Skip to main content

Function of the Amphibian Central Auditory System

  • Chapter
Hearing and Sound Communication in Amphibians

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 28))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alder TB, Rose GJ (1998) Long-term temporal integration in the anuran auditory system. Nature Neurosci. 1:519–522.

    Article  CAS  PubMed  Google Scholar 

  • Alder TB, Rose GJ (2000) Integration and recovery processes contribute to the temporal selectivity of neurons in the midbrain of the northern leopard frog,Rana pipiens. J Comp Physiol A 186:923–937.

    Article  CAS  PubMed  Google Scholar 

  • Allen DM (1973) Some relationships of vocalization to behavior in the Pacific treefrog, Hyla regilla. Herpetologica 29:366–371.

    Google Scholar 

  • Allison JD (1991) Acoustic modulation of neural activity in the preoptic area and ventral hypothalamus of the green treefrog (Hyla cinerea). J Comp Physiol A 171:387–395.

    Google Scholar 

  • Allison JD, Wilczynski W (1991) Thalamic and midbrain auditory projections to the preoptic area and ventral hypothalamus in the green treefrog (Hyla cinerea). Brain Behav Evol 37:322–331.

    Google Scholar 

  • Benedix JH, Pedemonte M, Velluti R, Narins P (1994) Temperature dependence of twotone rate suppression in the northern leopard frog, Rana pipiens pipiens. J Acoustic Soc Am 96:2738–2745.

    Article  Google Scholar 

  • Bibikov NG (1977) Dependence of the binaural neurons reaction in the frog tours semicircularis on the interaural phase difference. Sechenov Physiol J USSR 63:365–373.

    CAS  Google Scholar 

  • Bibikov NG (2002) Responses of the auditory neurons located in the isthmal region of the lake frog. Sensornye-Sistemy 16(1):23–34.

    Google Scholar 

  • Bibikov NG, Gorodetskaya ON (1980) Single unit responses in the auditory center of the frog mesencephalon to amplitude-modulated tones. Neirofiziologiya 12:264–271.

    CAS  Google Scholar 

  • Brenowitz EA, Rose GJ (1994) Behavioural plasticity mediates aggression in choruses of the Pacific treefrog. Anim Behav 47:633–641.

    Article  Google Scholar 

  • Buonomano DV (2000) Decoding temporal information: A model based on short-term synaptic plasticity. J Neurosci 20(3):1129–1141.

    CAS  PubMed  Google Scholar 

  • Capranica RR (1965) The evoked vocal response of the bullfrog: A study of communication by sound. MIT Res Monogr 33. Cambridge, MA: MIT Press.

    Google Scholar 

  • Capranica RR (1966) Vocal response of the bullfrog to natural and synthetic mating calls. J Acoust Soc Am 40:1131–1139.

    Article  Google Scholar 

  • Capranica RR (1976) Morphology and physiology of the auditory system. In: Llinas R, Precht W eds Handbook of Frog Neurobiology. Berlin: Springer, pp. 551–575.

    Google Scholar 

  • Capranica RR, Moffat AJM (1980) Nonlinear properties of the peripheral auditory system of anurans. In: Fay RR, Popper AN eds Comparative Studies of Hearing in Vertebrates. Berlin: Springer Verlag, pp. 139–166.

    Google Scholar 

  • Christensen-Dalsgaard J, Elepfandt A (1995) Biophysics of underwater hearing in the clawed frog, Xenopus laevis. J Comp Physiol A 176:317–324.

    Article  CAS  PubMed  Google Scholar 

  • Christensen-Dalsgaard J, Kanneworff M (2005) Binaural interaction in the frog dorsomedullary nucleus. Brain Res Bull, 66:522–525.

    Article  PubMed  Google Scholar 

  • Chung SH, Pettigrew A, Anson M (1978) Dynamics of the amphibian middle ear. Nature 272(5649):142–147.

    Article  CAS  PubMed  Google Scholar 

  • Chung SH, Pettigrew A, Anson M (1981) Hearing in the frog: Dynamics of the middle ear. Proc Roy Soc Lond B 212:459–485.

    Article  Google Scholar 

  • Condon CJ, Chang SH, Feng AS (1991) Processing of behaviorally relevant temporal parameters of acoustic stimuli by single neurons in the superior olivary nucleus of the leopard frog. J Comp Physiol 168: 709–725.

    Article  CAS  Google Scholar 

  • Condon CJ, Chang S-H, Feng AS (1995) Classification of the temporal discharge patterns of single auditory neurons in the frog superior olivary nucleus. Hearing Res 83:190–202.

    Article  CAS  Google Scholar 

  • Diekamp B, Gerhardt HC (1995) Selective phonotaxis to advertisement calls in the gray treefrog, Hyla versicolor: Behavioral experiments and neurophysiological correlates. J Comp Physiol 177:173–190.

    Article  CAS  Google Scholar 

  • Dunia R, Narins PM (1989) Temporal resolution in frog auditory-nerve fibers. J Acoust Soc Am 85:1630–1638.

    Article  CAS  PubMed  Google Scholar 

  • Edwards CJ, Rose GJ (2003) Interval-integration underlies amplitude modulation bandsuppression selectivity in the anuran midbrain. J Comp Physiol A 189:907–914.

    Article  CAS  Google Scholar 

  • Edwards CJ, Alder TB, Rose GJ (2002) Auditory midbrain neurons that count. Nature Neurosci 5:934–936.

    Article  CAS  PubMed  Google Scholar 

  • Eggermont JJ (1988) Mechanisms of sound localization in anurans. In: Fritzsch B, Ryan MJ, Wilczynski W, Hetherington TE, Walkowiak W eds The Evolution of the Amphibian Auditory System. New York: Wiley, pp. 307–336.

    Google Scholar 

  • Eggermont JJ (1990) Temporal modulation transfer functions for single neurons in the auditory midbrain of the leopard frog intensity and carrier-frequency dependence. Hear Res 43:181–198.

    Article  CAS  PubMed  Google Scholar 

  • Ehret G, Keilwerth E, Kamada T (1994) The lung-eardrum pathway in three treefrog and four dendrobatid frog species: some properties of sound transmission. J Exp Biol 195:329–343.

    CAS  PubMed  Google Scholar 

  • Ehret G, Tautz J, Schmitz B, Narins PM (1990) Hearing through the lungs: Lung-eardrum transmission of sound in the frog Eleutherodactylus coqui. Naturwissenschaften. 77: 192–194.

    Article  CAS  PubMed  Google Scholar 

  • Endepols H, Walkowiak W (2001) Integration of ascending and descending inputs in the auditory midbrain of anurans. J Comp Physiol A 186:1119–1133.

    Article  CAS  Google Scholar 

  • Endepols H, Feng AS, Gerhardt HC, Schul J, Walkowiak W (2003) Roles of the auditory midbrain and thalamus in selective phonotaxis in female gray treefrogs ( Hyla versicolor). Behav Brain Res 145:63–77.

    Article  PubMed  Google Scholar 

  • Endepols H, Walkowiak W, Luksch H (2000) Chemoarchitecture of the anuran auditory midbrain. Brain Res Rev 33:179–198.

    Article  CAS  PubMed  Google Scholar 

  • Epping WJM, Eggermont JJ (1985) Relation of binaural interaction and spectro-temporal characteristics in the auditory midbrain of the grassfrog. Hearing Res 19:15–28.

    Article  CAS  Google Scholar 

  • Epping WJM, Eggermont JJ (1986) Sensitivity of neurons in the auditory midbrain of the grassfrog to temporal characteristics of sound II. Stimulation with amplitude modulated sound. Hear Res. 24:55–72.

    Article  CAS  PubMed  Google Scholar 

  • Feng AS (1980) Directional characteristics of the acoustic receiver of the leopard frog (Rana pipiens): A study of the eighth nerve auditory responses. J Acoust Soc Am 68:1107–1114.

    Article  CAS  PubMed  Google Scholar 

  • Feng AS (1981) Directional response characteristics of single neurons in the torus semicircularis of the leopard frog (Rana pipiens). J Comp Physiol 144:419–428.

    Article  Google Scholar 

  • Feng AS (1982) Quantitative analysis of intensity-rate and intensity-latency functions in peripheral auditory nerve fibers of northern leopard frogs (Rana p.pipiens). Hear Res 6:241–246.

    Article  CAS  PubMed  Google Scholar 

  • Feng AS (1986a) Afferent and efferent innervation patterns of the superior olivary nucleus of the leopard frog. Brain Res 364:167–171.

    Article  CAS  PubMed  Google Scholar 

  • Feng AS (1986b) Afferent and efferent innervation patterns of the cochlear nucleus (dorsal medullary nucleus) of the leopard frog. Brain Res 367:183–191.

    Article  CAS  PubMed  Google Scholar 

  • Feng AS, Capranica RR (1976) Sound localization in anurans. I.Evidence of binaural interaction in dorsal medullary nucleus of bullfrog (Rana catesbeiana). J Neurophysiol 39:871–881.

    CAS  PubMed  Google Scholar 

  • Feng AS, Capranica RR (1978) Sound localization in anurans II. Binaural interaction in superior olivary nucleus of the green treefrog (Hyla cinerea). J Neurophysiol 41: 43–54.

    CAS  PubMed  Google Scholar 

  • Feng AS, Lin WY (1991) Differential innervation patterns of three divisions of frog auditory midbrain (torus semicircularis). J Comp Neurol 306:613–630.

    Article  CAS  PubMed  Google Scholar 

  • Feng AS, Lin W-Y (1994) Phase-locked response characteristics of single neurons in the frog “cochlear nucleus” to steady state and sinusoidal amplitude modulated tones. J Neurophysiol 72:2209–2221.

    CAS  PubMed  Google Scholar 

  • Feng AS, Lin WY (1996) Neuronal architecture of the dorsal nucleus (cochlear nucleus) of the frog (Rana pipiens pipiens). J Comp Neurol 366:320–334.

    Article  CAS  PubMed  Google Scholar 

  • Feng AS, Shofner WP (1981) Peripheral basis of sound localization in anurans. Acoustic properties of the frog’s ear. Hear Res. 5:210–216.

    Article  Google Scholar 

  • Feng AS, Hall JC, Gooler DM (1990) Neural basis of sound pattern recognition in anurans. Prog Neurobiol 34:313–329.

    Article  CAS  PubMed  Google Scholar 

  • Feng AS, Hall JC, Siddique S (1991) Coding of temporal parameters of complex sounds by frog auditory-nerve fibers. J Neurophysiol 65:424–445.

    CAS  PubMed  Google Scholar 

  • Fuzessery ZM (1988) Frequency tuning in the anuran central auditory system. In: Fritszch B, Wilczynski W, Ryan MJ, Hetherington TE, Walkowiak W eds The Evolution of the Amphibian Auditory System. New York: Wiley, pp. 253–273.

    Google Scholar 

  • Fuzessary ZM, Feng AS (1983a) Frequency selectivity in the anuran medulla: Excitatory and inhibitory tuning properties of single neurons in the dorsal medullary and superior olivary nuclei. J Comp Physiol 150:107–119.

    Article  Google Scholar 

  • Fuzessery ZM, Feng AS (1983b) Mating call selectivity in the thalamus and midbrain of the leopard frog (Rana p. pipiens): Single and multiunit activity. J Comp Physiol 150:333–344.

    Article  Google Scholar 

  • Gerhardt HC (1982) Sound pattern recognition in some North American treefrogs (Anura: Hylidae): Implications for mate choice. Am Zool 22:581–595.

    Google Scholar 

  • Gerhardt HC (1988) Acoustic properties used in call recognition by frogs and toads. In: Fritszch B, Wilczynski W, Ryan MJ, Hetherington TE, Walkowiak W eds The Evolution of the Amphibian Auditory System. New York: Wiley, pp. 275–294.

    Google Scholar 

  • Gerhardt HC (2001) Acoustic communication in two groups of closely related treefrogs. Adv Study Behav30:99–167.

    Article  Google Scholar 

  • Gooler DM, Feng AS (1992) Temporal coding in the frog midbrain: The influence of duration and rise-fall time on the processing of complex amplitude-modulated stimuli. J Neurophysiol 67:1–22.

    CAS  PubMed  Google Scholar 

  • Gooler DM, Condon CJ, Xu J, Feng AS (1993) Sound direction influences the frequencytuning characteristics of neurons in the frog inferior colliculus. J Neurophysiol 69:1018–1030.

    CAS  PubMed  Google Scholar 

  • Gooler DM, Xu J, Feng AS (1996) Binaural inhibition is important in shaping the free-field frequency selectivity of single neurons in the inferior colliculus. J Neurophysiol 76:2580–2594.

    CAS  PubMed  Google Scholar 

  • Grofova I, Corvaja N (1972) Commissural projection from the nuclei of termination of the VIIIth cranial nerve in the toad. Brain Res 42:189–195.

    Article  CAS  PubMed  Google Scholar 

  • Hall JC (1991) GABA and glycine immunoreactive neurons and terminals in the auditory brainstem and thalamus of the northern leopard frog, Rana pipiens pipiens. Soc Neurosci Abstr 17.

    Google Scholar 

  • Hall JC (1994) Central processing of communication sounds in the anuran auditory system. Amer Zool 34:670–684.

    Google Scholar 

  • Hall JC (1999) GABAergic inhibition shapes frequency tuning and modifies response properties in the midbrain of the leopard frog. J Comp Physiol A 185:479–491.

    Article  CAS  PubMed  Google Scholar 

  • Hall JC, Feng AS (1986) Neural analysis of temporally patterned sounds in the frog’s thalamus: processing of pulse duration and pulse repetition rate. Neurosci Lett 63: 215–220.

    Article  CAS  PubMed  Google Scholar 

  • Hall JC, Feng AS (1987) Evidence for parallel processing in the frog’s auditory thalamus. J Comp Neurol 258:407–419.

    Article  CAS  PubMed  Google Scholar 

  • Hall JC, Feng AS (1988) Influence of envelope rise time on neural responses in the auditory system of anurans. Hearing Res 36:261–276.

    Article  CAS  Google Scholar 

  • Hall JC, Feng AS (1990) Classification of the temporal discharge patterns of single auditory neurons in the dorsal medullary nucleus of the northern leopard frog. J Neurophysiol 64:1460–1473.

    CAS  PubMed  Google Scholar 

  • Hall JC, Feng AS (1991) Temporal processing in the dorsal medullary nucleus of the northern leopard frog (Rana pipiens pipiens). J Neurophysiol 66:955–973.

    CAS  PubMed  Google Scholar 

  • Heiligenberg WF (1991) The neural basis of behavior: A neuroethological view. Ann Rev Neurosci 14:247–267.

    Article  CAS  PubMed  Google Scholar 

  • Hermes DJ, Eggermont JJ, Aertsen AM, Johannesma PI (1982) Spectro-temporal characteristics of single units in the auditory midbrain of the lightly anaesthetised grass frog (Rana temporaria L.) investigated with tonal stimuli. Hear Res 6:103–126.

    Article  CAS  PubMed  Google Scholar 

  • Hetherington TE (1992) The effects of body size on functional properties of middle ear systems of anuran amphibians. Brain Behav Evol 39:133–142.

    CAS  PubMed  Google Scholar 

  • Hetherington TE, Lindquist E (1999) Lung-based hearing in an “earless” anuran amphibian. J Comp Physiol 184:395–401.

    Article  Google Scholar 

  • Hoke KL, Burmeister SS, Fernald RD, Rand AS, Ryan MJ, Wilczynski W (2004) Functional mapping of the auditory midbrain during mate call reception. J Neurosci 24: 11264–11272.

    Article  CAS  PubMed  Google Scholar 

  • Jørgensen MB (1991) Comparative studies of the biophysics of directional hearing in anurans. J Comp Physiol A 169:591–598.

    Google Scholar 

  • Jørgensen MB, Christensen-Dalsgaard J (1997a) Directionality of auditory nerve fiber responses to pure tone stimuli in the grassfrog, Rana temporaria. I.Spike rate responses. J Comp Physiol A 180:493–502.

    Article  PubMed  Google Scholar 

  • Jørgensen MB, Christensen-Dalsgaard J (1997b) Directionality of auditory nerve fiber responses to pure tone stimuli in the grassfrog, Rana temporaria. II. Spike timing. J Comp Physiol A 180:503–511.

    Article  PubMed  Google Scholar 

  • Jørgensen MB, Schmitz B, Christensen-Dalsgaard J (1991) Biophysics of directional hearing in the frog Eleutherodactylus coqui. J Comp Physiol A 168:223–232.

    Article  Google Scholar 

  • Kaulen R, Lifschitz W, Palazzi C, Adrian H (1972) Binaural interaction in the inferior colliculus of the frog. Exp Neurol 37:469–480.

    Article  CAS  PubMed  Google Scholar 

  • Klump GM, Benedix JH Jr, Gerhardt HC, Narins PM (2004) AM representation in green treefrog auditory-nerve fibers: Neuroethological implications for pattern recognition and sound localization. J Comp Physiol A 190:1011–1021.

    Article  CAS  Google Scholar 

  • Langner G (1992) Periodicity coding in the auditory system. Hearing Res 60:115–142.

    Article  CAS  Google Scholar 

  • Large EW, Crawford JD (2002) Auditory temporal computation: Interval selectivity based on post-inhibitory rebound. J Comp Neurosci 13:135–142.

    Google Scholar 

  • Larsell O (1934) The differentiation of the peripheral and central acoustic apparatus in the frog. J Comp Neurol 60:473–527.

    Article  Google Scholar 

  • Lewis ER, Lombard RE (1988) The amphibian inner ear. In: Fritzsch B, Ryan MJ, Wilczynski W, Hetherington TE, Walkowiak W eds The Evolution of the Amphibian Auditory System. New York: Wiley, pp. 93–123.

    Google Scholar 

  • Lin WY, Feng AS (2001) Free-field unmasking response characteristics of frog auditory nerve fibers: Comparison with the responses of midbrain auditory neurons. J Comp Physiol A 187:699–712.

    Article  CAS  PubMed  Google Scholar 

  • Lin WY, Feng AS (2003) GABA is involved in spatial unmasking in the frog auditory midbrain. J Neurosci23:8143–8151.

    CAS  PubMed  Google Scholar 

  • Lombard RE, Straughan IR (1974) Functional aspects of anuran middle ear structures. J Exp Biol 61:71–93.

    CAS  PubMed  Google Scholar 

  • Luksch H, Walkowiak W (1998) Morphology and axonal projection patterns of auditory neurons in the midbrain of the painted frog, Discoglossus pictus. Hear Res 122: 1–17.

    Article  CAS  PubMed  Google Scholar 

  • Martin WF (1971) Mechanics of sound production in toads of the genus Bufo: Passive elements. J Exp Zool 176:273–294.

    Article  CAS  PubMed  Google Scholar 

  • Megela AL, Capranica RR (1981) Response patterns to tone bursts in the peripheral auditory systems of anurans. J Neurophysiol 46:465–478.

    CAS  PubMed  Google Scholar 

  • Melssen WJ, Epping WJM (1990) A combined sensitivity for frequency and interaural intensity difference in neurons in the auditory midbrain of the grassfrog. Hear Res 44:35–50.

    Article  CAS  PubMed  Google Scholar 

  • Melssen WJ, Eppin WJM (1992) Selectivity for temporal characteristics of sound and interaural time difference of auditory midbrain neurons in the grassfrog: A system theoretical approach. Hear Res 60:178–198.

    Article  CAS  PubMed  Google Scholar 

  • Melssen WJ, van Stokkum IHM (1988) Sensitivity for interaural time-difference and amplitude-modulation in the auditory midbrain of the grassfrog. In: Duifhuis H, Horst JW, Wit HP eds Basic Issues in Hearing. London: Academic, pp. 279–284.

    Google Scholar 

  • Melssen WJ, Epping WJM, van Stokkum IHM (1990) Sensitivity for interaural time and intensity difference of auditory midbrain neurons in the grassfrog. Hear Res 47:235–256.

    Article  CAS  PubMed  Google Scholar 

  • Mudry KM, Constantine-Paton M, Capranica RR (1977) Auditory sensitivity of the diencephalon of the leopard frog (Rana p.pipiens). J Comp Physiol 114:1–13.

    Article  Google Scholar 

  • Narins PM (1983) Responses of torus semicircularis cells of the coqui treefrog to FM sinusoids. In: [edEwert J-P, Capranica RR, Ingle DJ eds Advances in Vertebrate Neuroethology. New York: Plenum, pp. 889–894.

    Google Scholar 

  • Narins PM, Capranica RR (1978) Communicative significance of the two-note call of the Puerto Rican treefrog, Eleutherodactylus coqui. J Comp Physiol 127:1–9.

    Article  Google Scholar 

  • Narins PM, Capranica RR (1980) Neural adaptations for processing the two-note call of the Puerto Rican treefrog, Eleutherodactylus coqui. Brain Behav Evol 17:48–66.

    CAS  PubMed  Google Scholar 

  • Narins PM, Ehret G, Tautz J (1988) Accessory pathway for sound transfer in a neotropical frog. Proc Natl Acad Sci USA 85:1508–1512.

    Article  CAS  PubMed  Google Scholar 

  • Penna M (1997) Selectivity of evoked vocal responses in the time domain by frogs of the genus Batrachyla. J Herpetol 31:202–217.

    Article  Google Scholar 

  • Penna M, Lin WY, Feng AS (1997) Temporal selectivity for complex signals by single neurons in the torus semicircularis of Pleurodema thaul (Amphibia: Leptodactylidae). J Comp Physiol A 180:313–328.

    Article  CAS  PubMed  Google Scholar 

  • Penna M, Lin WY, Feng AS (2001) Temporal selectivity by single neurons in the torus semicircularis of Batrachyla antartandica (Amphibia: Leptodactylidae). J Comp Physiol A 187:901–912.

    Article  CAS  Google Scholar 

  • Pinder AC, Palmer AR (1983) Mechanical properties of the frog ear: Vibration measurements under free-and closed-field acoustic conditions. Proc R Soc Lond B 219:371–396.

    Article  CAS  PubMed  Google Scholar 

  • Rheinlander J, Gerhardt HC, Yager DD, Capranica RR (1979) Accuracy of phonotaxis by the green treefrog (Hyla cinerea). J Comp Physiol 133:247–255.

    Article  Google Scholar 

  • Rose G, Capranica RR (1983) Temporal selectivity in the central auditory system of the leopard frog Rana pipiens. Science 219:1087–1089.

    Article  CAS  PubMed  Google Scholar 

  • Rose G, Capranica RR (1985) Sensitivity to amplitude modulated sounds in the anuran auditory nervous system. J Neurophysiol 53:446–465.

    CAS  PubMed  Google Scholar 

  • Rose GJ (1995) Representation of temporal patterns of amplitude modulation in the anuran auditory system and electrosensory system. In: Covey E, Hawkins HL, Port RF eds Neural Representation of Temporal Patterns. New York: Plenum, pp. 1–24.

    Google Scholar 

  • Rose GJ, Brenowitz EA (1997) Plasticity of aggressive thresholds in Hyla regilla: Discrete accommodation to encounter calls. Anim Behav 53:353–361.

    Article  Google Scholar 

  • Rose GJ, Brenowitz EA (2002) Pacific treefrogs use temporal integration to differentiate advertisement from encounter calls. Anim Behav 63:1183–1190.

    Article  Google Scholar 

  • Rose GJ, Capranica RR (1984) Processing amplitude-modulated sounds by the auditory midbrain of two species of toads: Matched temporal filters. J Comp Physiol 154:211–219.

    Article  Google Scholar 

  • Rose GJ, Wilczynski W (1984) The anuran superficial reticular nucleus: Evidence for homology with the nucleus of the lateral lemniscus. Brain Res 304:170–172.

    Article  CAS  PubMed  Google Scholar 

  • Rose GJ, Brenowitz EA, Capranica RR (1985) Species specificity and temperature and temperature dependency of temporal processing by the auditory midbrain of two species of treefrogs. J Comp Physiol 157:763–769.

    Article  CAS  Google Scholar 

  • Rose GJ, Zellick R, Rand SA (1988) Auditory processing of temporal information in a neotropical frog is independent of signal intensity. Ethology 77:330–336.

    Article  Google Scholar 

  • Ryan MJ (1983) Frequency modulated calls and species recognition in a neotropical frog. J Comp Physiol 150:217–221.

    Article  Google Scholar 

  • Schmidt RS (1988) Mating call phonotaxis in female American toads: Lesions of central auditory system. Brain Behav Evol 32:119–128.

    CAS  PubMed  Google Scholar 

  • Schmidt RS (1989) Mating call phonotaxis in female American toad: Lesions of anterior preoptic nucleus. Horm Behav 23:1–9.

    Article  CAS  PubMed  Google Scholar 

  • Schmitz B, White TD, Narins PM (1992) Directionality of phase locking in auditory nerve fibers of the leopard frog Rana pipiens pipiens. J Comp Physiol A 170:589–604.

    CAS  PubMed  Google Scholar 

  • Schneider H (1988) Peripheral and central mechanisms of vocalization. In: Fritszch B, Wilczynski W, Ryan MJ, Hetherington TE, Walkowiak W eds The Evolution of the Amphibian Auditory System. New York: Wiley, pp. 275–294.

    Google Scholar 

  • Seaman RL (2002) Non-osseous sound transmission to the inner ear. Hear Res 166: 214–215.

    Article  PubMed  Google Scholar 

  • van Stokkum IH, Melssen WJ (1991) Measuring and modeling the response of auditory midbrain neurons in the grassfrog to temporally structured binaural stimuli. Hear Res 52:113–132.

    Article  PubMed  Google Scholar 

  • Vlaming MSMG, Aertsen AMHJ, Epping WJM (1984) Directional hearing in the grassfrog (Rana temporaria L.). I. Mechanical vibrations of tympanic membrane. Hear Res 14:191–201.

    Article  CAS  PubMed  Google Scholar 

  • Walkowiak W (1980) The coding of auditory signals in the torus semicircularis of the firebellied toad and grass frog: Responses to simple stimuli and to conspecific calls. J Comp Physiol 138:131–148.

    Article  Google Scholar 

  • Walkowiak W (1984) Neuronal correlates of the recognition of pulsed sound signals in the grass frog. J Comp Physiol A 155:57–66.

    Article  Google Scholar 

  • Walkowiak W (1988) Central temporal encoding. In Fritszch B, Wilczynski W, Ryan MJ, Walkowiak W eds The Evolution of the Amphibian Auditory System. New York: Wiley, pp. 275–294.

    Google Scholar 

  • Walkowiak W, Luksch H (1994) Sensory motor interfacing in acoustic behavior of anurans. Amer Zool 34:685–695.

    Google Scholar 

  • Walkowiak W, Berlinger M, Schul J, Gerhardt HC (1999) Significance of forebrain structures in acoustically guided behaviour in anurans. Eur J Morphol 37:177–181.

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Narins PM (1996) Directional masking of phase locking in the amphibian auditory nerve. J Acoust Soc Am 99:1611–1620.

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Ludwig TA, Narins PM (1996) Spatial and spectral dependence of the auditory periphery in the northern leopard frog. J Comp Physiol A 178:159–172.

    Article  CAS  PubMed  Google Scholar 

  • White TD, Schmitz B, Narins PM (1992) Directional dependence of auditory sensitivity and frequency selectivity in the leopard frog. J Acoust Soc Am 92:1953–1961.

    Article  CAS  PubMed  Google Scholar 

  • Wilczynski W (1988) Brainstem auditory pathways in anurans. In: Fritszch B, Wilczynski W, Ryan MJ, Hetherington TE, Walkowiak W eds The Evolution of the Amphibian Auditory System. New York: Wiley, pp. 209–231.

    Google Scholar 

  • Will U (1988) Organization and projections of the area octavolateralis in amphibians. In: Fritzsch B, Ryan MJ, Wilczynski W, Hetherington TE, Walkowiak W eds The Evolution of the Amphibian Auditory System. New York: Wiley, pp. 185–208.

    Google Scholar 

  • Xu J, Gooler DM, Feng AS (1994) Single neurons in the frog inferior colliculus exhibit direction-dependent frequency selectivity to isointensity tone bursts. J Acoust Soc Am 95:2160–2170.

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Gooler DM, Feng AS (1996) Effects of sound direction on the processing of amplitude-modulated signals in the frog inferior colliculus. J Comp Physiol A 178: 435–445.

    Article  CAS  PubMed  Google Scholar 

  • Zakon H (1983) Reorganization of connectivity in amphibian central auditory system following VIIIth nerve regeneration: Time course. J Neurophysiol 49:1410–1427.

    CAS  PubMed  Google Scholar 

  • Zhang H, Feng AS (1998) Sound direction modifies the inhibitory as well as the excitatory frequency tuning characteristics of single neurons in the frog inferior colliculus. J Comp Physiol A 182:725–735.

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Xu J, Feng AS (1999) Effects of GABA-mediated inhibition on directiondependent frequency tuning in the frog inferior colliculus. J Comp Physiol A184:85–98.

    Article  CAS  PubMed  Google Scholar 

  • Zheng W, Hall JC (2000) GABAergic inhibition shapes frequency tuning and modifies response properties in the superior olivary nucleus of the leopard frog. J Comp Physiol 186:661–671.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Rose, G.J., Gooler, D.M. (2007). Function of the Amphibian Central Auditory System. In: Narins, P.M., Feng, A.S., Fay, R.R., Popper, A.N. (eds) Hearing and Sound Communication in Amphibians. Springer Handbook of Auditory Research, vol 28. Springer, New York, NY . https://doi.org/10.1007/978-0-387-47796-1_9

Download citation

Publish with us

Policies and ethics