur J Cancer. 2009;45:228–47.

    Article  Google Scholar 

  68. Jadvar H, Henderson RW, Conti PS. [F-18]fluorodeoxyglucose positron emission tomography and positron emission tomography: computed tomography in recurrent metastatic cholangiocarcinoma. J Comput Assist Tomogr. 2007;31:223–8.

    Article  PubMed  Google Scholar 

  69. Chikamoto A, Tsuji T, Takamori H, et al. The diagnostic efficacy of [18F]FDG-PET in the local recurrence of hilar bile duct cancer. J Hepatobiliary Pancreat Surg. 2006;13:403–8.

    Article  PubMed  Google Scholar 

  70. Corvera CU, Blumgart LH, Akhurst T, et al. 18F-fluorodeoxyglucose positron emission tomography influences management decisions in patients with biliary cancer. J Am Coll Surg. 2008;206:57–65.

    Article  PubMed  Google Scholar 

  71. Kitajima K, Murakami K, Kanegae K, et al. Clinical impact of whole body [18F]FDG-PET for recurrent biliary cancer: a multicenter study. Ann Nucl Med. 2009;23:709–18.

    Article  PubMed  Google Scholar 

  72. Kitamura K, Hatano E, Higashi T, et al. Prognostic value of 18F-fluorodeoxyglucose positron emission tomography in patients with extrahepatic bile duct cancer. J Hepatobiliary Pancreat Sci. 2011;18:39–46.

    Article  PubMed  Google Scholar 

  73. Mazzaferro V, Regalia E, Doci R, et al. Liver transplantation for the treatment of small hepatocellular carcinomas in patients with cirrhosis. N Engl J Med. 1996;334:693–9.

    Article  PubMed  CAS  Google Scholar 

  74. Ingold JA, Reed GB, Kaplan HS, Bagshaw MA. Radiation hepatitis. Am J Roentgenol Radium Ther Nucl Med. 1965;93:200–8.

    PubMed  CAS  Google Scholar 

  75. Lawrence TS, Robertson JM, Anscher MS, Jirtle RL, Ensminger WD, Fajardo LF. Hepatic toxicity resulting from cancer treatment. Int J Radiat Oncol Biol Phys. 1995;31:1237–48.

    Article  PubMed  CAS  Google Scholar 

  76. Salem R, Lewandowski RJ, Atassi B, et al. Treatment of unresectable hepatocellular carcinoma with use of 90Y microspheres (TheraSphere): safety, tumor response, and survival. J Vasc Interv Radiol. 2005;16:1627–39.

    Article  PubMed  Google Scholar 

  77. Raoul JL, Bourguet P, Bretagne JF, et al. Hepatic artery injection of I-131-labelled lipiodol. I. Biodistribution study results in patients with hepatocellular carcinoma. Radiology. 1988;168:541–5.

    PubMed  CAS  Google Scholar 

  78. Nakajo M, Kobayashi H, Shimabukuro K, et al. Biodistribution and in vivo kinetics of iodine-131 lipiodol infused via the hepatic artery of patients with hepatic cancers. J Nucl Med. 1988;29:1066–77.

    PubMed  CAS  Google Scholar 

  79. Bhattacharya S, Dhillon AP, Winslet MC, et al. Human liver cancer cells and endothelial cells incorporate iodised oil. Br J Cancer. 1996;73:877–81.

    Article  PubMed  CAS  Google Scholar 

  80. Madsen MT, Park CH, Thakur ML. Dosimetry of iodine-131 ethiodol in the treatment of hepatoma. J Nucl Med. 1988;29:1038–44.

    PubMed  CAS  Google Scholar 

  81. Monsieurs MA, Bacher K, Brans B, et al. Patient dosimetry for 131I-lipiodol therapy. Eur J Nucl Med Mol Imaging. 2003;30:554–61.

    Article  PubMed  CAS  Google Scholar 

  82. Bhattacharya S, Novell JR, Dusheiko GM, Hilson AJ, Dick R, Hobbs KE. Epirubicin-Lipiodol chemotherapy versus 131iodine-lipiodol radiotherapy in the treatment of unresectable hepatocellular carcinoma. Cancer. 1995;76:2202–10.

    Article  PubMed  CAS  Google Scholar 

  83. Yoo HS, Park CH, Lee JT, et al. Small hepatocellular carcinoma: high dose internal radiation therapy with superselective intra-arterial injection of I-131-labeled Lipiodol. Cancer Chemother Pharmacol. 1994;33:S128–S33.

    Article  PubMed  Google Scholar 

  84. Leung WT, Lau WY, Ho S, et al. Selective internal radiation therapy with intra-arterial iodine-131-Lipiodol in inoperable hepatocellular carcinoma. J Nucl Med. 1994;35:1313–8.

    PubMed  CAS  Google Scholar 

  85. Raoul JL, Guyader D, Bretagne JF, et al. Randomized controlled trial for hepatocellular carcinoma with portal vein thrombosis: intra-arterial iodine-131-iodized oil versus medical support. J Nucl Med. 1994;35:1782–7.

    PubMed  CAS  Google Scholar 

  86. Boucher E, Garin E, Guillygomac’h A, Olivie D, Boudjema K, Raoul JL. Intra-arterial injection of iodine-131-labeled lipiodol for treatment of hepatocellular carcinoma. Radiother Oncol. 2007;82:76–82.

    Article  PubMed  CAS  Google Scholar 

  87. Partensky C, Sassolas G, Henry L, Paliard P, Maddern GJ. Intra-arterial iodine 131-labeled lipiodol as adjuvant therapy after curative liver resection for hepatocellular carcinoma: a phase 2 clinical study. Arch Surg. 2000;135:1298–300.

    Article  PubMed  CAS  Google Scholar 

  88. Lau WY, Lai EC, Leung TW, Yu SC. Adjuvant intra-arterial iodine-131-labeled lipiodol for resectable hepatocellular carcinoma: a prospective randomized trial-update on 5-year and 10-year survival. Ann Surg. 2008;247:43–8.

    Article  PubMed  Google Scholar 

  89. Lee YS, Jeong JM, Kim YJ, et al. Synthesis of 188Re-labelled long chain alkyl diaminedithiol for therapy of liver cancer. Nucl Med Commun. 2002;23:237–42.

    Article  PubMed  CAS  Google Scholar 

  90. De Ruyck K, Lambert B, Bacher K, et al. Biologic dosimetry of 188Re-HDD/lipiodol versus 131I-lipiodol therapy in patients with hepatocellular carcinoma. J Nucl Med. 2004;45:612–8.

    PubMed  Google Scholar 

  91. Kumar A, Srivastava DN, Chau TT, et al. Inoperable hepatocellular carcinoma: transarterial 188Re HDD-labeled iodized oil for treatment. Prospective multicenter clinical trial. Radiology. 2007;243:509–19.

    Article  PubMed  Google Scholar 

  92. Sato K, Lewandowski RJ, Bui JT, et al. Treatment of unresectable primary and metastatic liver cancer with yttrium-90 microspheres (TheraSphere): assessment of hepatic arterial embolization. Cardiovasc Intervent Radiol. 2006;29:522–9.

    Article  PubMed  Google Scholar 

  93. Salem R, Thurston KG. Radioembolization with 90Yttrium microspheres: a state-of-the-art brachytherapy treatment for primary and secondary liver malignancies. Part 1: technical and methodologic considerations. J Vasc Interv Radiol. 2006;17:1251–78.

    Article  PubMed  Google Scholar 

  94. Lawrence TS, Robertson JM, Anscher MS, Jirtle RL, Ensminger WD, Fajardo LF. Hepatic toxicity resulting from cancer treatment. Int J Radiat Oncol Biol Phys. 1995;31:1237–48.

    Article  PubMed  CAS  Google Scholar 

  95. Hamami ME, Poeppel TD, Müller S, Heusner T, Bockisch A, Hilgard P, Antoch G. SPECT/CT with 99mTc-MAA in radioembolization with 90Y microspheres in patients with hepatocellular cancer. J Nucl Med. 2009;50:688–92.

    Article  PubMed  CAS  Google Scholar 

  96. Salem R, Lewandowski RJ, Atassi B, et al. Treatment of unresectable hepatocellular carcinoma with use of 90Y microspheres (TheraSphere): safety, tumor response, and survival. J Vasc Interv Radiol. 2005;16:1627–39.

    Article  PubMed  Google Scholar 

  97. Riaz A, Memon K, Miller FH, et al. Role of the EASL, RECIST, and WHO response guidelines alone or in combination for hepatocellular carcinoma: radiologic-pathologic correlation. J Hepatol. 2011;54:695–704.

    Article  PubMed  Google Scholar 

  98. Wong CY, Qing F, Savin M, et al. Reduction of metastatic load to liver after intraarterial hepatic yttrium-90 radioembolization as evaluated by [18F]fluorodeoxyglucose positron emission tomographic imaging. J Vasc Interv Radiol. 2005;16:1101–6.

    Article  PubMed  Google Scholar 

  99. Miller FH, Keppke AL, Reddy D, Huang J, Jin J, Mulcahy MF, Salem R. Response of liver metastases after treatment with yttrium-90 microspheres: role of size, necrosis, and PET. AJR Am J Roentgenol. 2007;188:776–83.

    Article  PubMed  Google Scholar 

  100. Flamen P, Vanderlinden B, Delatte P, Ghanem G, Ameye L, Van Den Eynde M, Hendlisz A. Multimodality imaging can predict the metabolic response of unresectable colorectal liver metastases to radioembolization therapy with Yttrium-90 labeled resin microspheres. Phys Med Biol. 2008;53:6591–603.

    Article  PubMed  Google Scholar 

  101. Haug AR, Heinemann V, Bruns CJ, Hoffmann R, Jakobs T, Bartenstein P, Hacker M. 18F-FDG PET independently predicts survival in patients with cholangiocellular carcinoma treated with 90Y microspheres. Eur J Nucl Med Mol Imaging. 2011;38:1037–45.

    Article  PubMed  CAS  Google Scholar 

  102. Geschwind JF, Salem R, Carr BI, et al. Yttrium-90 microspheres for the treatment of hepatocellular carcinoma. Gastroenterology. 2004;127:S194–205.

    Article  PubMed  CAS  Google Scholar 

  103. Kulik LM, Atassi B, van Holsbeeck L, et al. Yttrium-90 microspheres (TheraSphere®) treatment of unresectable hepatocellular carcinoma: downstaging to resection, RFA and bridge to transplantation. J Surg Oncol. 2006;94:572–86.

    Article  PubMed  CAS  Google Scholar 

  104. Kulik LM, Carr BI, Mulcahy MF, et al. Safety and efficacy of 90Y radiotherapy for hepatocellular carcinoma with and without portal vein thrombosis. Hepatology. 2007;41:71–81.

    Article  Google Scholar 

  105. Ibrahim SM, Mulcahy MF, Lewandowski RJ, et al. Treatment of unresectable cholangiocarcinoma using yttrium-90 microspheres: results from a pilot study. Cancer. 2008;113:2119–28.

    Article  PubMed  CAS  Google Scholar 

  106. Welsh JS, Kennedy AS, Thomadsen B. Selective Internal Radiation Therapy (SIRT) for liver metastases secondary to colorectal adenocarcinoma. Int J Radiat Oncol Biol Phys. 2006;66:S62–73.

    Article  PubMed  CAS  Google Scholar 

  107. Wong CY, Salem R, Raman S, Gates VL, Dworkin HJ. Evaluating 90Y-glass microsphere treatment response of ­unresectable colorectal liver metastases by [18F]FDG PET: a ­comparison with CT or MRI. Eur J Nucl Med Mol Imaging. 2002;29:815–20.

    Article  PubMed  CAS  Google Scholar 

  108. Gray B, Van Hazel G, Hope M, et al. Randomised trial of SIR-Spheres plus chemotherapy vs. chemotherapy alone for treating patients with liver metastases from primary large bowel cancer. Ann Oncol. 2001;12:1711–20.

    Article  PubMed  CAS  Google Scholar 

  109. Goin JE, Dancey JE, Hermann GA, Sickles CJ, Roberts CA, MacDonald JS. Treatment of unresectable metastatic colorectal carcinoma to the liver with intrahepatic Y-90 microspheres: a dose-ranging study. World J Nucl Med. 2003;2:216–25.

    Google Scholar 

  110. Hong K, McBride JD, Georgiades CS, et al. Salvage therapy for liver-dominant colorectal metastatic adenocarcinoma: comparison between transcatheter arterial chemoembolization versus yttrium-90 radioembolization. J Vasc Interv Radiol. 2009;20:360–7.

    Article  PubMed  Google Scholar 

  111. Rhee TK, Lewandowski RJ, Liu DM, et al. 90Y Radioembolization for metastatic neuroendocrine liver tumors: preliminary results from a multi-institutional experience. Ann Surg. 2008;247:1029–35.

    Article  PubMed  Google Scholar 

  112. Kennedy AS, Dezarn WA, McNeillie P, et al. Radioembolization for unresectable neuroendocrine hepatic metastases using resin 90Y-microspheres: early results in patients. Am J Clin Oncol. 2008;31:271–9.

    Article  PubMed  Google Scholar 

  113. Shepherd FA, Rotstein LE, Houle S, Yip TC, Paul K, Sniderman KW. A phase I dose escalation trial of yttrium-90 microspheres in the treatment of primary hepatocellular carcinoma. Cancer. 1992;70:2250–4.

    Article  PubMed  CAS  Google Scholar 

  114. Yan ZP, Lin G, Zhao HY, Dong YH. An experimental study and clinical pilot trials on yttrium-90 glass microspheres through the hepatic artery for treatment of primary liver cancer. Cancer. 1993;72:3210–5.

    Article  PubMed  CAS  Google Scholar 

  115. Andrews JC, Walker SC, Ackermann RJ, Cotton LA, Ensminger WD, Shapiro B. Hepatic radioembolization with yttrium-90 containing glass microspheres: preliminary results and clinical follow-up. J Nucl Med. 1994;35:1637–44.

    PubMed  CAS  Google Scholar 

  116. Lau WY, Leung WT, Ho S, Cotton LA, Ensminger WD, Shapiro B. Treatment of inoperable hepatocellular carcinoma with intrahepatic arterial yttrium-90 microspheres: a phase I and II study. Br J Cancer. 1994;70:994–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiki Takei MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Takei, T., Boni, G., Tamaki, N., Saito, H., Strauss, H.W. (2013). Tumors of the Liver and Biliary Tract. In: Strauss, H., Mariani, G., Volterrani, D., Larson, S. (eds) Nuclear Oncology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-48894-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-48894-3_16

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-48893-6

  • Online ISBN: 978-0-387-48894-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics